
Good Enough Computer Systems:

Reliability on the Cheap

Karthik Pattabiraman

Electrical and Computer Engineering

1

Motivation: Memory Corruption

2

 Memory corruption errors are a leading cause of

vulnerabilities in type-unsafe languages (C/C++)

 C/C++ still among most used languages in real-world

 Attackers continue to exploit mem. corruption errors

Source: sans.org (2009)

Background: Memory Corruption Errors

3

 Buffer-overflows

 Stack and Heap

buffers

 Can corrupt

both control and

non-control data

 Dangling

Pointers

 Use after free

 Aliased with

used memory

a

c

0 99

p1

0 99

p2

x

c[101] = „\n\‟;

free(p1);

p1 = p2;

Memory Corruption Errors : “Solutions”

4

 Write code using secure programming practices

 Requires tremendous programmer effort

 Loading of unsafe libraries and plugins

 Statically check code for memory corruption errors

 False-positives, requires manual inspection to understand

 Developers often reluctant to fix non-exploitable bugs

 Dynamically check all memory writes

 Prohibitive overheads in practice (60 to 100%)

 “All or nothing” technique – no guarantees otherwise

Motivation: Hardware Memory Errors

5

 Memory elements are susceptible to soft-errors

(cosmic ray strikes, alpha particles etc.)

 Variation in retention times among DRAM cells

 Anywhere from a few milli-seconds to a few seconds

Figure from [Venkatesan’06]Figure from [Itoh’08]

Hardware Memory Errors: Solutions

6

 Use of ECC memory

 Majority of commodity systems don’t have ECC

 Multi-bit errors and hard faults are becoming

increasingly common [Li’07] [Schroeder’09]

 Guard-band and over-provision for worst case

 Wastes power and leads to sub-optimal designs

 Example: Set DRAM refresh times to 32-64 ms when idle,

though only a small fraction of cells require such high rates

Average Worst-case

Take-away Observations/Goals

7

 Need protection from both software memory

corruption and hardware memory errors

 Must not require rewriting of code in safe

languages or checking all memory writes

 Performance and energy overheads are

important considerations for any technique

How do we satisfy all three goals ?

The “Good Enough” Revolution

8

Source: WIRED Magazine (Sep 2009) – Robert Kapps
http://www.wired.com/gadgets/miscellaneous/magazine/17-09/ff_goodenough

People prefer “cheap and good-enough”

over “costly and near-perfect”

Can we design computer systems with

this principle ?

“Good Enough” Computer Systems

9

 Just reliable enough to get the job done

 Do not provide the illusion of perfection to end user

 But do not fail catastrophically or cause severe errors

 Depends on the application and users

Good

enough

Approach : Critical Data Protection

10

 Observation: Some application data is much

more important than other data – Critical Data

 Examples: Bank account information, game player

data, document information in word-processor

 Identified by programmer based on appln. semantics

 Goal: Selectively protect only the critical data

 Many applications are inherently tolerant of errors

 Degraded outputs are acceptable as long as it does

not corrupt the critical data or cause massive failures

 Provide “good enough” reliability at low cost

Outline

11

 Motivation and Overview

 Samurai: Protection of critical data from memory

corruption errors in 3rd party modules [Eurosys’08]

 In collaboration with Vinod Grover, Ben Zorn (MSR)

 Flicker: Protection of critical data from hardware

errors introduced by power-saving features [TR’09]

 In collaboration with Thomas Moscibroda, Ben Zorn

(MSR) and Song Liu (Northwestern University)

 Future Directions and Conclusions

Outline

12

 Motivation and Overview

 Samurai: Protection of critical data from memory

corruption errors in 3rd party modules [Eurosys’08]

 In collaboration with Vinod Grover, Ben Zorn (MSR)

 Flicker: Protection of critical data from hardware

errors introduced by power-saving features [TR’09]

 In collaboration with Thomas Moscibroda, Ben Zorn

(MSR) and Song Liu (Northwestern University)

