
IEEE TRANSACTIONS ON Dependable and Secure Computing, TDSC-2008-11-0184
 1

Automated Derivation of Application-specific
Error Detectors Using Dynamic Analysis

Karthik Pattabiraman (Member, IEEE), Giacinto Paolo Saggese (Member, IEEE), Daniel Chen

(Member, IEEE), Zbigniew Kalbarczyk (Member, IEEE), and Ravishakar K. Iyer (IEEE Fellow)

Abstract: This paper proposes a novel technique for preventing a wide range of data errors from corrupting the execution of

applications. The proposed technique enables automated derivation of fine-grained, application-specific error detectors based

on dynamic traces of application execution. The technique derives a set of error detectors using rule-based templates to

maximize the error detection coverage for the application. A probability model is developed to guide the choice of the templates

and their parameters for error-detection. The paper also presents an automatic framework for synthesizing the set of detectors

in hardware to enable low-overhead, run-time checking of the application. The coverage of the derived detectors is evaluated

using fault injection experiments, while the performance and area overhead of the detectors is evaluated by synthesizing them

on reconfigurable hardware.

Keywords— Data Errors, Dynamic Execution, Likely Invariants, Critical Variables, FPGA Hardware

——————————  ——————————

1 INTRODUCTION

THIS paper presents a technique to derive and implement
error detectors that protect programs from data errors.
These are errors that cause a divergence in data values
from those in an error-free execution of the program. Data
errors can cause the program to crash, hang, or produce
incorrect output (fail-silent violations). Such errors can
result from incorrect computation, and they would not be
detected by generic techniques such as Error Correcting
Codes (ECC) in memory and/or registers.

Many static and dynamic analysis techniques [1-4]
have been proposed to find bugs in programs. However,
these techniques are not geared toward detecting runtime
errors, as they do not consider error propagation. To
detect runtime errors, we need mechanisms that can pro-
vide high-coverage, low-latency (rapid) error detection to:
(i) preempt uncontrolled system crash/hang and (ii) pre-
vent propagation of erroneous data and limit the extent of
the (potential) damage. Eliminating error propagation is
essential because programs, upon encountering an error
that could eventually lead to a crash, may execute for bil-
lions of cycles before crashing [5]. During this time, the
program can exhibit unpredictable behavior, such as writ-
ing corrupted state to a checkpoint or sending a cor-
rupted message to another process [6], which in turn can
result in extended downtimes [7].

It is common practice for developers to write assertions

in programs for detecting runtime errors [8]. However,
assertions are often cumbersome to write, and they re-
quire considerable programmer effort and expertise to
develop correctly. Further, placing an assertion in the
wrong place can hinder its detection capabilities [9]. As a
result, programmer-written assertions (by themselves) are
not very effective in providing high coverage of runtime
errors [10].

Hiller et al. propose a technique to derive assertions in
an embedded application based on the high-level beha-
vior of its signals [11]. They facilitate the insertion of as-
sertions by means of well-defined classes of signal pat-
terns. In a companion paper, they also describe how to
place assertions by performing extensive fault-injection
experiments [12]. However, this technique requires exten-
sive knowledge of the application. Further, performing
fault-injection may be time-consuming and cumbersome
for the developer. Therefore, it is desirable to develop an
automated technique to derive and place detectors in ap-
plication code.

Our goal is to devise detectors that preemptively detect
errors impacting the application and to do so in an auto-
mated way without requiring programmer intervention
or fault-injection into the system. In this paper, the term
―detectors‖ refers to executable assertions used to detect
runtime errors. The main contributions are as follows:
1. Derivation of error detectors based on the dynamic

execution traces of the application instrumented at
strategic locations in the code;

2. Introduction of rule-based templates that capture
common patterns of the temporal behavior of va-
riables in an application;

3. Development of a probability model for estimating
detection coverage that can be used to guide the de-
rivation process to maximize detection coverage for a

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 Karthik Pattabiraman is with the University of British Columbia, Canada.
E-mail: karthikp@ece.ubc.ca

 Giacinto Paolo Sagesse is with Synopsys Inc. Email: saggese@gmail.com
 Daniel Chen is with the Coordinated Science Laboratory, University of

Illinois at Urbana-Champaign (UIUC). Email: dchen8@uiuc.edu
 Zbigniew Kalbarczyk is with the Coordinated Science Laboratory, Univer-

sity of Illinois at Urbana-Champaign (UIUC). Email: kalbarcz@uiuc.edu
 Ravishankar Iyer is with the Coordinated Science Laboratory, University of

Illinois at Urbana-Champaign (UIUC). Email: rkiyer@uiuc.edu

.

2 IEEE TRANSACTIONS ON Dependable and Secure Computing, TDSC-2008-11-0184

given cost; and
4. Synthesis of custom hardware (VHDL code) to im-

plement the derived detectors on Field Programma-
ble Gate Arrays (FPGAs) so that they can be executed
in parallel with the application.

The proposed methodology is applied to derive a set of
detectors for several benchmark programs. Experimental
evaluation of coverage is performed via random fault
injection into application data when the application is
executed on a hardware simulator. We also synthesize the
detectors on FPGA hardware to measure the additional
hardware resources and performance overheads incurred
by the detectors. This paper builds upon the work in our
earlier conference paper on this topic by comparing the
coverage of the derived detectors with the highest cover-
age that can be obtained using detectors based on single
data values (best-value detectors) [13]. The paper also
compares the proposed technique with other techniques
that have been published since our conference paper.

The main results obtained from the study are:
1. The derived detectors detect 50-75% of errors that

manifest at the application level, when 100 detectors
are placed in the application code (this corresponds
to about 5% of a program’s assembly code, not in-
cluding libraries);

2. Hardware implementation of the detectors results in
a performance overhead of about 5%, with area and
power overheads of about 15% and 5%, respectively;

3. False positives (detectors flag an error when no error
is present) are less than 2.5% when the training data
constitutes 20% of the input sets used for testing; and

4. The coverage achieved by the derived detectors is
close to the coverage provided by the best-value de-
tectors (70 to 90% of manifested faults).

2 APPROACH AND FAULT MODEL

The derivation and implementation of the error detectors
in hardware and software encompasses four main phases,
as shown in Figure 1.

The analysis phase identifies the program locations and
variables for detector placement based on the Dynamic
Dependence Graph (DDG) of the program. Fault-
injections are not required. We choose the locations for
detector placement using the Fanouts heuristic [14]. The
program code is then instrumented to record the values
of the chosen variables at the locations selected for detec-
tor placement.

