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Abstract—As silicon technology continues to scale down 

and validation expenses continue to increase, more 

processors with vulnerable parts are shipped to 

customers. Comprehensive information about 

architectural units with relatively high failure rates is a 

critical aspect of the feedback to thread scheduling 

algorithms and to fault detection and recovery 

mechanisms. 

We present a technique to identify instructions that 

cause program failure by utilizing the failure symptoms 

such as program crash and failing detectors. Our 

technique employs formal verification and is unique in 

that it does not require hardware support or special 

instrumentation of the code. We find that careful 

engineering of the program’s error detectors and their 

locations highly increase the chances of diagnosing soft 

errors. We further show that we can diagnose up to 80% 

of faults using 1-4 fault-detectors for two applications. 

 

I. INTRODUCTION 

The large complexity of current processors and the 

high manpower and design cycle requirements [1-2] of 

the validation process result in “weak” transistors 

being shipped to end-users [3]. Such transistors are 

subject to transient errors (also called single-event-

upsets or soft errors). Although the mean time before 

failure for soft errors in a single processor may be low, 

systems with tens or hundreds of processors may 

experience high failure rates (e.g., the Blue-Gene 

system experiences an error once every 4-6 hours [4]). 

Further, errors in processors that compute and/or store 

safety-critical data may lead to catastrophic 

consequences. Therefore, it is important to identify 

components that exhibit high rates of transient faults 

and to schedule tasks around such components or 

mitigate the effects of the faults.  

Transient errors are difficult to diagnose [5] 

because they (1) often last for only a few cycles, (2) 

disappear upon re-execution and (3) depend on the 

processor‟s physical conditions and the architectural 

state, which may vary from one execution to another. 

Moreover, transient errors can propagate in the system 

and cause failures in components different than their 

origin [6]. 

This article focuses on diagnosis of hardware 

transient errors using formal methods. Formal 

methods provide formal guarantees on the accuracy of 

the diagnosis process. Further, such methods can 

ensure completeness of the diagnoses, i.e., find all 

faults that could have led to the failure.  

In this work, we assume that the error has been 

detected through runtime error detectors in the 

program. Error detectors are used to limit error 

propagation in programs and to ensure fail-stop 

semantics in the event of an error. Such detectors can 

be written manually by the programmer [7] or derived 

automatically through program analysis techniques 

[8]. 

The goal of the diagnosis is to track the 

propagation of transient errors in programs and isolate 

the first affected instruction. This is the first step in 

isolating faulty functional units in the processor. 

Starting from the failure dump, which stores the 

architected state of the processor at the time of 

program‟s failure, we track the error backwards to its 

point of origin. We use symbolic execution based on 

model-checking to track the propagation of transient 

errors in the program. The main advantage of this 

method over simulation is that it symbolically tracks a 

whole class of errors simultaneously, which enables 

rapid exploration of the state space. 

Locating the specific instruction that experiences a 

transient fault is a significant step toward identifying 

the faulty microarchitectural unit, which would reduce 

the hardware support needed for diagnosis. 



We use model checking to find all transient errors 

that might go undetected in the presence of a given set 

of detectors. We build on an existing model-checking 

framework to determine if the program failure was due 

to a transient error and if so, which 

instruction/register originated the error. We utilize the 

failure dump (i.e., the dump file) to further limit the 

search-space for diagnosis.  

To the best of our knowledge, this is the first paper 

to propose diagnosis of transient faults using formal 

techniques and without requiring specialized 

hardware support. Other diagnosis/debugging 

techniques (1) use probability models to diagnose 

faults, and hence do not provide formal guarantees [9], 

(2) require special hardware support for recording the 

state of the faulty execution and replaying it [10-11], 

which significantly adds to the cost of the hardware 

design, (3) run exhaustive periodic testes using ATPG 

(Automatic Test Pattern Generation) that incurs 

substantial overheads (up to 30 seconds) even if the 

processor is fault-free [12]. Further, methods (2) and 

(3) are limited to diagnosis of permanent hardware 

errors and it is not straightforward to extend these 

techniques for transient errors because transient errors 

depend on environmental factors and may not be 

easily reproduced. 