 Future Directions and Conclusions

Corruption due

to hardware

and software

errors

Samurai: Goals

13

Critical

Data

Critical data integrity should

be preserved even if other data

is corrupted

Apply incrementally to legacy

systems, based on protection

required and performance

overhead

Should not need the entire

application‟s source code –

only the part that modifies the

critical data
Modifies only the

non-critical

application data

Modifies

critical

application

data

Application

Data

Samurai: Critical Memory Abstraction

14

 Critical Memory: Abstract

memory model

 Protect and reason about

critical data consistency

 Need to mark critical

data (similar to const)

 Identify where CM is

 Read from (cload)

 Written to (cstore)

critical int balance;

int x, y;

balance = 100;

if (balance<min) {

chargeCredit();

} else {

x += 10;

y += 10;

}

balance

Data

x, y,

others

critical

data

Samurai : Critical Memory Model

15

 Critical store writes to both
NM and CM locations

 Normal stores write to NM

 Normal loads read from NM

 Critical load returns CM
value

 Can correct value in NM

 Can trap on mismatch
(debug mode)

x = 5

x= 5

cstore x , 5

x = 2

x= 5

x = 2

x= 5

x = ?

x= 5

store x , 2 load x cload x

returns 2 returns 5NM

CM

Samurai : Example

16

critical int balance ;

int x, y, buffer[10];
map_critical(&balance);

…

temp1 = 100;

Cstore(&balance, temp1);

temp = load(buffer + 15);

store(buffer + 15, temp+ 200);

temp2 = Cload(&balance);

if (temp2 < min) {

balance = 100;

buffer[15] += 200;

…..

if (balance < min) {

…

0

0

100

100

100

100

300

100

100

100

NM

CM

Critical Memory preserves its contents even under memory errors

Samurai : Implementation

17

Replica 1

Replica 2

Shadow pointer 2

Shadow pointer 1

Heap

base

regular store

Memory error !

Vote

Critical

load

Randomization to

minimize

correlated errors

Update

Critical

store

Repair on

mismatch

Metadata

Meta-data

protected with

checksums

Object

contents

Samurai: Experimental Setup

 Implementation

 Automated compiler pass to instrument critical loads and stores

 Runtime library for critical data allocation/de-allocation (C++)

 Protected critical data in 5 applications (SPEC2k)

 Chose data that is crucial for end-to-end correctness of program

 Evaluation of performance overhead by direct measurements

 Fault-injections into critical data to evaluate their resilience

 Also Protected critical data in libraries

 STL List Class: Backbone of list structure. Used in web server.

 Memory allocator: Heap meta-data (object size + free list).

18

1.03 1.08 1.01 1.08

2.73

0

0.5

1

1.5

2

2.5

3

vpr crafty parser rayshade gzip

S
lo

w
d

o
w

n

Benchmark

Performance Overhead

Baseline

Samurai

Samurai: Application Overheads

19

Pathological

worst-case

behavior

Overhead is less than 10% for all applications except gzip

Samurai: Memory Allocator Results

20

0

20

40

60

80

100

120

140

espresso cfrac p2c Lindsay Boxed-Sim Mudlle Average

Slowdowns

Kingsley Samurai

Average = 110 %

Samurai: STL Class and a WebServer

21

 STL List Class

 Protected list backbone

(pointers) and data

 Modified memory

allocator for class

 Modified member

functions insert, erase

 Modified custom iterators

for list objects

 Webserver

 Used STL list class for

maintaining client

connection information

 Multi-threaded

 Evaluated across

multiple threads and

connections

 Max performance

overhead = 9 %

Fault Injection into Critical Data

22

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

g
e

 o
f

T
ri

a
ls

Fault Period (# of accesses)

with Samurai

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fault Period (# of
accesses)

without Samurai
success

failure

detect

Legend

Samurai/Critical Memory: Summary

23

 Critical Memory: Abstract Memory Model

 Reason about critical data in applications

 Define special operations: critical loads/stores

 Inter-operation with un-trusted third-party code

 Samurai: Software Prototype of CM

 Uses replication and forward error-correction

 Demonstrated on both applications and libraries

 Performance overheads of 10 % or less in most cases

 Corrects almost all memory corruption errors in critical data

Outline

24

 Motivation and Overview

 Samurai: Protection of critical data from memory

corruption errors in 3rd party modules [Eurosys’08]