The design phase uses the dynamic traces of recorded
values over multiple executions of the application in or-
der to choose the best detector that matches the observed
values for the variable, based on a set of predetermined
generic detector classes (Section 3). The best detector is
the one that maximizes detection coverage with the low-
est cost. This is defined in terms of a probability model.

After this stage, the detectors can either be integrated
into application code as software assertions or imple-
mented in hardware. In this paper, we consider a hard-
ware implementation of the derived detectors in order to
minimize detection latency and performance overheads.

The synthesis phase converts the generated assertions to
a Hardware Description Language (HDL) representation
that is synthesized in hardware. It also inserts special in-
structions in the application code to invoke and configure
the hardware detectors. This is explained in Section 4.

Finally, during the checking phase, the custom hard-
ware detectors are deployed in the system to provide
low-overhead, concurrent run-time error detection for the
application. When a detector detects a deviation from the
application’s behavior learned during the design phase, it
flags an error and halts the program.

Note that the analysis and design phases are related to
the derivation of the detectors, while the synthesis and
checking phases are related to the implementation and
deployment of the derived detectors, respectively.

Fault Model. The fault model covers errors in the data
values used in the program’s execution. This includes
faults in: (1) the instruction stream, which result in the
wrong op-code being executed or the wrong registers
being read or written by the instruction, (2) the functional
units of the processor, which can result in incorrect compu-
tations, (3) the instruction fetch and decode units, which can
result in an incorrect instruction being fetched or de-
coded, and (4) the memory and data bus, which can cause
wrong values to be fetched or written in memory and/or
processor register file. Note that these errors would not
be detected by techniques such as ECC (Error Correcting
Codes) in memory, as they originate in the computation.

It is important to understand that some of the faults
mentioned above will fail to result in data value errors, in
which case they will not be detected by the proposed
technique. However, studies have shown that 60-70% of
errors in the processor result in data value errors [15-16].

The fault-model also represents certain types of soft-

ware errors that result in data-value corruptions, such as:
(1) synchronization errors or race conditions, which can
result in corruptions of data values due to incorrect se-
quencing of operations, (2) memory corruption errors,
e.g., buffer-overflows and dangling pointer references,
which can cause arbitrary data values to be overwritten in

Figure 1: Steps in detector derivation process

Pattabiraman et al.: Automated Derivation of Application-specific Error Detectors
 3

memory, and (3) the use of uninitialized or incorrectly
initialized values, which can result in the use of unpre-
dictable values depending on the platform and environ-
ment. These errors often escape conventional testing and
debugging techniques and manifest themselves in the
field [17].

3 DERIVATION: ANALYSIS AND DESIGN

In this paper, an error detector is an assertion based on the
value of a single variable1 of the program at a specific
location in its code. A detector for a variable is placed
immediately after the instruction that writes to the varia-
ble. Since a detector is placed in the code, it is invoked
each time the detector’s location is executed. An example
code fragment is shown in Table 1.

Table 1: Example code fragment

void foo() {

 int k = 0;

 for (; k<N; k++) {

 ….

 }

}

In the example, assume that the detector placement me-

thodology has identified variable k as the critical variable
to be checked within the loop. Although this example
illustrates a simple loop, our technique is general and
does not depend on the structure of the source program
(or even require the program’s source code for the mat-
ter). Nevertheless, we show the source-level representa-
tion of the code for clarity.

Variable k is initialized at the beginning of the loop and
incremented by 1 within the loop. Within the loop, the
value of k depends on its value in the previous iteration.
Hence, the rule for k can be written as ―either the current
value of k is zero, or it is greater than the previous value
of k by 1.” We refer to the current value of the detector
variable k as ki and the previous value as ki-1. Thus, the
detector can be expressed as: (ki – ki-1 == 1) or (ki == 0).

As seen from the example, a detector can be con-
structed for a target variable by observing the dynamic
evolution of the variable over time. The detector consists
of a rule describing the allowed values of the variable at
the selected location in the program, and an exception
condition to cover correct values that do not fall into the
rule. If the detector rule fails, then the exception condition
is checked, and if this also fails, the detector flags an er-
ror. Detector rules can belong to one of six generic classes
and are parameterized for the variable checked. The rule
classes are shown in Table 2. These rule classes are chosen
based on observations about the behavior of program
variables and are similar to those in Hiller et al. [11].

The exception condition involves equality constraints
on the current and previous values of the variable, as well
as logical combinations (and, or) of two of these con-
straints. The equality constraints take the following
forms: ai == d, where d is a constant parameter; ai-1== d,

1 In this paper, a variable refers to any register, cache or memory location.

where d is a constant parameter; and ai==ai-1. However,
not all combinations of the above three clauses are logical-
ly consistent. For example, the exception condition (ai==1
and ai==2) is logically inconsistent, as ai cannot take two
different values at the same time. Of the 27 possible com-
binations of the clauses, only 8 are logically consistent.
Hence, there are a total of 48 rule class, exception pairs
that can be used to construct a detector for a particular
location.

For the example involving the loop index variable k,
discussed in this section, the rule class is Constant-
Difference of 1, and the exception condition is (ki == 0).

3.1 Dynamic Derivation of Detectors

This section describes our overall methodology for auto-
matically deriving detectors based on the dynamic trace
of values produced during the application’s execution. By
automatic derivation, we mean determination of the rule
and the exception condition for each variable targeted for
error detection. The basic steps in the algorithm are:
1. The program points for the placement of detectors

(both variables and locations) are chosen based on
the Dynamic Dependance Graph (DDG) of the pro-
gram as shown in prior work[14].

2. The program is instrumented to record the run-time
evolution of the values of the detector variables at
their respective locations and executed over multiple
inputs. This obtains dynamic traces of the checked
values.

3. The dynamic traces of the values obtained are ana-
lyzed to choose a set of detectors (both rule class and
exception condition) that match the observed values.

4. A probabilistic model is applied to the set of chosen
detectors to find the best detector for a given location.
The best detector is characterized in terms of its
tightness and execution cost (see next section).

3.2 Detector Tightness and Execution Cost

A qualitative notion of the tightness of a detector was first
introduced in [18]. We define tightness in a quantitative
sense as the conditional probability that the detector de-
tects an error, given that there is an error in the value of
the variable that it checks. Note that this is not the same
as the coverage, as the coverage of the detector is the prob-
ability that it detects an error given that there is an error
in any value used in the program. Hence, in addition to
tightness, coverage also depends on the probability that
an error propagates to the detector’s variable.

