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Motivation: Memory Corruption
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 Memory corruption errors are a leading cause of 

vulnerabilities in type-unsafe languages (C/C++)

 C/C++ still among most used languages in real-world 

 Attackers continue to exploit mem. corruption errors

Source: sans.org (2009)



Background: Memory Corruption Errors
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 Buffer-overflows

 Stack and Heap 

buffers

 Can corrupt 

both control and 

non-control data

 Dangling 

Pointers

 Use after free

 Aliased with 

used memory

a

c

0 99

p1

0 99

p2

x

c[101] = „\n\‟;

free(p1);

p1 = p2;



Memory Corruption Errors : “Solutions”
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 Write code using secure programming practices

 Requires tremendous programmer effort 

 Loading of unsafe libraries and plugins

 Statically check code for memory corruption errors

 False-positives, requires manual inspection to understand

 Developers often reluctant to fix non-exploitable bugs 

 Dynamically check all memory writes

 Prohibitive overheads in practice (60 to 100%)

 “All or nothing” technique – no guarantees otherwise



Motivation: Hardware Memory Errors
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 Memory elements are susceptible to soft-errors 

(cosmic ray strikes, alpha particles etc.)

 Variation in retention times among DRAM cells

 Anywhere from a few milli-seconds to a few seconds

Figure from [Venkatesan’06]Figure from [Itoh’08]



Hardware Memory Errors: Solutions
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 Use of ECC memory 

 Majority of commodity systems don’t have ECC 

 Multi-bit errors and hard faults are becoming 

increasingly common [Li’07] [Schroeder’09] 

 Guard-band and over-provision for worst case

 Wastes power and leads to sub-optimal designs

 Example: Set DRAM refresh times to 32-64 ms when idle, 

though only a small fraction of cells require such high rates

Average Worst-case



Take-away Observations/Goals
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 Need protection from both software memory 

corruption and hardware memory errors

 Must not require rewriting of code in safe 

languages or checking all memory writes

 Performance and energy overheads are 

important considerations for any technique

How do we satisfy all three goals ?



The “Good Enough” Revolution
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Source: WIRED Magazine (Sep 2009) – Robert Kapps
http://www.wired.com/gadgets/miscellaneous/magazine/17-09/ff_goodenough

People prefer “cheap and good-enough” 

over “costly and near-perfect”

Can we design computer systems with 

this principle ?



“Good Enough” Computer Systems
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 Just reliable enough to get the job done

 Do not provide the illusion of perfection to end user

 But do not fail catastrophically or cause severe errors

 Depends on the application and users

Good 

enough



Approach : Critical Data Protection
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 Observation: Some application data is much 

more important than other data – Critical Data

 Examples: Bank account information, game player 

data, document information in word-processor

 Identified by programmer based on appln. semantics

 Goal: Selectively protect only the critical data 

 Many applications are inherently tolerant of errors

 Degraded outputs are acceptable as long as it does 

not corrupt the critical data or cause massive failures

 Provide “good enough” reliability at low cost



Outline
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 Motivation and Overview

 Samurai: Protection of critical data from memory 

corruption errors in 3rd party modules [Eurosys’08]

 In collaboration with Vinod Grover, Ben Zorn (MSR)

 Flicker: Protection of critical data from hardware 

errors introduced by power-saving features [TR’09]

 In collaboration with Thomas Moscibroda, Ben Zorn 

(MSR) and Song Liu (Northwestern University)

 Future Directions and Conclusions



Outline
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Corruption due 

to hardware 

and software 

errors

Samurai: Goals
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Critical

Data

Critical data integrity should 

be preserved even if other data 

is corrupted

Apply incrementally to legacy 

systems, based on  protection 

required and performance 

overhead

Should not need the entire 

application‟s source code –

only the part that modifies the 

critical data 
Modifies only the

non-critical

application data

Modifies

critical 

application

data

Application

Data



Samurai: Critical Memory Abstraction
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 Critical Memory: Abstract 

memory model

 Protect and reason about 

critical data consistency

 Need to mark critical 

data (similar to const)

 Identify where CM is

 Read from (cload) 

 Written to (cstore)

critical int balance; 

int x, y;

balance = 100;

if (balance<min) {

chargeCredit();

} else {

x += 10;

y += 10;

}

balance

Data

x, y,

others

critical

data



Samurai : Critical Memory Model
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 Critical store writes to both 
NM and CM locations

 Normal stores write to NM

 Normal loads read from NM

 Critical load returns CM 
value

 Can correct value in NM

 Can trap on mismatch 
(debug mode)

x = 5

x= 5

cstore x , 5

x = 2

x= 5

x = 2

x= 5

x = ?

x= 5

store x , 2 load x cload x 

returns 2 returns 5NM

CM



Samurai : Example
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critical int balance ;

int x, y, buffer[10];
map_critical(&balance);

…

temp1 = 100;

Cstore(&balance, temp1);

temp = load(buffer + 15);

store(buffer + 15, temp+ 200);

temp2  = Cload(&balance);

if (temp2 < min) {

balance = 100;

buffer[15] += 200;  

…..

if (balance < min) {

…

0

0

100

100

100

100

300

100

100

100

NM

CM

Critical Memory preserves its contents even under memory errors



Samurai : Implementation

17

Replica 1

Replica 2

Shadow pointer 2

Shadow pointer 1

Heap

base

regular store

Memory error !

