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Motivation: Memory Corruption
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 Memory corruption errors are a leading cause of 

vulnerabilities in type-unsafe languages (C/C++)

 C/C++ still among most used languages in real-world 

 Attackers continue to exploit mem. corruption errors

Source: sans.org (2009)



Background: Memory Corruption Errors

3

 Buffer-overflows

 Stack and Heap 

buffers

 Can corrupt 

both control and 

non-control data

 Dangling 

Pointers

 Use after free

 Aliased with 

used memory

a

c
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p1

0 99

p2

x

c[101] = „\n\‟;

free(p1);

p1 = p2;



Memory Corruption Errors : “Solutions”
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 Write code using secure programming practices

 Requires tremendous programmer effort 

 Loading of unsafe libraries and plugins

 Statically check code for memory corruption errors

 False-positives, requires manual inspection to understand

 Developers often reluctant to fix non-exploitable bugs 

 Dynamically check all memory writes

 Prohibitive overheads in practice (60 to 100%)

 “All or nothing” technique – no guarantees otherwise



Motivation: Hardware Memory Errors
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 Memory elements are susceptible to soft-errors 

(cosmic ray strikes, alpha particles etc.)

 Variation in retention times among DRAM cells

 Anywhere from a few milli-seconds to a few seconds

Figure from [Venkatesan’06]Figure from [Itoh’08]



Hardware Memory Errors: Solutions
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 Use of ECC memory 

 Majority of commodity systems don’t have ECC 

 Multi-bit errors and hard faults are becoming 

increasingly common [Li’07] [Schroeder’09] 

 Guard-band and over-provision for worst case

 Wastes power and leads to sub-optimal designs

 Example: Set DRAM refresh times to 32-64 ms when idle, 

though only a small fraction of cells require such high rates

Average Worst-case



Take-away Observations/Goals
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 Need protection from both software memory 

corruption and hardware memory errors

 Must not require rewriting of code in safe 

languages or checking all memory writes

 Performance and energy overheads are 

important considerations for any technique

How do we satisfy all three goals ?



The “Good Enough” Revolution
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Source: WIRED Magazine (Sep 2009) – Robert Kapps
http://www.wired.com/gadgets/miscellaneous/magazine/17-09/ff_goodenough

People prefer “cheap and good-enough” 

over “costly and near-perfect”

Can we design computer systems with 

this principle ?



“Good Enough” Computer Systems
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 Just reliable enough to get the job done

 Do not provide the illusion of perfection to end user

 But do not fail catastrophically or cause severe errors

 Depends on the application and users

Good 

enough



Approach : Critical Data Protection
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 Observation: Some application data is much 

more important than other data – Critical Data

 Examples: Bank account information, game player 

data, document information in word-processor

 Identified by programmer based on appln. semantics

 Goal: Selectively protect only the critical data 

 Many applications are inherently tolerant of errors

 Degraded outputs are acceptable as long as it does 

not corrupt the critical data or cause massive failures

 Provide “good enough” reliability at low cost



Outline
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 Motivation and Overview

 Samurai: Protection of critical data from memory 

corruption errors in 3rd party modules [Eurosys’08]

 In collaboration with Vinod Grover, Ben Zorn (MSR)

 Flicker: Protection of critical data from hardware 

errors introduced by power-saving features [TR’09]

 In collaboration with Thomas Moscibroda, Ben Zorn 

(MSR) and Song Liu (Northwestern University)

 Future Directions and Conclusions



Outline
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Corruption due 

to hardware 

and software 

errors

Samurai: Goals

13

Critical

Data

Critical data integrity should 

be preserved even if other data 

is corrupted

Apply incrementally to legacy 

systems, based on  protection 

required and performance 

overhead

Should not need the entire 

application‟s source code –

only the part that modifies the 

critical data 
Modifies only the

non-critical

application data

Modifies

critical 

application

data

Application

Data



Samurai: Critical Memory Abstraction
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 Critical Memory: Abstract 

memory model

 Protect and reason about 

critical data consistency

 Need to mark critical 

data (similar to const)

 Identify where CM is

 Read from (cload) 

 Written to (cstore)

critical int balance; 

int x, y;

balance = 100;

if (balance<min) {

chargeCredit();

} else {

x += 10;

y += 10;

}

balance

Data

x, y,

others

critical

data



Samurai : Critical Memory Model
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 Critical store writes to both 
NM and CM locations

 Normal stores write to NM

 Normal loads read from NM

 Critical load returns CM 
value

 Can correct value in NM

 Can trap on mismatch 
(debug mode)

x = 5

x= 5

cstore x , 5

x = 2

x= 5

x = 2

x= 5

x = ?

x= 5

store x , 2 load x cload x 

returns 2 returns 5NM

CM



Samurai : Example
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critical int balance ;

int x, y, buffer[10];
map_critical(&balance);

…

temp1 = 100;

Cstore(&balance, temp1);

temp = load(buffer + 15);

store(buffer + 15, temp+ 200);

temp2  = Cload(&balance);

if (temp2 < min) {

balance = 100;

buffer[15] += 200;  

…..

if (balance < min) {

…

0

0

100

100

100

100

300

100

100

100

NM

CM

Critical Memory preserves its contents even under memory errors



Samurai : Implementation
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Replica 1

Replica 2

Shadow pointer 2

Shadow pointer 1

Heap

base

regular store

Memory error !