To characterize the tightness of a detector, we must
consider both the rule and the exception condition, as the
error will not be detected if either passes. Tightness also
depends on the parameters of the detector and the proba-
bility distribution of the observed stream of data values in
a fault-free execution of the program. For an incorrect
value to go undetected, either the rule or the exception
condition or both must evaluate to true. This can happen
in four mutually exclusive ways, as shown in Table 3.

4 IEEE TRANSACTIONS ON Dependable and Secure Computing, TDSC-2008-11-0184

Table 2: Generic rule classes

Table 3: Probability values for computing tightness

Symbol Explanation

P(R | R) Probability that an error in a value that originally sa-
tisfied the rule (in a correct execution) also causes the
incorrect value to satisfy the rule.

P(R | X) Probability that an error in a value that originally sa-
tisfied the exception condition (in a correct execution)

causes the incorrect value to satisfy the rule.

P(X | R) Probability that an error in a value that originally sa-

tisfied the rule (in a correct execution) causes the in-
correct value to satisfy the exception condition.

P(X | X) Probability that an error in a value that originally sa-
tisfied the exception condition (in a correct execution)
causes the incorrect value to satisfy the exception con-

dition.

The tightness of a detector is defined as (1 – P(I)),

where P(I) is the probability of an incorrect value passing
undetected through the detector. This probability can be
expressed using the terms in Table 3, as follows:

P(I) = P(R) [P(R | R) + P(X | R)]
 + P(X) [P(R | X) + P(X | X)] (1)

where P(R) is the probability of the value belonging to the
rule, and P(X) is the probability of the value belonging to
the exception condition, both of which are derived from
the observed value stream on a per-application basis.

The computation of tightness can be automated, since
there are only a limited number of rule-exception pairs2.
These probabilities can be precomputed as a function of
the detector’s parameters as well as on the frequency of
elements in the observed data stream for each rule-
exception pair. We do not list all the probabilities, but
instead illustrate with an example.

Example of Tightness Calculation. Consider a detector
in which the rule expression belongs to the class Bounded-
Range with parameters min = 5 and max = 100, and the
exception condition is of the form (ai==0). We make the
following assumptions about errors in the program:
1. The distribution of errors in the detector variable is

uniform across the range of all possible values the va-
riable can take for its type (say, N);

2. An error in the current value of the variable is not
affected by an error in the previous value of the vari-

2 There are 6 types of rule classes and 8 types of exception conditions,
leading to a total of 48 rule-exception pairs.

able; and
3. Errors in one detector location are independent of

errors in another detector location.

These are optimistic assumptions, hence the estimation
of tightness is an upper bound on the actual value of the
detector’s tightness (and hence its coverage). Relaxing
these assumptions may yield higher accuracy, but it re-
quires apriori knowledge of the application’s semantics
and error behavior in the application, which cannot be
obtained through dynamic analysis.

Table 4 shows the precomputed probability values for
this detector in terms of N and the detector’s parameters.

Table 4: Probability values for computing tightness
of detector “Bounded-Range (5, 100) except: (ai==0)”

Substituting these probability values in equation (1):

P(I) = P(R) [95/N + 1/N] + P(X) [96/N + 0]
 = (96/N)[P(R) + P(X)] = 96/N

The above derivation uses the fact that P(R) + P(X) = 1,
since the value must satisfy either the rule or the excep-
tion in an error-free execution, and since the two events
are mutually exclusive.

Consider a new detector in which the rule belongs to
the Constant class (with parameter 5). Let us assume that
the exception condition is the same as the old detector’s.
For this new detector:

P(R|R) = 0, P(R|X) = 1/N,
P(X|X) = 0 and P(X|R) = 1/N

Substitution of the above values in equation (1), yields
the following expression for P(I):

Class Name Generic Rule (ai , ai-1) Description

Constant (ai == c)
The value of the variable in the current invocation of the detector is a constant

given by parameter c.

Alternate
((ai == x /\ ai-1== y)) \/ (ai == y

/\ ai-1== x)
The values of the variable in the current and previous invocations of the de-

tector alternate between parameters x and y, respectively.

Constant-Difference (ai - ai-1 == c)
The value of the variable in the current invocation of the detector differs from

its value in the previous invocation by a constant c.

Bounded-Difference (min <= ai - ai-1 <= max)
The difference between the values of the variable in the previous and current

invocations of the detector lies between min and max.

Multi-Value ai є { x, y, … }
The value of the variable in the current invocation of the detector is one of the

set of values x, y, …

Bounded-Range (min <= ai <= max)
The value of the variable in the current invocation of the detector lies between

the parameters min and max.

Symbol Value Explanation

P (R | R) (95 / N) Each rule value can turn into any
of the other 95 rule values with
equal probability.

P (R | X) (96 / N) An exception value can turn into
one of 96 rule values with equal

probability

 P (X | R) (1 / N) A rule value can incorrectly sa-

tisfy the exception condition if it
turns into 0.

P (X | X) 0 An exception value cannot
change into another exception val-

ue, as there is only one value per-
mitted by the exception condition
(in this example, the value is 0).

Pattabiraman et al.: Automated Derivation of Application-specific Error Detectors
 5

P(I) = P(R) [0 + 1/N] + P(X) [1/N + 0]
 = (1/N)[P(R) + P(X)] = 1/N

Note that the probability of missing an error in the first
detector is 96 times the probability of missing an error in
the second detector. The tightness of the first detector is
correspondingly much less than the tightness of the
second (which matches with our intuition).

The above model is used only to compare the relative
tightness of the detectors, not to compute the actual prob-
ability values, which may be very small. The range of
values for the detector variable represented by the symbol
N gets eliminated in the comparison among detectors for
the same variable/location, and it does not influence the
choice of the detector.

Execution Cost. The execution cost of a detector is the
amortized computation cost in executing the detector
over multiple values observed at the detector point. The
execution cost of a detector is calculated as the number of
basic arithmetic and comparison operations executed in a
single invocation of the detector, averaged over the entire
lifetime of the program’s execution. An operation usually
corresponds to a single arithmetic or logical operator.
Note that the computation of the execution cost assumes
an error-free execution of the program.

For example, the detector considered above has two
comparison operations for the rule and one comparison
operation for the exception. Assume that the rule is satis-
fied 80% of the time, which implies that the exception
condition is satisfied the remaining 20% of the time, i.e.,
80% of the data points in the trace satisfy the rule while
20% satisfy the exception condition. Therefore, the total
execution cost for the detector is (2 * 0.8 + 3 * 0.2 =) 2.2
operations3.

