
Formal Diagnosis of Hardware Transient

Errors in Programs

Layali Rashid, Karthik Pattabiraman and Sathish Gopalakrishnan

The University of British Columbia, Canada

{lrashid, karthikp, sathish}ece.ubc.ca

Abstract—As silicon technology continues to scale down

and validation expenses continue to increase, more

processors with vulnerable parts are shipped to

customers. Comprehensive information about

architectural units with relatively high failure rates is a

critical aspect of the feedback to thread scheduling

algorithms and to fault detection and recovery

mechanisms.

We present a technique to identify instructions that

cause program failure by utilizing the failure symptoms

such as program crash and failing detectors. Our

technique employs formal verification and is unique in

that it does not require hardware support or special

instrumentation of the code. We find that careful

engineering of the program’s error detectors and their

locations highly increase the chances of diagnosing soft

errors. We further show that we can diagnose up to 80%

of faults using 1-4 fault-detectors for two applications.

I. INTRODUCTION

The large complexity of current processors and the

high manpower and design cycle requirements [1-2] of

the validation process result in “weak” transistors

being shipped to end-users [3]. Such transistors are

subject to transient errors (also called single-event-

upsets or soft errors). Although the mean time before

failure for soft errors in a single processor may be low,

systems with tens or hundreds of processors may

experience high failure rates (e.g., the Blue-Gene

system experiences an error once every 4-6 hours [4]).

Further, errors in processors that compute and/or store

safety-critical data may lead to catastrophic

consequences. Therefore, it is important to identify

components that exhibit high rates of transient faults

and to schedule tasks around such components or

mitigate the effects of the faults.

Transient errors are difficult to diagnose [5]

because they (1) often last for only a few cycles, (2)

disappear upon re-execution and (3) depend on the

processor‟s physical conditions and the architectural

state, which may vary from one execution to another.

Moreover, transient errors can propagate in the system

and cause failures in components different than their

origin [6].

This article focuses on diagnosis of hardware

transient errors using formal methods. Formal

methods provide formal guarantees on the accuracy of

the diagnosis process. Further, such methods can

ensure completeness of the diagnoses, i.e., find all

faults that could have led to the failure.

In this work, we assume that the error has been

detected through runtime error detectors in the

program. Error detectors are used to limit error

propagation in programs and to ensure fail-stop

semantics in the event of an error. Such detectors can

be written manually by the programmer [7] or derived

automatically through program analysis techniques

[8].

The goal of the diagnosis is to track the

propagation of transient errors in programs and isolate

the first affected instruction. This is the first step in

isolating faulty functional units in the processor.

Starting from the failure dump, which stores the

architected state of the processor at the time of

program‟s failure, we track the error backwards to its

point of origin. We use symbolic execution based on

model-checking to track the propagation of transient

errors in the program. The main advantage of this

method over simulation is that it symbolically tracks a

whole class of errors simultaneously, which enables

rapid exploration of the state space.

Locating the specific instruction that experiences a

transient fault is a significant step toward identifying

the faulty microarchitectural unit, which would reduce

the hardware support needed for diagnosis.

We use model checking to find all transient errors

that might go undetected in the presence of a given set

of detectors. We build on an existing model-checking

framework to determine if the program failure was due

to a transient error and if so, which

instruction/register originated the error. We utilize the

failure dump (i.e., the dump file) to further limit the

search-space for diagnosis.

To the best of our knowledge, this is the first paper

to propose diagnosis of transient faults using formal

techniques and without requiring specialized

hardware support. Other diagnosis/debugging

techniques (1) use probability models to diagnose

faults, and hence do not provide formal guarantees [9],

(2) require special hardware support for recording the

state of the faulty execution and replaying it [10-11],

which significantly adds to the cost of the hardware

design, (3) run exhaustive periodic testes using ATPG

(Automatic Test Pattern Generation) that incurs

substantial overheads (up to 30 seconds) even if the

processor is fault-free [12]. Further, methods (2) and

(3) are limited to diagnosis of permanent hardware

errors and it is not straightforward to extend these

techniques for transient errors because transient errors

depend on environmental factors and may not be

easily reproduced.