The contributions of our work are as follows: 

 Proposes a novel technique to formally diagnose soft 

errors in programs without requiring hardware 

support.  

 Enhances an existing model-checking framework to 

implement the technique. The enhancements consist 

of advanced fault models to represent the fault‟s 

impact on the program and novel operations to filter 

solutions1 based on the required architectural state 

(at the time of failure). 

 Demonstrates the technique for two real 

applications, namely insertion sort and matrix 

multiply, both of which are protected by custom 

error detectors. 

 Shows that the technique can diagnose 80% of 

faults with only 1-4 detectors in the program (for 

the two programs). It further quantifies the 

diagnosis accuracy in terms of the detectors‟ 

locations and number of detectors in the program. 

                                                        
1
 A solution is a processor state that satisfies the program‟s model. 

II. EXAMPLE 

We demonstrate the diagnosis process with a code 

example (Fig. 1). The code fragment describes a 

program to compute the factorial of a number read and 

stored in $1. The program is written in a MIPS-like 

assembly language. We first explain its operation 

without errors: The result variable $2 is initialized to 1 

(line 1). The loop counter variable $3 is initialized to 

$1 (line 3) and the loop iterates while the condition 

($3 > $4) is true, where $4 is always 1. At each loop 

iteration, $2 is multiplied by $3 (line 7) and $3 is 

decremented by one (line 9). 

In order to prevent error propagation in the program, 

we added two detectors to the program (check 

instructions). The first detector asserts that $2 is larger 

than $1 - 1 while the second asserts that $3 is smaller 

than the $1 + 1. 

Assume that $1 reads the value 5. In a fault-free 

run, the loop iterates 4 times before it terminates. Also 

assume that a soft error occurs while executing line 3 

such that $3 is 13 instead of 5. As a result of the fault, 

the program continues execution until it reaches line 

10 where detector 2 is triggered (since $3 > $1 + 1). 

The register file at the time of detection is as follows: 

($1 = 5, $2= 13, $3 = 12, $4 = 1, $5 = 1). A crash 

dump file is created that contains the register file and 

the number of the triggered detector (i.e., detector 2). 

To find the root cause of the fault, we substantially 

enhances the SymPLFIED [13] framework to perform 

automated diagnosis of transient faults that affect the 

program. SymPLFIED symbolically injects a transient 

fault into each instruction and tests if the fault triggers 

detector 2. Say SymPLFIED injects a fault into the 

instruction at line 3, so that $3 stores the value “err” 

(err represents an erroneous value). When 

SymPLFIED evaluates line 5 (the loop condition), it 

forks the execution into two branches, one with $5 = 1 

and another with $5 = 0. The branch with $5 = 0 

causes the program to print out the result and 

terminate, while the branch with $5 = 1 enters the 

loop body. Since line 7 multiplies 1 by err, $2 is 

updated with err. The instruction Check 1 is forked in 

a way similar to the loop at line 5, with one branch 

that continues evaluating the program and another 

that assumes detector 1 is triggered and stops the 

execution. However, since SymPLFIED searches for 

solutions at which detector 2 is triggered, the later 

branch is dropped. Then SymPLFIED proceeds to 

evaluate line 9 (for the other branch), which maintains 

the value err at $3, then triggers detector 2 at line 10 

and finds a solution.  



Similarly, injecting line 9 with a transient fault 

triggers detector 2 and reaches another solution. 

Hence, SymPLFIED finds a correct diagnosis (the 

former solution) and an additional one (the later 

solution).  

Although manually propagating faults and 

identifying their root causes is not complex for this 

example, tracing faults in advanced structures such as 

nested loops or a faulty address in a memory operation 

is much more complex. Therefore, we need an 

automated  technique for fault diagnosis. 