Vote

Critical 

load

Randomization to 

minimize 

correlated errors

Update

Critical 

store

Repair on 

mismatch

Metadata

Meta-data 

protected with 

checksums

Object

contents



Samurai: Experimental Setup

 Implementation

 Automated compiler pass to instrument critical loads and stores

 Runtime library for critical data allocation/de-allocation (C++)

 Protected critical data in 5 applications (SPEC2k)

 Chose data that is crucial for end-to-end correctness of program

 Evaluation of performance overhead by direct measurements

 Fault-injections into critical data to evaluate their resilience

 Also Protected critical data in libraries

 STL List Class: Backbone of list structure. Used in web server.

 Memory allocator: Heap meta-data (object size + free list). 
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Samurai: Application Overheads
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Pathological 

worst-case 

behavior

Overhead is less than 10% for all applications except gzip



Samurai: Memory Allocator Results
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Samurai: STL Class and a WebServer
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 STL List Class

 Protected list backbone 

(pointers) and data

 Modified memory 

allocator for class

 Modified member 

functions insert, erase

 Modified custom iterators

for list objects

 Webserver

 Used STL list class for 

maintaining client 

connection information

 Multi-threaded

 Evaluated across 

multiple threads and 

connections

 Max performance 

overhead  = 9 %



Fault Injection into Critical Data
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Samurai/Critical Memory: Summary
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 Critical Memory: Abstract Memory Model

 Reason about critical data in applications

 Define special operations: critical loads/stores

 Inter-operation with un-trusted third-party code

 Samurai: Software Prototype of CM

 Uses replication and forward error-correction

 Demonstrated on both applications and libraries

 Performance overheads of 10 % or less in most cases

 Corrects almost all memory corruption errors in critical data



Outline
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 Motivation and Overview

 Samurai: Protection of critical data from memory 

corruption errors in 3rd party modules [Eurosys’08]

 In collaboration with Vinod Grover, Ben Zorn (MSR)

 Flicker: Protection of critical data from hardware 

errors introduced by power-saving features [TR’09]

 In collaboration with Thomas Moscibroda, Ben Zorn 

(MSR) and Song Liu (Northwestern University)

 Future Directions and Conclusions



Flicker: Smartphones
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Smartphones becoming ubiquitous

DRAM Memory 

consumes up to 

30% of power

Responsiveness 

is important

Can drain 

the battery 

even when 

idle



Flicker: DRAM Refresh
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error ratepower

refresh cycle [s]64 mSec

Where we 

are today

Where we 

want to be

X sec

The 

opportunity

The cost

If software is able to tolerate errors, we can lower refresh 

rates to achieve considerable power savings



Flicker: Approach
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 Critical / non-critical data partitioning

crit non-crit

crit non-crit

High 

refresh

No errors

Low refresh

Some errors

Flicker DRAM

Important for 

application 

correctness

e.g., meta-data, key 

data structures

Does not 

substantially 

impact app 

correctness e.g., 

multimedia data, 

soft state

Mobile applications have substantial amounts of non-

critical data that can be easily identified by application 

developers

http://images.ic-on-line.cn/0056/hye25l256160ac-75_42780100001.gif


Flicker: Software Implementation
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Programmer
Allocator

Operating System

High Refresh 
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Minor changes to the memory allocator and the OS (memory manager)



Flicker: Summary
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 First software technique to intentionally lower 

hardware reliability for energy savings

 Minimal changes to hardware – based on PASR mode 

 No modifications required for legacy applications 

 Reduced overall DRAM power by 20-25% with 

negligible loss of performance (< 1 %) and 

reliability across five application classes

 Took less than a day to partition each application

 No crashes reported even at 1 second refresh rate

 Minor degradation in output quality of two applications

 Discernible to human eye only if image is zoomed by 5X



Outline
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Future Work: Processor Errors
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 Errors are becoming more common in processors

 Soft Errors and manufacturing variations (timing errors)

 Processors experience wear-outs and thermal hotspots

Source: Shekar Borkar (Intel)  - Stanford talk in 2005



Future Work: Traditional Solutions
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 Duplication is the most commonly-used solution to 

mask h/w errors (e.g., IBM Mainframe z-series)

 However, duplication consumes large amounts of 

power – not desirable in commodity systems 



Ongoing Directions – this project

33

 Exposing computational (processor) errors to the 
software and handling the errors in software

 Identification of critical code segments and variables

 Compiler techniques to insert checks into programs

 Runtime systems to initiate diagnostic and recovery actions

 Formal methods to reason about the effects of 
hardware errors on software programs

 Model-checking to reason about error propagation in programs

 Type-systems to ensure correctness of protection mechanisms

 Developing probabilistic notions of program 
correctness at the algorithmic level (similar to big O)



Vision: Software as an Immune system
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 Engineering of software 

systems that anticipate 

and handle errors in 

both hardware and in 

(other) software

 Minimal intervention from 

programmers

 First detect and diagnose  

the source of the errors

 Then defend against the 

detected errors by taking 

appropriate actions

Source: mcld.co.uk



Conclusions
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 Software systems should provide “good 

enough” reliability in the face of errors

 Protect critical data in applications with low 

performance and resource overheads

 Samurai – to protect critical data from memory corruption 

errors in third-party modules (using selective replication)

 Flicker – to protect critical data from hardware errors 

introduced by highly-aggressive power saving features 

(using data partitioning)

 Future Work: Focus on computational errors and how 

software can be built to work around such errors