The contributions of our work are as follows:

 Proposes a novel technique to formally diagnose soft

errors in programs without requiring hardware

support.

 Enhances an existing model-checking framework to

implement the technique. The enhancements consist

of advanced fault models to represent the fault‟s

impact on the program and novel operations to filter

solutions1 based on the required architectural state

(at the time of failure).

 Demonstrates the technique for two real

applications, namely insertion sort and matrix

multiply, both of which are protected by custom

error detectors.

 Shows that the technique can diagnose 80% of

faults with only 1-4 detectors in the program (for

the two programs). It further quantifies the

diagnosis accuracy in terms of the detectors‟

locations and number of detectors in the program.

1
 A solution is a processor state that satisfies the program‟s model.

II. EXAMPLE

We demonstrate the diagnosis process with a code

example (Fig. 1). The code fragment describes a

program to compute the factorial of a number read and

stored in $1. The program is written in a MIPS-like

assembly language. We first explain its operation

without errors: The result variable $2 is initialized to 1

(line 1). The loop counter variable $3 is initialized to

$1 (line 3) and the loop iterates while the condition

($3 > $4) is true, where $4 is always 1. At each loop

iteration, $2 is multiplied by $3 (line 7) and $3 is

decremented by one (line 9).

In order to prevent error propagation in the program,

we added two detectors to the program (check

instructions). The first detector asserts that $2 is larger

than $1 - 1 while the second asserts that $3 is smaller

than the $1 + 1.

Assume that $1 reads the value 5. In a fault-free

run, the loop iterates 4 times before it terminates. Also

assume that a soft error occurs while executing line 3

such that $3 is 13 instead of 5. As a result of the fault,

the program continues execution until it reaches line

10 where detector 2 is triggered (since $3 > $1 + 1).

The register file at the time of detection is as follows:

($1 = 5, $2= 13, $3 = 12, $4 = 1, $5 = 1). A crash

dump file is created that contains the register file and

the number of the triggered detector (i.e., detector 2).

To find the root cause of the fault, we substantially

enhances the SymPLFIED [13] framework to perform

automated diagnosis of transient faults that affect the

program. SymPLFIED symbolically injects a transient

fault into each instruction and tests if the fault triggers

detector 2. Say SymPLFIED injects a fault into the

instruction at line 3, so that $3 stores the value “err”

(err represents an erroneous value). When

SymPLFIED evaluates line 5 (the loop condition), it

forks the execution into two branches, one with $5 = 1

and another with $5 = 0. The branch with $5 = 0

causes the program to print out the result and

terminate, while the branch with $5 = 1 enters the

loop body. Since line 7 multiplies 1 by err, $2 is

updated with err. The instruction Check 1 is forked in

a way similar to the loop at line 5, with one branch

that continues evaluating the program and another

that assumes detector 1 is triggered and stops the

execution. However, since SymPLFIED searches for

solutions at which detector 2 is triggered, the later

branch is dropped. Then SymPLFIED proceeds to

evaluate line 9 (for the other branch), which maintains

the value err at $3, then triggers detector 2 at line 10

and finds a solution.

Similarly, injecting line 9 with a transient fault

triggers detector 2 and reaches another solution.

Hence, SymPLFIED finds a correct diagnosis (the

former solution) and an additional one (the later

solution).

Although manually propagating faults and

identifying their root causes is not complex for this

example, tracing faults in advanced structures such as

nested loops or a faulty address in a memory operation

is much more complex. Therefore, we need an

automated technique for fault diagnosis.