3.3 Detector Derivation Algorithm

For each location identified by the detector placement
analysis in [14], the detector derivation algorithm first
chooses the rule class corresponding to the detector loca-
tion and then forms the associated exception condition.
The algorithm attempts to maximize the tightness to ex-
ecution cost ratio for the detector. We refer to the evolu-
tion of a program variable over time as the stream of values
for that variable. The steps in the algorithm are as follows:
1. To derive the rule, each of the rule classes in Table 2

is tried in sequence against the observed value stream
to determine which rule classes satisfy the observed
value stream. The parameters of the rule are learned
from appropriate samples (for each rule class) from
the observed stream. For the same location, it is poss-
ible to generate multiple rules that are considered
candidates for exception derivation in the next step.

2. For each rule derived in step 1, the associated excep-
tion condition is derived. Each value in the stream
that does not satisfy the rule is used as a seed for ge-
nerating exception conditions for that rule (through
exhaustive search among the exception conditions). If
it is not possible to derive an exception condition for

3When a detector is invoked, the rule is checked first, and only if it fails
is the exception condition checked for the value.

the observed value according to the conditions in Sec-
tion 3, the current rule is discarded and the next rule
is tried from the set of rules derived in step 2.

3. For each rule-exception pair generated, the tightness
and execution cost of the detector are calculated. The
detector with the highest tightness to execution cost
ratio is chosen as the final detector for that location
and exported to a text file for synthesis to hardware.

The time complexity of the above algorithm is directly
dependent on the number of values observed at each de-
tector location (say m), the number of detector locations
considered in the application (say n), and the number of
streams or inputs on which the algorithm is trained (say
k). The time also depends on the number of rules and ex-
ception classes, both of which are constants. Therefore,
the overall time complexity of the algorithm is given by
O(m * n * k).

4 DEPLOYMENT: SYNTHESIS AND HARDWARE

IMPLEMENTATION

This section discusses the hardware implementation of
the detectors derived using the algorithm in Section 5,
and it can be skipped if the reader is not interested in the
hardware details.

In this paper, we discuss the hardware implementation
of the derived error detectors in the context of the Relia-
bility and Security Engine (RSE) framework [19]. The RSE
is a reconfigurable, processor-level framework that pro-
vides reliability and security functions according to the
requirements and characteristics of the application. The
RSE Framework consists of RSE modules, which provide
the reliability and security services, and the RSE Interface,
which provides a standard, well-defined and extensible
interface between the modules and the main processor
pipeline. The interface collects the intermediate pipeline
signals and converts it to a generic format that can be
used by the RSE modules for error and attack detection.
The application interfaces with the RSE modules using
special instructions called CHECK instructions.

In this paper, we consider a simple DLX processor [20]
augmented with the RSE. The DLX is a RISC processor
with a five-stage pipeline with in-order issue but out-of-
order execution. The detectors are implemented as a sep-
arate module of the RSE called the Error Detector Module
(EDM). The detectors are configured into the EDM at ap-
plication-load time and are invoked from the application
using CHECK instructions.

4.1 Synthesis of Error Detector Module

The output of the detector derivation algorithm in Section
3.3 is a list of detectors in the program. This list is used to
synthesize hardware checkers that implement the derived
detectors in the EDM. The application is instrumented

with CHECK instructions to invoke the hardware check-
ers, and the EDM is generated using the synthesized
hardware checkers. These two steps are carried out at
compile time through an automated design flow, illu-
strated in Figure 2.

6 IEEE TRANSACTIONS ON Dependable and Secure Computing, TDSC-2008-11-0184

Figure 2: Design flow to instrument application and
generate the EDM from the list of detectors

Figure 2 shows the automated design flow from the
application code to the hardware. Given the application
code (in the form of assembly code), the design flow pro-
duces the instrumented application code and the hard-
ware description of the EDM tailored for the target appli-
cation. The target processor description (a DLX-like proces-
sor in the current implementation) and the configuration
information are provided as parameters to the design flow.
These are used to extract, from the main pipeline of the
processor, the signals needed by the EDM for performing
error detection. The output of the Error Detector Module
generation phase in Figure 2 is a Virtual Hardware De-
scription Language (VHDL) representation, which is in
turn used by the synthesis phase to instantiate the various
hardware components considered in Section 6.

Each detector in the list of detectors derived in the de-
sign phases is characterized by the following attributes:
(1) location of the detector in terms of the Program Coun-
ter (PC) value at which it is to be invoked, (2) processor
registers that must be checked by the detector, and (3)
detector class and exception parameters. Figure 3 shows
the format of each detector, which consists of six words.

PC

Rule Class Exception

Cl
ass

Re
gis

ter

Pa-
ram

1

Pa-
ram

2

Op

era
tor

Cl
ass

1

Cl
ass

2

Pa-
ram

1

Pa-
ram

2

32
bit

3
bit

5
bit

32
bit

32
bit

2
bit

2
bit

2
bit

32
bit

32
bit

Figure 3: Format of detector and bit width

In our current deployment, the application is
represented as assembly code. The header of the assembly
file is instrumented with special instructions to load the
detectors of the application into the EDM. Each of these
instructions loads a single 32-bit value, and since each
detector consists of six words, we need six instructions
per detector to perform the loading. However, these in-
structions are executed only once during the lifetime of
the application. The application code is also instrumented
with CHECK instructions to invoke the detectors during
its execution.

4.2 Structure of Error Detector Module

Figure 4 shows the overall architecture of the Error Detec-
tor Module (EDM). As mentioned before, the EDM is im-
plemented as a module in the Reliability and Security
Engine (RSE). As shown in the figure, the RSE interface
extracts signals of interest from the processor’s pipeline
and conveys this information to the EDM for use in detec-
tion. The main components of the EDM are as follows:

The Shadow Register File (SRF) keeps track of current
and last values of the microprocessor’s registers checked
by the detectors (i.e., ai and ai-1, where a can be any archi-
tectural register). This component delivers the required
values ai and ai-1 when a detector is executed (based on the
detector’s rule and exception condition). When a new
value regValue is written at time i by the processor in reg-
ister R of the processor file (based on the value regSel), a
copy of the new value Ri is stored in the SRF. The old val-
ue Ri-1 is also retained. Since not all the registers of the
processor architecture have to be checked by the detec-
tors, a mapping between the physical addresses of the
microprocessor registers and the logical addresses of the
corresponding registers in the SRF is kept in a hardware
structure named Phys2Log.

