
Good Enough Computer Systems:

Reliability on the Cheap

Karthik Pattabiraman

Electrical and Computer Engineering

1

Motivation: Memory Corruption

2

 Memory corruption errors are a leading cause of

vulnerabilities in type-unsafe languages (C/C++)

 C/C++ still among most used languages in real-world

 Attackers continue to exploit mem. corruption errors

Source: sans.org (2009)

Background: Memory Corruption Errors

3

 Buffer-overflows

 Stack and Heap

buffers

 Can corrupt

both control and

non-control data

 Dangling

Pointers

 Use after free

 Aliased with

used memory

a

c

0 99

p1

0 99

p2

x

c[101] = „\n\‟;

free(p1);

p1 = p2;

Memory Corruption Errors : “Solutions”

4

 Write code using secure programming practices

 Requires tremendous programmer effort

 Loading of unsafe libraries and plugins

 Statically check code for memory corruption errors

 False-positives, requires manual inspection to understand

 Developers often reluctant to fix non-exploitable bugs

 Dynamically check all memory writes

 Prohibitive overheads in practice (60 to 100%)

 “All or nothing” technique – no guarantees otherwise

Motivation: Hardware Memory Errors

5

 Memory elements are susceptible to soft-errors

(cosmic ray strikes, alpha particles etc.)

 Variation in retention times among DRAM cells

 Anywhere from a few milli-seconds to a few seconds

Figure from [Venkatesan’06]Figure from [Itoh’08]

Hardware Memory Errors: Solutions

6

 Use of ECC memory

 Majority of commodity systems don’t have ECC

 Multi-bit errors and hard faults are becoming

increasingly common [Li’07] [Schroeder’09]

 Guard-band and over-provision for worst case

 Wastes power and leads to sub-optimal designs

 Example: Set DRAM refresh times to 32-64 ms when idle,

though only a small fraction of cells require such high rates

Average Worst-case

Take-away Observations/Goals

7

 Need protection from both software memory

corruption and hardware memory errors

 Must not require rewriting of code in safe

languages or checking all memory writes

 Performance and energy overheads are

important considerations for any technique

How do we satisfy all three goals ?

The “Good Enough” Revolution

8

Source: WIRED Magazine (Sep 2009) – Robert Kapps
http://www.wired.com/gadgets/miscellaneous/magazine/17-09/ff_goodenough

People prefer “cheap and good-enough”

over “costly and near-perfect”

Can we design computer systems with

this principle ?

“Good Enough” Computer Systems

9

 Just reliable enough to get the job done

 Do not provide the illusion of perfection to end user

 But do not fail catastrophically or cause severe errors

 Depends on the application and users

Good

enough

Approach : Critical Data Protection

10

 Observation: Some application data is much

more important than other data – Critical Data

 Examples: Bank account information, game player

data, document information in word-processor

 Identified by programmer based on appln. semantics

 Goal: Selectively protect only the critical data

 Many applications are inherently tolerant of errors

 Degraded outputs are acceptable as long as it does

not corrupt the critical data or cause massive failures

 Provide “good enough” reliability at low cost

Outline

11

 Motivation and Overview

 Samurai: Protection of critical data from memory

corruption errors in 3rd party modules [Eurosys’08]

 In collaboration with Vinod Grover, Ben Zorn (MSR)

 Flicker: Protection of critical data from hardware

errors introduced by power-saving features [TR’09]

 In collaboration with Thomas Moscibroda, Ben Zorn

(MSR) and Song Liu (Northwestern University)

 Future Directions and Conclusions

Outline

12

 Motivation and Overview

 Samurai: Protection of critical data from memory

corruption errors in 3rd party modules [Eurosys’08]

 In collaboration with Vinod Grover, Ben Zorn (MSR)

 Flicker: Protection of critical data from hardware

errors introduced by power-saving features [TR’09]

 In collaboration with Thomas Moscibroda, Ben Zorn

(MSR) and Song Liu (Northwestern University)