1 movi $2, #1 --- result variable

2 read $1, --- read from input

3 mov $3, $1 --- loop counter variable = $1

4 movi $4, #1

5 loop: setgt $5, $3, $4 ---loops while $3 > $4

6 beq $5, #0, exit

7 mult $2, $2, $3

8 check 1 --- detector 1

9 subi $3, $3, #1

10 check 2 --- detector 2

11 beq $0, #0, loop ---loop backedge

12 exit: 12 prints "Factorial = "

13 print $2

--- detectors’ definitions

1 $2 > $1 – 1

2 $3 < $1 + 1

Fig. 1. A program to compute factorial

III. DIAGNOSIS APPROACH

In this section, we explain our diagnosis technique

and the enhancements we made to SymPLFIED to

facilitate this diagnosis. The steps in the diagnosis are

as follows:

(1) Store the dump file of the faulty-program when a

detector is triggered. The dump file contains the

detector that has been triggered by the soft error, the

register file contents and the memory contents at the

time of the failure.

(2) Extract information from the dump file and use it

to formulate a SymPLFIED query. A SymPLFIED

query injects a transient fault into the program

instructions, one at a time, and compares the

architectural state at the moment the program

terminates to the one in the query. A match represents

a solution and is a diagnosed fault.

To implement the above procedure, we instrumented

SymPLFIED with operations that filter solutions based

on criteria extracted from the dump file.

For example, if the dump file contains the register file:

$1=0, $2=5, $3=-1, $4=8, $5=34, $6=50, $7=21, and

detector number 2 has been triggered, then the

SymPLFIED query we generate is as follows:

search allRegisterErrors(detectors, program)

=>! (S:State) such that (getOutput(S:State)

contains "Exception: Check 2 failed") and

RegisterFile($1 = 0) and RegisterFile($2 = 5)

and RegisterFile($3 = -1) and RegisterFile($4

= 8) and RegisterFile($5 = 34) and

RegisterFile($6 = 50) and RegisterFile($7 =

21) .

This query searches for all solutions that trigger the

second detector when injecting a fault into the

destination register at each instruction, one at a time.

The symbol =>! is a built-in Maude [14] operator, it

generates all solutions that satisfy the given model and

cannot be reduced.

We modified SymPLFIED such that when a detector is

triggered, the program execution stops and it prints

the message “Exception: Check x failed” to the

output, where x is the detector number. The operation

RegisterFile($1 = 0) checks if register $1 in the

register file found by SymPLFIED is equal to zero.

When the program terminates, SymPLFIED checks

whether the output contains the phrase “Exception:

Check 2 failed”, and whether the register file

matches the one in the query. If SymPLFIED finds a

match then it reports a solution. We diagnose the error

by extracting the number of the injected-instruction

from the solution.

We are conservative in modeling the effects of

faults. For example, in a real program an error in a

memory-address in a load or store operation either

raises a segmentation fault exception or loads

incorrect data. We modify the memory-fault model at

SymPLFIED such that it loads and stores the value

“err” to the destination register if the memory-address

is in error. The effect of the conservativeness is that

SymPLFIED may incur false-positives; it identifies

more faults than one may observe in real runs.

However, we believe that completeness of the

diagnosis process is more important than incurring a

few false-positives.

SymPLFIED has two other fault models: (1)

allMemoryErrors operation. This operation injects

errors into memory locations at each instruction, to

model errors that may occur while reading or writing

data to memory. (2) allControlErrors operation.

This operation injects errors into the program-counter

at each instruction, to model errors that occur during

the fetch stage and result in the wrong instruction

being executed. These models are similar to the

allRegisterErrors operation.

IV. EXPERIMENTAL METHODOLOGY

In this section we discuss the steps followed to

evaluate our diagnosis approach. The methodology is

as follows (all the following steps are automated using

scripts):

(1) We formulate SymPLFIED queries to search for

transient fault injections that trigger the program‟s

detectors, one at a time. Therefore, the required

number of queries is equal to the number of detectors

in the program. For example:
search allRegisterErrors(detectors, program)

=>! (S:State) such that (getOutput(S:State)

contains "Exception: Check 1 failed") .

This query searches for all solutions that trigger the

first detector when injecting a fault into the

destination register at each instruction. From each

SymPLFIED solution, we extract the injected

instruction number, and create a list of instructions

that may trigger the specific detector.