The Detector Table stores the information needed to ex-
ecute a detector. The size of the table is directly propor-
tional to the number of detectors needed by an applica-
tion. It consists of comparators for checking the current
PC against the PCs of the detectors and triggering them if
necessary and a Random Access Memory (RAM) for stor-
ing the parameters of rules and exceptions. When a detec-
tor is triggered by the current PC, the Detector Table first
selects the register R that has to be checked from the SRF,
which in turn forces the values Ri-1 and Ri-1 to be placed on
the dual data-path buses. It then activates the Rule and
Exception Checkers to perform the computations asso-
ciated with the detector. If the computations fail, the Error
Signal Computation flags the Violation Detection signal.

Rule and Exception Checkers are the actual data-paths
used to carry out the computation of the detector rules
and exception conditions. A number of checker compo-
nents are instantiated to perform the required computa-
tions according to the rule classes and exceptions needed
by an application. Note that the number of checkers in-
stantiated is equal to the number of detector classes and
exceptions (at most 48) rather than to the number of de-
tectors inserted in an application.

5 EXPERIMENTAL EVALUATION

This section describes the experimental infrastructure and
application workload used to evaluate the coverage and
overheads of the derived detectors. We use fault-injection
on the application executed to completion in a processor
simulator to evaluate the coverage of the derived detec-
tors. We implement the detectors on Field Programmable
Gate Array (FPGA) hardware to evaluate their perfor-
mance and area overheads.

Pattabiraman et al.: Automated Derivation of Application-specific Error Detectors
 7

Figure 4: Architectural diagram of synthesized processor

5.1 Application Programs

The system is evaluated with six of seven programs
from the Siemens suite [21] of programs (Table 5). These
programs are equipped with extensive test suites.

Table 5: Benchmark Programs
Benchmark Description

Replace Searches a text file for a regular expression

and replaces the expression with a string

Schedule, Schedule2 A priority scheduler for multiple job tasks

Print_tokens,

Print_tokens2

Breaks the input stream into a series of lexi-

cal tokens according to pre-specified rules

Tot_info Offers a series of data analysis functions

5.2 Infrastructure

The tracings of the application’s execution and the fault-
injections are performed using a functional simulator in
the SimpleScalar family of processor simulators [22]. The
simulator allows fine-grained tracing of the application
without modifying the application code and provides a
virtual sandbox in which to execute the application and
study its behavior under faults.

We modified the simulator to track dependencies
among data values in both registers and memory by sha-
dowing each register/location with four extra bytes (in-
visible to the application) that store a unique tag for that
location. For each instruction executed by the application,
the simulator prints (to the trace file) the tag of the in-
struction’s operands and the tag of the resulting value.
The trace file is analyzed offline by specialized scripts to
construct the DDG and compute the metrics for placing
detectors in the code as described in our prior work [14].

The effectiveness of the detectors is assessed using fault
injection. Fault locations are specified randomly from the
dynamic set of tags produced in the program. In this
mode, the tags are tracked by the simulator, but the ex-
ecuted instructions are not written to the trace file. When
the current instruction’s tag value equals the value of a
specified fault location, a random bit is flipped in the val-
ue produced by the current instruction.

Once a fault is injected, the execution sequence is moni-
tored to see if a detector location is reached. If so, the val-
ue at the detector location is written to a file for offline
comparison with the derived detectors for the applica-
tion. This process is continued until the application ends.
Note that only a single fault is injected in each execution
of the application. This is because a transient fault is like-
ly to occur at most once during an execution.

Since the simulator does not model the operating sys-
tem or other aspects of a real system, such as virtual
memory management, we modified the simulator to more
accurately represent real-world counterparts. This is done
by translating the errors detected by the simulator to their
corresponding real-world consequence using the map-
ping in Table 6. The simulator has been calibrated by in-
jecting faults in the real system and comparing it to the
simulated system [14].

Table 6: Types of errors detected by simulator and
their real-world consequences
Type of
Error

Consequence Simulator Detection
Mechanism

Invalid

Memory
Access

Crash (SIGSEGV) Consistency checks on ad-

dress range

Memory
alignment

Error

Crash (SIGBUS) Check on memory address
alignment

Divide-by-

Zero

Crash (SIGFPE) Check before divide opera-

tion

Integer

Overflow

Crash (SIGFPE) Check after every integer

operation

Illegal In-
struction

Crash (SIGILL) Check instruction validity
before decoding

System Call
Error

Crash (SIGSYS) None, as simulator executes
system calls on behalf of ap-

plication

Infinite

Loops

Program Hang

(live-lock)

Program executes of double

the number of instructions in
the golden run

Indefinite
Wait

Program Hang
(deadlock)

Program execution takes five
times more time than the

golden run

Incorrect
Output

Fail-Silent Viola-
tion

Compare outputs at the end
of the run

8 IEEE TRANSACTIONS ON Dependable and Secure Computing, TDSC-2008-11-0184

5.3 Experimental Procedure

The experiment is divided into four parts:
1. Placement of detectors and instrumentation of code.

The dynamic instruction trace of the program is ob-
tained from the simulator and the Dynamic Depen-
dence Graph (DDG) is constructed from the trace.
The detector placement points (both variables and lo-
cations) are chosen based on the technique described
in [14]. For each application, up to 100 detector points
are chosen by the analysis, which corresponds to less
than 5% of static instructions in the assembly code of
the benchmark programs (excluding libraries).

2. Deriving the detectors based on training set. The
simulator records the values of the selected variables
at the detector locations for representative inputs.
The dynamic values obtained are used to derive the
detectors based on the algorithm in Section 3.1. The
training set consists of 200 inputs, which are random-
ly sampled from a test suite consisting of 1000 inputs
for each program. These test suites are provided as
part of the Siemens benchmark suite [21].

3. Fault-injections and coverage estimation. Fault-
injection experiments are performed by flipping sin-
gle bits in data-values chosen at random from the set
of all data values produced during the course of the
program’s execution. After injecting the fault, the da-
ta values at the detector locations are recorded and
the outcome of the simulated program is classified as
a crash, hang, fail-silent violation, or success (benign).
The values recorded at the detector locations are then
checked offline by the derived detectors to assess
their coverage. The coverage of a detector is ex-
pressed in terms of the type of program outcome it
detects, e.g., a detector is said to detect a program
crash if the program would have crashed had the de-
tector not detected the error. In case the detector
does not detect the error at all, its coverage is counted
as zero for all four outcome categories.