 Future Directions and Conclusions

Corruption due

to hardware

and software

errors

Samurai: Goals

13

Critical

Data

Critical data integrity should

be preserved even if other data

is corrupted

Apply incrementally to legacy

systems, based on protection

required and performance

overhead

Should not need the entire

application‟s source code –

only the part that modifies the

critical data
Modifies only the

non-critical

application data

Modifies

critical

application

data

Application

Data

Samurai: Critical Memory Abstraction

14

 Critical Memory: Abstract

memory model

 Protect and reason about

critical data consistency

 Need to mark critical

data (similar to const)

 Identify where CM is

 Read from (cload)

 Written to (cstore)

critical int balance;

int x, y;

balance = 100;

if (balance<min) {

chargeCredit();

} else {

x += 10;

y += 10;

}

balance

Data

x, y,

others

critical

data

Samurai : Critical Memory Model

15

 Critical store writes to both
NM and CM locations

 Normal stores write to NM

 Normal loads read from NM

 Critical load returns CM
value

 Can correct value in NM

 Can trap on mismatch
(debug mode)

x = 5

x= 5

cstore x , 5

x = 2

x= 5

x = 2

x= 5

x = ?

x= 5

store x , 2 load x cload x

returns 2 returns 5NM

CM

Samurai : Example

16

critical int balance ;

int x, y, buffer[10];
map_critical(&balance);

…

temp1 = 100;

Cstore(&balance, temp1);

temp = load(buffer + 15);

store(buffer + 15, temp+ 200);

temp2 = Cload(&balance);

if (temp2 < min) {

balance = 100;

buffer[15] += 200;

…..

if (balance < min) {

…

0

0

100

100

100

100

300

100

100

100

NM

CM

Critical Memory preserves its contents even under memory errors

Samurai : Implementation

17

Replica 1

Replica 2

Shadow pointer 2

Shadow pointer 1

Heap

base

regular store

Memory error !

Vote

Critical

load

Randomization to

minimize

correlated errors

Update

Critical

store

Repair on

mismatch

Metadata

Meta-data

protected with

checksums

Object

contents

Samurai: Experimental Setup

 Implementation

 Automated compiler pass to instrument critical loads and stores

 Runtime library for critical data allocation/de-allocation (C++)

 Protected critical data in 5 applications (SPEC2k)

 Chose data that is crucial for end-to-end correctness of program

 Evaluation of performance overhead by direct measurements

 Fault-injections into critical data to evaluate their resilience

 Also Protected critical data in libraries

 STL List Class: Backbone of list structure. Used in web server.

 Memory allocator: Heap meta-data (object size + free list).

18

1.03 1.08 1.01 1.08

2.73

0

0.5

1

1.5

2

2.5

3

vpr crafty parser rayshade gzip

S
lo

w
d

o
w

n

Benchmark

Performance Overhead

Baseline

Samurai

Samurai: Application Overheads

19

Pathological

worst-case

behavior

Overhead is less than 10% for all applications except gzip

Samurai: Memory Allocator Results

20

0

20

40

60

80

100

120

140

espresso cfrac p2c Lindsay Boxed-Sim Mudlle Average

Slowdowns

Kingsley Samurai

Average = 110 %

Samurai: STL Class and a WebServer

21

 STL List Class

 Protected list backbone

(pointers) and data

 Modified memory

allocator for class

 Modified member

functions insert, erase

 Modified custom iterators

for list objects

 Webserver

 Used STL list class for

maintaining client

connection information

 Multi-threaded

 Evaluated across

multiple threads and

connections

 Max performance

overhead = 9 %

Fault Injection into Critical Data

22

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

g
e

 o
f

T
ri

a
ls

Fault Period (# of accesses)

with Samurai

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fault Period (# of
accesses)

without Samurai
success

failure

detect

Legend

Samurai/Critical Memory: Summary

23

 Critical Memory: Abstract Memory Model

 Reason about critical data in applications

 Define special operations: critical loads/stores

 Inter-operation with un-trusted third-party code

 Samurai: Software Prototype of CM

 Uses replication and forward error-correction

 Demonstrated on both applications and libraries

 Performance overheads of 10 % or less in most cases

 Corrects almost all memory corruption errors in critical data

Outline

24

 Motivation and Overview

 Samurai: Protection of critical data from memory

corruption errors in 3rd party modules [Eurosys’08]