(2) To determine if these instructions would trigger a

detector in a real run of the application and to collect

the dump files, we perform a fault injection campaign

using the SimpleScalar simulator [15]. SimpleScalar

is a cycle-accurate processor simulator for a MIPS-like

instruction set. We use the simulator to inject faults

into the program and gather the failure dump in case

the fault triggers a detector. Further, SymPLFIED

directly supports the instruction set of SimpleScalar

and hence we can directly use it for diagnosis.

(3) We scan the dump files and create the appropriate

SymPLFIED queries, and then run the queries. Next,

we extract the injected instructions from SymPLFIED

solutions, and compare each extracted instruction with

the corresponding instruction that originally triggered

the detector in SimpleScalar. If these match, then we

consider the diagnosis a success (otherwise it is

„undiagnosed‟).

In the experiments, we run each query for at most 5

minutes. The analyses are conducted offline and hence

running time is not an overwhelming concern.

Further, queries may be parallelized to reduce the time

overhead [13].

V. RESULTS

In this section, we report the results of the

experiments described in Section 4 for two programs:

insertion sort and matrix multiply. Matrix multiply

consists of 162 lines of un-commented assembly code -

this includes 20 memory instructions, 9 branch

instructions and 8 integer-arithmetic instructions.

Insertion sort consists of 132 lines of un-commented

assembly code, this include 9 memory instructions, 6

branch instructions and 15 integer-arithmetic

instructions. The rest of the instructions comprise of

assignments, detectors, I/O instructions and function

calls. We derive detectors in each program that are

based on its functionality, and at the same time have

the best possible error coverage [16]. We choose

detectors such that they check the correctness of

variables (1) with high fanins (fanin here is a dynamic

instruction that affects the detector variable) and (2)

with long lifetime, which is the distance in time

between the variable initialization to its last use.

We study the effect of increasing the number of

detectors on the diagnosis accuracy for each program.

Tables 1 and 2 show the variation in fault

injection/detection rates (with SimpleScalar) and fault

diagnosis accuracy (with our technique) with

increasing number of detectors.

TABLE I

DIAGNOSIS RESULTS FOR INSERTION SORT

Number of Detectors 1 4 7

Number of faults injected in SS 11 165 198

Number of faults detected in SS 8 64 83

Diagnosed Faults (%) 100 87 89

Undiagnosed Faults (%) 0 13 11

TABLE II

DIAGNOSIS RESULTS FOR MATRIX MULTIPLY

Number of Detectors 1 4 6

Number of faults injected in SS 167 275 286

Number of faults detected in SS 74 135 150

Diagnosed Faults (%) 100 77 80

Undiagnosed Faults (%) 0 23 20

The results from the tables are summarized as follows:

 The number of faults injected in SimpleScalar is

proportional to the number of detectors. Recall from

the previous section that the first step in our

experimental methodology is to find the list of

instructions that trigger any detector using

SymPLFIED. We inject faults into this list of

instructions.

 The percentage of faults detected by the detectors

is 50.5 % (on average), for both programs. This is

because of the detectors' limitations. For example, a

detector that checks if a variable is below a loose

threshold (e.g 100), may not be triggered by a small

deviation in the variable. The accuracy of detection is

orthogonal to the diagnosis accuracy.

 Overall, the proposed technique diagnoses up to

89% of the detected faults for the insertion sort

program and up to 80% of the faults for the matrix

multiply program.

 Although the percentage of diagnosed faults for

both programs decreases when the number of detectors

increases from 1 to 4, the absolute number of the

diagnosed faults is higher for the 4 detector case. This

shows that adding more detectors increases the

diagnosis accuracy.

 The undiagnosed faults in both benchmarks are

those that (1) affect counters in three-level nested

loops and (2) those that affect the detector itself. We

believe that these cases are implementation artifacts of

the SymPLFIED tool and we plan to address them in

future work.