4. Computation of false positives. The application code
instrumented with the derived detectors is executed
for all 1000 inputs, including the 200 that were used
for training. No faults are injected in these runs. If a
detector detects an error, then that input is consi-
dered a false positive, as there was no injected error
but an alarm was raised. We assume that there are no
residual errors in the test suite used for training.

For the fault-injection experiments, each application is
executed with over 10 inputs chosen at random from
those used in the training phase. For each input, 1000 lo-
cations are chosen at random from the data values pro-
duced by the application. A fault-injection run consists of
a single bit-flip (chosen at random) in the one of the 1000
locations. We perform 5 runs for each application-input
combination, which corresponds to a total of 50,000 fault-
injection runs per application.

6 RESULTS

This section presents the results of the evaluation per-
formed in Section 5.

6.1 Detection Coverage of Derived Detectors

The coverage of the detectors derived using the algorithm
in Section 3.1 is evaluated using fault-injections. Figure 5,
Figure 6, and Figure 7 show the coverage for crashes, fail-
silence violations (FSVs) and hangs obtained for the target
applications (expressed as percentages) as a function of
the number of detectors placed in each application, rang-
ing from 1 to 100. The following trends may be observed
from Figure 5, Figure 6, and Figure 7. The coverage for
each type of failure increases as the number of detectors
increases, but less than linearly, as there is an overlap
among the errors detected by the detectors. Further, the
individual error coverage of the derived detectors de-
pends on the type of failure (crash, FSV, hang) detected
and the application. In general, crashes exhibit the highest
coverage, followed by FSVs and hangs.

Figure 5: Crash coverage of derived detectors

Figure 6: FSV coverage of derived detectors

Pattabiraman et al.: Automated Derivation of Application-specific Error Detectors
 9

Figure 7: Hang coverage of derived detectors

Figure 8: Total coverage of derived detectors

Table 7: Range of detection coverage for 100 detectors
Type of Failure Minimum Coverage Maximum Coverage

Program Crash 45% (print_tokens) 65% (tot_info)

Fail-Silent Violation (FSV) 25% (schedule2) 75% (tot_info)

Program Hang 0% (print_tokens2) 55% (replace)

Program Failures 50% (replace, schedule2, print_tokens, tot_info) 75% (schedule, print_tokens2)

Figure 8 shows the percentage of total manifested er-
rors (crash, hang, and FSV) detected by the derived detec-
tors. This is obtained by weighing the detection coverage
for the individual failure categories (in Figure 5, Figure 6,
and Figure 7) with the fraction of observed errors that
result in the failure category (not shown in the figures).
The coverage obtained for each type of failure when 100
detectors are placed in each the application is summa-
rized in Table 7. The derived detectors can detect 50- 75%
of the errors that manifest in the application. This is be-
cause the majority of errors that manifest in an applica-
tion result in crashes (70-75%) and the rest in fail-silent
violations (20-30%) and hangs (0-5%). Hence the coverage
for the total manifested errors is dominated by crashes.

The results for coverage correspond to errors that occur
in any data value used within the program, not just for
errors that occur in the data values checked by the detec-
tor. For example, if even a single bit-flip occurs in a single
instance of any data value used in the program and this
error results in a program crash, hang, or fail-silence vi-
olation, then one of the 100 detectors placed in the pro-
gram will detect the error 50-75% of the time. As men-
tioned in Section 5.1, 100 detectors correspond to less than
5% of program locations in the program’s assembly code,
not including library functions.

6.2 False Positives

False positives can occur when a detector flags an error
even if there is no error in the application. A false positive
for an input can occur when the values at the detector
points for the input do not obey either the detector’s rule
or the exception condition learned from the training in-
puts. This occurs if the training set is not comprehensive
enough, i.e., it does not cover all the values that may be
exhibited by a variable checked by a detector.

The training set for learning the detectors consists of
200 inputs, and the false positives are computed across

1000 inputs for each application. No faults were injected
in these runs. Therefore, any alarm raised by the detectors
for any of the 1000 inputs is a false positive. If even a sin-
gle detector detects an error for a particular input, then the
entire input is treated as a false positive, even if no other detec-
tor detects an error for the input.

Figure 9 presents the percentage of false positives for
each of the target applications as a function of the number
of detectors placed in the program. Across all applica-
tions, the false positives are no more than 2.5% when 100
detectors are placed in the program. For the replace, sche-
dule2, print_tokens, and print_tokens2 applications, the false
positives are observed in less than 1% of the inputs, while
for the schedule and tot_info applications, the false posi-
tives are observed in about 2% of the inputs. While the
number of false positives increases as the number of de-
tectors increases, it reaches a plateau as the number of
detectors is increased beyond 50. This is because a false
positive input is likely to trigger multiple detectors once
the number of detectors passes a certain critical threshold
(which occurs at around 50 detectors in the benchmark
programs). However, no such plateau was reached for the
coverage results in Figure 8, even up to 100 detectors.

Effect of False Positives. When a detector raises an
alarm, we need to determine whether an error was really
present or whether it is a false positive. If the error was
caused by a transient fault (as we assume in this paper),
then it is likely to be wiped out when the program is re-
executed. If, on the other hand, the detection was a false
positive and hence a characteristic of the input given to
the program, the detector will raise an alarm again during
re-execution. In this case, the alarm can be ignored, and
the program be allowed to continue. Thus, the impact of a
false positive is essentially a loss in performance due to
re-execution overhead. Since the percentage of false posi-
tives is less than 2.5%, the re-execution overhead is small.

10 IEEE TRANSACTIONS ON Dependable and Secure Computing, TDSC-2008-11-0184

Figure 9: Percentage of false positives for 1000 inputs

Note that rollback recovery or re-execution may not

always be possible in certain systems. For example, in
real-time systems, re-execution can lead to missed dead-
lines, and in distributed systems, it may trigger system-

wide rollback. In such systems, false positives may cause
an impact that goes beyond loss of performance, for ex-
ample, violations of specifications. Recovery techniques
are outside the scope of this study, hence we assume that
rollback recovery is both feasible and results in only a
(modest) performance overhead. Similar assumptions
have been made by prior work [23].

6.3 Effect of Training Set Size

The results reported in Section 6.1 and 6.2 for coverage
and false positives of the derived detectors used a train-
ing set of 200 inputs from a total of 1000 inputs for each
application. In this section, we consider the effects of va-
rying the size of the training set from 100 inputs to 300
inputs. In these experiments, the number of detectors in
each application is fixed at 100, and the coverages for dif-
ferent kinds of failures and false positives are evaluated
for each application. The results are shown in Figure 10,
Figure 11, Figure 12, and Figure 13.