 In collaboration with Vinod Grover, Ben Zorn (MSR)

 Flicker: Protection of critical data from hardware

errors introduced by power-saving features [TR’09]

 In collaboration with Thomas Moscibroda, Ben Zorn

(MSR) and Song Liu (Northwestern University)

 Future Directions and Conclusions

Flicker: Smartphones

25

Smartphones becoming ubiquitous

DRAM Memory

consumes up to

30% of power

Responsiveness

is important

Can drain

the battery

even when

idle

Flicker: DRAM Refresh

26

error ratepower

refresh cycle [s]64 mSec

Where we

are today

Where we

want to be

X sec

The

opportunity

The cost

If software is able to tolerate errors, we can lower refresh

rates to achieve considerable power savings

Flicker: Approach

27

 Critical / non-critical data partitioning

crit non-crit

crit non-crit

High

refresh

No errors

Low refresh

Some errors

Flicker DRAM

Important for

application

correctness

e.g., meta-data, key

data structures

Does not

substantially

impact app

correctness e.g.,

multimedia data,

soft state

Mobile applications have substantial amounts of non-

critical data that can be easily identified by application

developers

http://images.ic-on-line.cn/0056/hye25l256160ac-75_42780100001.gif

Flicker: Software Implementation

28

Programmer
Allocator

Operating System

High Refresh

Rows

Low Refresh Rows

F
lic

k
e

r

D
R

A
M

critical object

non-critical

object

critical page

non-critical page

virtual

pages physical

pages

Minor changes to the memory allocator and the OS (memory manager)

Flicker: Summary

29

 First software technique to intentionally lower

hardware reliability for energy savings

 Minimal changes to hardware – based on PASR mode

 No modifications required for legacy applications

 Reduced overall DRAM power by 20-25% with

negligible loss of performance (< 1 %) and

reliability across five application classes

 Took less than a day to partition each application

 No crashes reported even at 1 second refresh rate

 Minor degradation in output quality of two applications

 Discernible to human eye only if image is zoomed by 5X

Outline

30

 Motivation and Overview

 Samurai: Protection of critical data from memory

errors in 3rd party modules [Eurosys’08]

 In collaboration with Vinod Grover, Ben Zorn (MSR)

 Flicker: Protection of critical data from hardware

errors introduced by power-saving features [TR’09]

 In collaboration with Thomas Moscibroda, Ben Zorn

(MSR) and Song Liu (Northwestern University)

 Future Directions and Conclusions

Future Work: Processor Errors

31

 Errors are becoming more common in processors

 Soft Errors and manufacturing variations (timing errors)

 Processors experience wear-outs and thermal hotspots

Source: Shekar Borkar (Intel) - Stanford talk in 2005

Future Work: Traditional Solutions

32

 Duplication is the most commonly-used solution to

mask h/w errors (e.g., IBM Mainframe z-series)

 However, duplication consumes large amounts of

power – not desirable in commodity systems

Ongoing Directions – this project

33

 Exposing computational (processor) errors to the
software and handling the errors in software

 Identification of critical code segments and variables

 Compiler techniques to insert checks into programs

 Runtime systems to initiate diagnostic and recovery actions

 Formal methods to reason about the effects of
hardware errors on software programs

 Model-checking to reason about error propagation in programs

 Type-systems to ensure correctness of protection mechanisms

 Developing probabilistic notions of program
correctness at the algorithmic level (similar to big O)

Vision: Software as an Immune system

34

 Engineering of software

systems that anticipate

and handle errors in

both hardware and in

(other) software

 Minimal intervention from

programmers

 First detect and diagnose

the source of the errors

 Then defend against the

detected errors by taking

appropriate actions

Source: mcld.co.uk

Conclusions

35

 Software systems should provide “good

enough” reliability in the face of errors

 Protect critical data in applications with low

performance and resource overheads

 Samurai – to protect critical data from memory corruption

errors in third-party modules (using selective replication)

 Flicker – to protect critical data from hardware errors

introduced by highly-aggressive power saving features

(using data partitioning)

 Future Work: Focus on computational errors and how

software can be built to work around such errors