 A single detector in the matrix multiply program

diagnoses more faults than four detectors in the

insertion sort program. This is due to the choice of the

detector‟s variables. The single detector in the matrix

multiply program checks a critical variable (i.e., a

variable used by many instructions), while detectors in

the insertion sort program check variables that are

each used by at most two instructions. This is also why

increasing the number of detectors does not improve

the detection rate for the matrix multiply program as

much as it does for the insertion sort program.

Increasing the number of detectors makes the

diagnosis process more deterministic as the detectors

reduce the number of candidate solutions (queries with

fewer false positives). Note that each detector can be

triggered by multiple scenarios of fault injections, and

these scenarios increase as the fanin of the detector

variable increases, hence there are multiple solutions

that SymPLFIED generates for queries augmented

with detector number only. We expect that the

diagnosis-queries with detector number and register-

file contents can generate fewer solutions and hence

the diagnosis process will be more deterministic.

VI. RELATED WORK

We classify related diagnosis work into four broad

areas: (1) hardware-based techniques, (2) probabilistic

techniques, (3) formal methods and (4) periodic-

testing techniques.

(1) Hardware-based techniques. Li et al. [10] and

Bower et al [11] propose techniques to diagnose hard

faults using significant hardware support. This incurs

high power overheads and hardware complexity. In

contrast, we do not require hardware support for

diagnosis. Further, we focus on transient errors which

are more difficult to diagnose since they disappear

upon re-execution. Park and Mitra [17] use special

hardware recorders to collect traces of data and control

flows to localize bugs during the post-silicon

validation phase. Our technique complements their

work by localizing the failure-causing instruction

using software methods, as compared to hardware

records in the original technique.

(2) Probabilistic techniques. Jha et al. [9], Racunas

et al. [18] and Wang and Patel [19] use probabilistic

techniques to detect and diagnose errors. These

techniques are based on heuristics or probability

models and do not take into account for all possible

errors, which may result in them missing important

cases. In addition, they require a model of the system‟s

error-free behavior which they derive through online

learning. Therefore, they may misclassify correct

executions as erroneous ones. We do not suffer from

this problem as ours is a posteriori technique that

derives the correct behavior of the system based on the

program‟s semantics.

(3) Formal methods. Formal methods have been

extensively used in diagnosing errors in distributed

systems [20-21]. These diagnosis approaches are

application-generic and do not take into account the

structure/behavior of the program under consideration.

Hence, they may incur high rates of false-positives.

Further, they model software as a black-box and are

hence not fine-grained enough to isolate failures of

individual instructions (this is important to identify

the fault).

(4) Periodic-testing techniques. Periodic testing

techniques [12] provide precise diagnosis for hard

errors, however, they require high resource overhead

even for fault-free cores. Further, it is not easy to

extend these techniques for soft errors since soft errors

are non-deterministic and hence difficult to reproduce

during testing.

VII. CONCLUSIONS AND FUTURE WORK

We propose a formal technique to diagnose

program instructions that are affected by transient

errors (as the first step to diagnose the vulnerable

functional units) that trigger detectors, with no

hardware support. Our diagnosis method is able to

diagnose 77%-100% of faults using 1-4 detectors in

software.

We propose to conduct this diagnosis technique

offline; so as to learn about the fault-prone

microarchitectural units and maintain a database with

these units, in addition to a table that contains

information about common failures and possible

sources. This database can provide very valuable

feedback to scheduling polices. Further, it can

complement detection and recovery methods by

providing hints about which units are likely to cause

faults and hence reduce the overall detection and

recovery overhead.

Based on the results of the study, we believe that

software diagnosis of hardware faults is feasible,

efficient and can be automated using formal

techniques. We will further evaluate this hypothesis by

(1) studying the effects of the detector-variable on the

diagnosis process, (2) integrating the register file and

the memory contents in the diagnosis process, (3)

diagnosing permanent and intermittent faults and (4)

improving the scalability of our formal methods by

using heuristics.