 In collaboration with Vinod Grover, Ben Zorn (MSR)

 Flicker: Protection of critical data from hardware

errors introduced by power-saving features [TR’09]

 In collaboration with Thomas Moscibroda, Ben Zorn

(MSR) and Song Liu (Northwestern University)

 Future Directions and Conclusions

Flicker: Smartphones

25

Smartphones becoming ubiquitous

DRAM Memory

consumes up to

30% of power

Responsiveness

is important

Can drain

the battery

even when

idle

Flicker: DRAM Refresh

26

error ratepower

refresh cycle [s]64 mSec

Where we

are today

Where we

want to be

X sec

The

opportunity

The cost

If software is able to tolerate errors, we can lower refresh

rates to achieve considerable power savings

Flicker: Approach

27

 Critical / non-critical data partitioning

crit non-crit

crit non-crit

High

refresh

No errors

Low refresh

Some errors

Flicker DRAM

Important for

application

correctness

e.g., meta-data, key

data structures

Does not

substantially

impact app

correctness e.g.,

multimedia data,

soft state

Mobile applications have substantial amounts of non-

critical data that can be easily identified by application

developers

http://images.ic-on-line.cn/0056/hye25l256160ac-75_42780100001.gif

Flicker: Software Implementation

28

Programmer
Allocator

Operating System

High Refresh

Rows

Low Refresh Rows

F
lic

k
e

r

D
R

A
M

critical object

non-critical

object

critical page

non-critical page

virtual

pages physical

pages

Minor changes to the memory allocator and the OS (memory manager)

Flicker: Summary

29

 First software technique to intentionally lower

hardware reliability for energy savings

 Minimal changes to hardware – based on PASR mode

 No modifications required for legacy applications

 Reduced overall DRAM power by 20-25% with

negligible loss of performance (< 1 %) and

reliability across five application classes

 Took less than a day to partition each application

 No crashes reported even at 1 second refresh rate

 Minor degradation in output quality of two applications

 Discernible to human eye only if image is zoomed by 5X

Outline

30

 Motivation and Overview

 Samurai: Protection of critical data from memory

errors in 3rd party modules [Eurosys’08]

 In collaboration with Vinod Grover, Ben Zorn (MSR)

 Flicker: Protection of critical data from hardware

errors introduced by power-saving features [TR’09]

 In collaboration with Thomas Moscibroda, Ben Zorn

(MSR) and Song Liu (Northwestern University)

 Future Directions and Conclusions

Future Work: Processor Errors

31

 Errors are becoming more common in processors

 Soft Errors and manufacturing variations (timing errors)

 Processors experience wear-outs and thermal hotspots

Source: Shekar Borkar (Intel) - Stanford talk in 2005

Future Work: Traditional Solutions

32

 Duplication is the most commonly-used solution to

mask h/w errors (e.g., IBM Mainframe z-series)

 However, duplication consumes large amounts of

power – not desirable in commodity systems

Ongoing Directions – this project

33

 Exposing computational (processor) errors to the
software and handling the errors in software

 Identification of critical code segments and variables

 Compiler techniques to insert checks into programs

 Runtime systems to initiate diagnostic and recovery actions

 Formal methods to reason about the effects of
hardware errors on software programs

 Model-checking to reason about error propagation in programs

 Type-systems to ensure correctness of protection mechanisms

 Developing probabilistic notions of program
correctness at the algorithmic level (similar to big O)

Vision: Software as an Immune system

34

 Engineering of software

systems that anticipate

and handle errors in

both hardware and in

(other) software

 Minimal intervention from

programmers

 First detect and diagnose

the source of the errors

 Then defend against the

detected errors by taking

appropriate actions

Source: mcld.co.uk

Conclusions

35

 Software systems should provide “good

enough” reliability in the face of errors

 Protect critical data in applications with low

performance and resource overheads

 Samurai – to protect critical data from memory corruption

errors in third-party modules (using selective replication)

 Flicker – to protect critical data from hardware errors

introduced by highly-aggressive power saving features

(using data partitioning)

 Future Work: Focus on computational errors and how

software can be built to work around such errors