 

 
1  movi $2, #1  --- result variable 

2  read $1,   --- read from input 

3  mov $3, $1    --- loop counter variable = $1 

4  movi $4, #1 

5 loop:  setgt $5, $3, $4   ---loops while $3 > $4 

6  beq  $5, #0, exit 

7  mult $2, $2, $3 

8  check 1   --- detector 1 

9  subi $3, $3, #1 

10  check 2   --- detector 2 

11  beq  $0, #0, loop   ---loop backedge 

12 exit: 12  prints "Factorial = " 

13  print $2 

--- detectors’ definitions 

1 $2 > $1 – 1 

2 $3 < $1 + 1 

Fig. 1. A program to compute factorial  

III. DIAGNOSIS APPROACH 

In this section, we explain our diagnosis technique 

and the enhancements we made to SymPLFIED to 

facilitate this diagnosis. The steps in the diagnosis are 

as follows: 

(1) Store the dump file of the faulty-program when a 

detector is triggered. The dump file contains the 

detector that has been triggered by the soft error, the 

register file contents and the memory contents at the 

time of the failure. 

(2) Extract information from the dump file and use it 

to formulate a SymPLFIED query. A SymPLFIED 

query injects a transient fault into the program 

instructions, one at a time, and compares the 

architectural state at the moment the program 

terminates to the one in the query. A match represents 

a solution and is a diagnosed fault. 

To implement the above procedure, we instrumented 

SymPLFIED with operations that filter solutions based 

on criteria extracted from the dump file. 

For example, if the dump file contains the register file: 

$1=0, $2=5, $3=-1, $4=8, $5=34, $6=50, $7=21, and 

detector number 2 has been triggered, then the 

SymPLFIED query we generate is as follows: 

 
search allRegisterErrors(detectors, program) 

=>! (S:State) such that (getOutput(S:State) 

contains "Exception: Check 2 failed") and 

RegisterFile($1 = 0) and RegisterFile($2 = 5) 

and RegisterFile($3 = -1) and RegisterFile($4 

= 8) and RegisterFile($5 = 34) and 

RegisterFile($6 = 50) and RegisterFile($7 = 

21) . 

 

This query searches for all solutions that trigger the 

second detector when injecting a fault into the 

destination register at each instruction, one at a time. 

The symbol =>! is a  built-in Maude [14] operator, it 

generates all solutions that satisfy the given model and 

cannot be reduced. 

We modified SymPLFIED such that when a detector is 

triggered, the program execution stops and it prints 

the message “Exception: Check x failed” to the 

output, where x is the detector number. The operation 

RegisterFile($1 = 0) checks if register $1 in the 

register file found by SymPLFIED is equal to zero. 

When the program terminates, SymPLFIED checks 

whether the output contains the phrase “Exception: 

Check 2 failed”, and whether the register file 

matches the one in the query. If SymPLFIED finds a 

match then it reports a solution. We diagnose the error 

by extracting the number of the injected-instruction 

from the solution. 

We are conservative in modeling the effects of 

faults. For example, in a real program an error in a 

memory-address in a load or store operation either 

raises a segmentation fault exception or loads 

incorrect data. We modify the memory-fault model at 

SymPLFIED such that it loads and stores the value 

“err” to the destination register if the memory-address 

is in error. The effect of the conservativeness is that 

SymPLFIED may incur false-positives; it identifies 

more faults than one may observe in real runs. 

However, we believe that completeness of the 

diagnosis process is more important than incurring a 

few false-positives.  

SymPLFIED has two other fault models: (1) 

allMemoryErrors operation. This operation injects 

errors into memory locations at each instruction, to 

model errors that may occur while reading or writing 

data to memory. (2) allControlErrors operation. 

This operation injects errors into the program-counter 

at each instruction, to model errors that occur during 

the fetch stage and result in the wrong instruction 

being executed. These models are similar to the 

allRegisterErrors operation.  

 

IV. EXPERIMENTAL METHODOLOGY 

In this section we discuss the steps followed to 

evaluate our diagnosis approach. The methodology is 



as follows (all the following steps are automated using 

scripts): 

(1) We formulate SymPLFIED queries to search for 

transient fault injections that trigger the program‟s 

detectors, one at a time. Therefore, the required 

number of queries is equal to the number of detectors 

in the program. For example: 
search allRegisterErrors(detectors, program) 

=>! (S:State) such that (getOutput(S:State) 

contains "Exception: Check 1 failed") . 

This query searches for all solutions that trigger the 

first detector when injecting a fault into the 

destination register at each instruction. From each 

SymPLFIED solution, we extract the injected 

instruction number, and create a list of instructions 

that may trigger the specific detector. 