References

1. Abramovici, M., et al. A reconfigurable design-

for-debug infrastructure for SOCs. in Proceeding

of the Conference on Design Automation (DAC).

2006.

2. Josephson, D., The Good, the Bad, and the Ugly of

Silicon Debug, in Design Automation Conference.

2006, ACM. p. 3 - 6.

3. Constantinides, K., O. Mutlu, and T. Austin.

Online Design Bug Detection: RTL Analysis,

Flexible Mechanisms, and Evaluation. in

Proceeding of the IEEE/ACM International

Symposium on Microarchitecture. 2008.

4. Michalak, S., et al., Predicting the Number of

Fatal Soft Errors in LosAlamos National

Laboratory’s ASC Q Supercomputer. IEEE

Transactions on Device and Materials Reliability,

2005. 5(3).

5. Josephson, D.D. The manic depression of

microprocessor debug. in Proceedings of the

International Test Conference. 2002.

6. Blome, J., et al., A Microarchitectural Analysis of

Soft Error Propagation in a ProductionLevel

Embedded Microprocessor, in In Proceedings of

the First Workshop on Architecture Reliability.

2005.

7. Hiller, M., A. Jhumka, and N. Suri. On the

placement of soft-ware mechanisms for detection

of data errors. in Proceedings of the International

Confonference on Dependable Systems and

Networks (DSN). 2002.

8. Lyle, G., et al. An End-to-end Approach for the

Automatic Derivation of Application-aware Error

Detectors. in International Conference on

Dependable Systems and Networks. 2009.

9. Jha, S., et al., Localizing Transient Faults Using

Dynamic Bayesian Networks, in IEEE

International High Level Design Validation and

Test Workshop. 2009. p. 4.

10. Li, M., et al. Trace-Based Microarchitecture-Level

Diagnosis of Permanent Hardware Faults. in

Proceedings of the International Conference on

Dependable Systems and Networks (DSN). 2008.

11. Bower, F.A., D. Sorin, and S. Ozev, Online

Diagnosis of Hard Faults in Microprocessors.

ACM Transactions on Architecture and Code

Optimization, 2007. 4(2).

12. Li, Y., S. Makar, and S. Mitra. CASP: concurrent

autonomous chip self-test using stored test

patterns. in Proceedings of the conference on

Design, automation and test in Europe. 2008.

13. Pattabiraman, K., et al., SymPLFIED: Symbolic

Program-level Fault Injection and Error Detection

Framework, in Proceeding of the International

Conference on Dependable Systems and Networks

(DSN). 2008.

14. Clavel, M., et al., Principles of Maude, in Proc.

First Int’l Workshop on Rewriting Logic and Its

Ap-plications. 1996.

15. Burger, D. and T.M. Austin, The SimpleScalar

tool set, ver-sion 2.0. Computer Architecture

News, 1997. 25(3).

16. Pattabiraman, K., Z. Kalbarczyk, and R.K. Iyer.

Application-Based Metrics for Strategic Placement

of Detectors. in Pacific Rim International

Symposium on Dependable Computing. 2005.

17. Park, S.-B. and S. Mitra, IFRA: Instruction

Footprint Recording and Analysis for Post-Silicon

Bug Localization in Processors. Communications

of the ACM, 2010. 53(2).

18. Racunas, P., et al. Perturbation-Based Fault

Screening. in Proceedings of the International

Symposium on High Performance Computer

Architecture. 2002.

19. Wang, N. and S. Patel, ReStore: Symptom Based

Soft Error Detection in Microprocessors. IEEE

Transactions on Dependable and Secure

Computing, 2006. 3(3).

20. Diaz, M., et al., Observer-a concept for formal on-

line validation of distributed systems. IEEE

Transactions on Software Engineering, 1994.

20(12): p. 900 - 913

21. Krishnamachari, B. and S. Iyengar, Distributed

Bayesian algorithms for fault-tolerant event region

detection in wireless sensor networks. IEEE

Transactions on Computers, 2004. 53(3): p. 241-

250.