Vote

Critical 

load

Randomization to 

minimize 

correlated errors

Update

Critical 

store

Repair on 

mismatch

Metadata

Meta-data 

protected with 

checksums

Object

contents



Samurai: Experimental Setup

 Implementation

 Automated compiler pass to instrument critical loads and stores

 Runtime library for critical data allocation/de-allocation (C++)

 Protected critical data in 5 applications (SPEC2k)

 Chose data that is crucial for end-to-end correctness of program

 Evaluation of performance overhead by direct measurements

 Fault-injections into critical data to evaluate their resilience

 Also Protected critical data in libraries

 STL List Class: Backbone of list structure. Used in web server.

 Memory allocator: Heap meta-data (object size + free list). 

18
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Samurai: Application Overheads
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Pathological 

worst-case 

behavior

Overhead is less than 10% for all applications except gzip



Samurai: Memory Allocator Results
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Samurai: STL Class and a WebServer

21

 STL List Class

 Protected list backbone 

(pointers) and data

 Modified memory 

allocator for class

 Modified member 

functions insert, erase

 Modified custom iterators

for list objects

 Webserver

 Used STL list class for 

maintaining client 

connection information

 Multi-threaded

 Evaluated across 

multiple threads and 

connections

 Max performance 

overhead  = 9 %



Fault Injection into Critical Data
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Samurai/Critical Memory: Summary
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 Critical Memory: Abstract Memory Model

 Reason about critical data in applications

 Define special operations: critical loads/stores

 Inter-operation with un-trusted third-party code

 Samurai: Software Prototype of CM

 Uses replication and forward error-correction

 Demonstrated on both applications and libraries

 Performance overheads of 10 % or less in most cases

 Corrects almost all memory corruption errors in critical data



Outline
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Flicker: Smartphones
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Smartphones becoming ubiquitous

DRAM Memory 

consumes up to 

30% of power

Responsiveness 

is important

Can drain 

the battery 

even when 

idle



Flicker: DRAM Refresh

26

error ratepower

refresh cycle [s]64 mSec

Where we 

are today

Where we 

want to be

X sec

The 

opportunity

The cost

If software is able to tolerate errors, we can lower refresh 

rates to achieve considerable power savings



Flicker: Approach
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 Critical / non-critical data partitioning

crit non-crit

crit non-crit

High 

refresh

No errors

Low refresh

Some errors

Flicker DRAM

Important for 

application 

correctness

e.g., meta-data, key 

data structures

Does not 

substantially 

impact app 

correctness e.g., 

multimedia data, 

soft state

Mobile applications have substantial amounts of non-

critical data that can be easily identified by application 

developers

http://images.ic-on-line.cn/0056/hye25l256160ac-75_42780100001.gif


Flicker: Software Implementation
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Operating System
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Minor changes to the memory allocator and the OS (memory manager)



Flicker: Summary
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 First software technique to intentionally lower 

hardware reliability for energy savings

 Minimal changes to hardware – based on PASR mode 

 No modifications required for legacy applications 

 Reduced overall DRAM power by 20-25% with 

negligible loss of performance (< 1 %) and 

reliability across five application classes

 Took less than a day to partition each application

 No crashes reported even at 1 second refresh rate

 Minor degradation in output quality of two applications

 Discernible to human eye only if image is zoomed by 5X



Outline
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Future Work: Processor Errors
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 Errors are becoming more common in processors

 Soft Errors and manufacturing variations (timing errors)

 Processors experience wear-outs and thermal hotspots

Source: Shekar Borkar (Intel)  - Stanford talk in 2005



Future Work: Traditional Solutions
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 Duplication is the most commonly-used solution to 

mask h/w errors (e.g., IBM Mainframe z-series)

 However, duplication consumes large amounts of 

power – not desirable in commodity systems 



Ongoing Directions – this project
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 Exposing computational (processor) errors to the 
software and handling the errors in software

 Identification of critical code segments and variables

 Compiler techniques to insert checks into programs

 Runtime systems to initiate diagnostic and recovery actions

 Formal methods to reason about the effects of 
hardware errors on software programs

 Model-checking to reason about error propagation in programs

 Type-systems to ensure correctness of protection mechanisms

 Developing probabilistic notions of program 
correctness at the algorithmic level (similar to big O)



Vision: Software as an Immune system
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 Engineering of software 

systems that anticipate 

and handle errors in 

both hardware and in 

(other) software

 Minimal intervention from 

programmers

 First detect and diagnose  

the source of the errors

 Then defend against the 

detected errors by taking 

appropriate actions

Source: mcld.co.uk



Conclusions
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 Software systems should provide “good 

enough” reliability in the face of errors

 Protect critical data in applications with low 

performance and resource overheads

 Samurai – to protect critical data from memory corruption 

errors in third-party modules (using selective replication)

 Flicker – to protect critical data from hardware errors 

introduced by highly-aggressive power saving features 

(using data partitioning)

 Future Work: Focus on computational errors and how 

software can be built to work around such errors