Figure 10: Crash coverage for different training
set sizes

Figure 11: FSV coverage for different training set siz-
es

Figure 12: Hang coverage for different training set
sizes

Figure 13: False positives for different training set
sizes

The results from the graphs are:

Pattabiraman et al.: Automated Derivation of Application-specific Error Detectors
 11

 The false positives decrease from 5% to 2% as the
training set size is increased from 100 inputs to 200
inputs, and to less than 1% for 300 inputs across all
programs except tot_info (for which the false positives
are 1.5% for 300 inputs).

 The coverages for crashes and hangs remain constant
as the training set size increases for all applications
(Figure 8, Figure 10), except in the case of tot_info,
where the coverage first decreases from 100 to 200
inputs and then remains constant from 200 to 300 in-
puts (for crashes and hangs).

 The coverage for fail-silent violations decreases mar-
ginally as the size of the training set increases from
100 inputs to 300 inputs (Figure 9). This decrease in
fail-silent violations is less than 2% for all applica-
tions except tot_info (5%).

Therefore, increasing the training set size from 100 to
200 inputs decreases the false positives significantly,
while increasing it from 200 to 300 inputs does not have
as large an impact on false positives. However, the impact
on the detection coverage from increasing the training set
size is minimal. This suggests that the detectors, once
learned, are relatively stable across different inputs, and
that their detection capabilities are not affected by the
input beyond a certain number of training inputs (200).

Note that different training set sizes may also influence
the code coverage achieved. In our experiments, the test
suites had sufficiently high code coverage that this was
not a major issue. However, it is possible in other applica-
tions that some test suites have lower code coverage than
others, which may reduce their error detection coverage.
In such cases, care must be taken to ensure that training
sets have approximately similar code coverage.

Another consequence of choosing different training set
sizes is that it introduces differences in the execution time
of the detectors. We found such differences to be margin-
al in terms of the overall execution time of the program.
Nonetheless, this is a potential issue in some applications.

6.4 Comparison with Best-Value Detectors

As seen in Section 6.1, the derived detectors detect
about 45-65% of crashes, 25-80% of fail-silent violations,
and 0-55% of hangs in a program. This section investi-
gates why the remaining errors are not detected and how
the detectors can be improved. To form the basis of the
discussion, we consider a hypothetical detector that keeps
track of the entire history of data values observed at a
detector location and uses this knowledge to flag an error.
We call this a best-value detector, as it represents the max-
imum coverage that can be obtained by a single value-
based detector (including one written by a programmer).
This section represents the main contribution of this paper over
and above our previous work [13].

The best-value detector may not be achievable in prac-
tice, as in addition to requiring enormous space and time
overheads (to store the entire history of values), it as-
sumes apriori knowledge of all possible inputs to the
program. Nonetheless, the coverage of the best-value de-
tector provides an upper bound on the coverage that can
be obtained with data-value based detectors, such as the

detectors considered in this paper. Further, it provides
insights into improving the coverage of the derived detec-
tors, which is the main motivation for this study.

We build the best-value detector by executing the pro-
gram under a specific set of inputs and storing the entire
sequence of values observed at each location at which a
detector is placed. This fault-free execution is referred to
as the golden run of the program. Faults are injected into
the program, and the values of the detector locations are
recorded. An offline post-processing phase compares
each value at the detector location with the value record-
ed in the golden run. If the program completed execution
under the fault, the entire value sequence is compared
and any deviation is reported as a successful detection. If
the program crashes (hangs), only mismatches in the val-
ues that were recorded before the crash (hang) are re-
ported as detections.

In this study, the number of detectors in the program is
fixed at 100, which is the maximum number of detectors
considered in the previous studies (Section 6.1 and 0). For
each application, both the best-value detectors and the
derived detectors are placed at the same variables and
locations. For fault-injection, the program is executed un-
der the same set of inputs (10 in this study) that were
used to derive the best-value detectors. The same set of
faults is injected for evaluating both the best-value detec-
tors and the derived detectors.

Figures 14 through 17 show the coverage obtained with
the best value detectors for crashes, fail-silent violations,
and hangs. The corresponding coverage obtained by the
derived detectors (for 100 detectors) is also shown in the
graphs for ease of comparison.

The results of the comparison are as follows:
Crashes. Compared to the best-value detectors, the de-

rived detectors detect between 75% (replace) and 100%
(schedule2, print_tokens2) of errors that result in crashes
(Figure 14)

FSVs. Compared to the best-value detectors, the de-
rived detectors detect between 40% (print_tokens2) and
85% (tot_info) errors that result in fail-silent violations
(Figure 15).

Hangs. Compared to the best-value detectors, the de-
rived detectors detect between 50% (tot_info) and 100%
(schedule2, print_tokens2) for program hangs (Figure 16).

Note that the best-value detectors do not obtain 100%
coverage for any of the failure categories. This is because
they are placed only at critical variables in the applica-
tion, and not all errors in the application may propagate
to the critical variable. Further, the best-value detectors
do not include timing information, hence they may not
detect changes in the control-flow of the application un-
less there is a corresponding change in the application’s
data values. This is the main difference between the best-
value detectors and the ideal detectors introduced in our
earlier study [14], which keep track of both data and tim-
ing information to detect errors. The ideal detectors
achieved coverage of between 90% and 100% when 100
detectors were placed in the program. We do not consider
ideal detectors in this paper.

12 IEEE TRANSACTIONS ON Dependable and Secure Computing, TDSC-2008-11-0184

Figure 14: Comparison between best-value detectors and derived detectors for crashes

Figure 15: Comparison between best-value detectors and derived detectors for FSV

Figure 16: Comparison between best-value detectors and derived detectors for hangs

Figure 17: Comparison between best-value detectors and derived detectors for manifested errors

Pattabiraman et al.: Automated Derivation of Application-specific Error Detectors
 13

Figure 17 shows the coverage obtained by the derived
detectors vis-à-vis the best-value detectors for all mani-
fested errors in the application. The derived detectors
achieve between 70% (replace) and 90% (print_tokens2) of
the coverage provided by the best-value detectors. The
overall coverage is high because the total number of ma-
nifested errors is dominated by crashes, for which the
derived detectors obtain high coverage relative to the
best-value detectors. This is because crashes are often
caused by egregious corruptions of data values, which are
easily detected by the derived detectors.