(2) To determine if these instructions would trigger a 

detector in a real run of the application and to collect 

the dump files, we perform a fault injection campaign 

using the SimpleScalar simulator [15]. SimpleScalar 

is a cycle-accurate processor simulator for a MIPS-like 

instruction set. We use the simulator to inject faults 

into the program and gather the failure dump in case 

the fault triggers a detector. Further, SymPLFIED 

directly supports the instruction set of SimpleScalar 

and hence we can directly use it for diagnosis. 

(3) We scan the dump files and create the appropriate 

SymPLFIED queries, and then run the queries. Next, 

we extract the injected instructions from SymPLFIED 

solutions, and compare each extracted instruction with 

the corresponding instruction that originally triggered 

the detector in SimpleScalar. If these match, then we 

consider the diagnosis a success (otherwise it is 

„undiagnosed‟).  

In the experiments, we run each query for at most 5 

minutes. The analyses are conducted offline and hence 

running time is not an overwhelming concern. 

Further, queries may be parallelized to reduce the time 

overhead [13]. 

V. RESULTS 

In this section, we report the results of the 

experiments described in Section 4 for two programs: 

insertion sort and matrix multiply. Matrix multiply 

consists of 162 lines of un-commented assembly code - 

this includes 20 memory instructions, 9 branch 

instructions and 8 integer-arithmetic instructions. 

Insertion sort consists of 132 lines of un-commented 

assembly code, this include 9 memory instructions, 6 

branch instructions and 15 integer-arithmetic 

instructions. The rest of the instructions comprise of 

assignments, detectors, I/O instructions and function 

calls. We derive detectors in each program that are 

based on its functionality, and at the same time have 

the best possible error coverage [16]. We choose 

detectors such that they check the correctness of 

variables (1) with high fanins (fanin here is a dynamic 

instruction that affects the detector variable) and (2) 

with long lifetime, which is the distance in time 

between the variable initialization to its last use. 

We study the effect of increasing the number of 

detectors on the diagnosis accuracy for each program. 

Tables 1 and 2 show the variation in fault 

injection/detection rates (with SimpleScalar) and fault 

diagnosis accuracy (with our technique) with 

increasing number of detectors.  
 

TABLE I 

DIAGNOSIS RESULTS FOR INSERTION SORT 

Number of Detectors 1 4 7 

Number of faults injected in SS  11 165 198 

Number of faults detected in SS 8 64 83 

Diagnosed Faults (%) 100 87 89 

Undiagnosed Faults (%) 0 13 11 

 

TABLE II 

DIAGNOSIS RESULTS FOR MATRIX MULTIPLY 

Number of Detectors 1 4 6 

Number of faults injected in SS  167 275 286 

Number of faults detected in SS  74 135 150 

Diagnosed Faults (%) 100 77 80 

Undiagnosed Faults (%) 0 23 20 

 

The results from the tables are summarized as follows: 

 The number of faults injected in SimpleScalar is 

proportional to the number of detectors. Recall from 

the previous section that the first step in our 

experimental methodology is to find the list of 

instructions that trigger any detector using 

SymPLFIED. We inject faults into this list of 

instructions. 

 The percentage of faults detected by the detectors 

is 50.5 % (on average), for both programs. This is 

because of the detectors' limitations. For example, a 

detector that checks if a variable is below a loose 

threshold (e.g 100), may not be triggered by a small 

deviation in the variable. The accuracy of detection is 

orthogonal to the diagnosis accuracy. 

 Overall, the proposed technique diagnoses up to 

89% of the detected faults for the insertion sort 

program and up to 80% of the faults for the matrix 

multiply program.  

 Although the percentage of diagnosed faults for 

both programs decreases when the number of detectors 

increases from 1 to 4, the absolute number of the 

diagnosed faults is higher for the 4 detector case. This 

shows that adding more detectors increases the 

diagnosis accuracy. 



 The undiagnosed faults in both benchmarks are 

those that (1) affect counters in three-level nested 

loops and (2) those that affect the detector itself. We 

believe that these cases are implementation artifacts of 

the SymPLFIED tool and we plan to address them in 

future work. 

 A single detector in the matrix multiply program 

diagnoses more faults than four detectors in the 

insertion sort program. This is due to the choice of the 

detector‟s variables. The single detector in the matrix 

multiply program checks a critical variable (i.e., a 

variable used by many instructions), while detectors in 

the insertion sort program check variables that are 

each used by at most two instructions. This is also why 

increasing the number of detectors does not improve 

the detection rate for the matrix multiply program as 

much as it does for the insertion sort program. 

Increasing the number of detectors makes the 

diagnosis process more deterministic as the detectors 

reduce the number of candidate solutions (queries with 

fewer false positives). Note that each detector can be 

triggered by multiple scenarios of fault injections, and 

these scenarios increase as the fanin of the detector 

variable increases, hence there are multiple solutions 

that SymPLFIED generates for queries augmented 

with detector number only. We expect that the 

diagnosis-queries with detector number and register-

file contents can generate fewer solutions and hence 

the diagnosis process will be more deterministic. 

VI. RELATED WORK 

We classify related diagnosis work into four broad 

areas: (1) hardware-based techniques, (2) probabilistic 

techniques, (3) formal methods and (4) periodic-

testing techniques. 

(1) Hardware-based techniques. Li et al. [10] and 

Bower et al [11] propose techniques to diagnose hard 

faults using significant hardware support. This incurs 

high power overheads and hardware complexity. In 

contrast, we do not require hardware support for 

diagnosis. Further, we focus on transient errors which 

are more difficult to diagnose since they disappear 

upon re-execution. Park and Mitra [17] use special 

hardware recorders to collect traces of data and control 

flows to localize bugs during the post-silicon 

validation phase. Our technique complements their 

work by localizing the failure-causing instruction 

using software methods, as compared to hardware 

records in the original technique. 

(2) Probabilistic techniques. Jha et al. [9], Racunas 

et al. [18] and Wang and Patel [19] use probabilistic 

techniques to detect and diagnose errors. These 

techniques are based on heuristics or probability 

models and do not take into account for all possible 

errors, which may result in them missing important 

cases. In addition, they require a model of the system‟s 

error-free behavior which they derive through online 

learning. Therefore, they may misclassify correct 

executions as erroneous ones. We do not suffer from 

this problem as ours is a posteriori technique that 

derives the correct behavior of the system based on the 

program‟s semantics.  

(3) Formal methods. Formal methods have been 

extensively used in diagnosing errors in distributed 

systems [20-21]. These diagnosis approaches are 

application-generic and do not take into account the 

structure/behavior of the program under consideration. 

Hence, they may incur high rates of false-positives. 

Further, they model software as a black-box and are 

hence not fine-grained enough to isolate failures of 

individual instructions (this is important to identify 

the fault). 

(4) Periodic-testing techniques. Periodic testing 

techniques [12] provide precise diagnosis for hard 

errors, however, they require high resource overhead 

even for fault-free cores. Further, it is not easy to 

extend these techniques for soft errors since soft errors 

are non-deterministic and hence difficult to reproduce 

during testing. 

 

VII. CONCLUSIONS AND FUTURE WORK 

We propose a formal technique to diagnose 

program instructions that are affected by transient 

errors (as the first step to diagnose the vulnerable 

functional units) that trigger detectors, with no 

hardware support. Our diagnosis method is able to 

diagnose 77%-100% of faults using 1-4 detectors in 

software.  

We propose to conduct this diagnosis technique 

offline; so as to learn about the fault-prone 

microarchitectural units and maintain a database with 

these units, in addition to a table that contains 

information about common failures and possible 

sources. This database can provide very valuable 

feedback to scheduling polices. Further, it can 

complement detection and recovery methods by 

providing hints about which units are likely to cause 

faults and hence reduce the overall detection and 

recovery overhead. 

Based on the results of the study, we believe that 

software diagnosis of hardware faults is feasible, 

efficient and can be automated using formal 

techniques. We will further evaluate this hypothesis by 



(1) studying the effects of the detector-variable on the 

diagnosis process, (2) integrating the register file and 

the memory contents in the diagnosis process, (3) 

diagnosing permanent and intermittent faults and (4) 

improving the scalability of our formal methods by 

using heuristics. 
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