However, derived detector coverage for Fail-Silent Vi-
olations (FSVs) is not as high as the corresponding cover-
age of the best-value detectors. This is because subtle vi-
olations in data values may not be detected easily by the
derived detectors. The best-value detectors are tailored
for each input (based on the golden run of the application
for the input) and hence have 100% knowledge of the ap-
plication’s data values for that input. In contrast, the de-
rived detectors should be general across inputs, otherwise
they will incur false positives. This suggests that FSVs are
caused by corruptions in data values that are invalid for
the given input but may be valid for a different input.
Since the derived detectors are not input-specific, they
have no way of distinguishing an incorrect value from the
correct value. Therefore one way of improving the cover-
age of derived detectors with respect to FSVs is to make
them input-specific. This is an avenue for future work.

Finally, the coverage of the best-value detectors for
hangs exhibits wide variation across applications. As
mentioned earlier, hangs are often caused by changes in
the control-flow of the application, which is not detected
by either the best-value detector or the derived detector
(unless it causes a data error). As a result, the best-value
detectors exhibit high levels of hang coverage only for
those applications in which the control-flow is highly de-
pendent on its data values (e.g., replace and schedule).
This can be remedied by including control-flow or timing
information in the detectors, a direction for future work.

6.5 Hardware Implementation Results

The proposed design of the DLX processor, the RSE Inter-
face, and the Error Detector Modules for different appli-
cations were synthesized using Xilinx ISE 7.1 tools target-
ing a Xilinx Virtex-E FPGA. The Xilinx Virtex series of
FPGAs consists mainly of several types of logic cells: (1)
4-input Look-Up Tables (LUTs) statically programmed
during the bootstrap with the configuration bit-stream,
(2) flip-flops (FFs), storage elements in the user visible
system state, and (3) Block RAM (BRAMs), which are
memory blocks that can store up to 4096 bits. Four LUTs
and four FFs compose a logic unit called Slice.

Area and Clock Period Overhead. Table 8 reports the
synthesis results in terms of area (i.e., FFs, LUTs, BRAMs,
and total Slices) and minimum clock frequency, for the
unmodified DLX processor and the complete RSE Inter-
face. It can be observed that the RSE interface has an area
overhead of 14.9% over the unmodified DLX processor
and a negligible impact on its clock period.

Table 9 shows the synthesis results in terms of area and

minimum clock period for each of the benchmarks consi-
dered in Section 5.1. The benchmark name is shown in
the first column, and the number of (unique) detectors
synthesized for the program is shown in the second col-
umn. The third, fourth, and fifth columns report the
number of flip-flops, the number of BRAMs, and the
number of LUTs respectively. Column 6 reports the num-
ber of slices, while column 7 reports the maximum clock
period achieved during synthesis. Finally, columns 8 and
9 report the overheads of the EDM in terms of the percen-
tage of extra slices, with and without the RSE.

Table 8: Area and timing results for the DLX proces-

sor and the RSE Framework

 FFs LUTs BRAMs Slices
Clock

Period (ns)

DLX processor 4873 16395 0 9526 58.8

RSE Interface 2465 2329 0 1420 2.01

The results for the area overheads in Table 9 are that the
number of slices required for the implementation of the
EDM ranges is between 2685 and 2911 and that the num-
ber of additional BRAMs required is 9.

Performance Overhead. The performance overhead in-
curred due to the extra hardware is calculated as:

Overhead = [(Total clock cycles + Extra clock cycles) *

(Twith EDM – T without EDM)] / (Total Clock Cycles * Twithout EDM)

where Twith EDM and Twithout EDM are the clock cycle times
with and without the EDM respectively, and Extra clock
cycles is the number of additional clock cycles to execute
the code instrumented with the CHECK instructions.

Due to space constraints, we only report results for the
benchmark with the highest overheads, namely schedule2.
For this program, The number of extra clock cycles is 594,
while the total number of clock cycles is nearly 1 million
(the exact value does not matter in the above calculation),
T with EDM is 58.82 ns and Twithout EDM is 55.55 ns. Using the
above formula, the total performance overhead is 5.6%.

We obtain such a low overhead because (1) the
detectors are executed by the EDM concurrently with the
application within a few cycles, hence the latency of the
detectors’ execution may be overlapped with the
execution of the application, and (2) the clock period of
the superscalar DLX processor is only marginally
impacted by the RSE interface and the EDM.

7 RELATED WORK

Broadly, error detection techniques can be classified
based on two criteria: (1) how detectors are derived (static
or dynamic) and (2) how checking is performed (static or
dynamic). These lead to 4 categories of detectors that
span the spectrum of purely static techniques [1-2, 4, 24]
to purely dynamic techniques [25-26]. This categorization
also includes hybrid techniques in which the detectors are
derived statically and checked dynamically [10-11, 27]
and those in which the detectors are derived dynamically
but checked statically (for example, DAIKON [3]). These
techniques are described in further detail in Table 10.

14 IEEE TRANSACTIONS ON Dependable and Secure Computing, TDSC-2008-11-0184

Table 9: Area and timing overheads across benchmarks

Benchmark
Name

Number

of Unique
Detectors

FFs BRAMs LUTs Slices
Clock Pe-
riod [ns]

EDM Slice
Overhead [%]

EDM + RSE Inter-

face Slice Over-
head [%]

tot_info 91 2913 9 5174 2685 20.7 28.2 43.1

replace2 91 2913 9 5176 2686 21.6 28.2 43.1

print_tokens 98 3169 9 5575 2876 19.7 30.2 45.1

print_tokens2 98 3169 9 5578 2875 21.1 30.2 45.1

schedule 98 3169 9 5578 2875 20.4 30.2 45.1

schedule2 99 3201 9 5626 2911 19.9 30.6 45.5

Table 10: Related techniques

Technique Description Comments

Prefix [1]
Uses symbolic execution through selected paths
in a program to find known kinds of errors (e.g.,

NULL pointer dereferences).

1. Requires programmer to write annotations in the source code.

2. Has high false positive rate due to infeasible paths.

C-Cured

[24]

Verifies that pointers do not write outside their
intended memory objects, thereby ensuring
memory safety.

1. Protects only against errors that violate memory safety – does

not protect computation errors.
2. Does not handle hardware errors or errors originating in unve-
rified code.

LCLINT [2]

Checks whether a program conforms to its speci-

fication and whether it adheres to predefined
programming rules.

1. Requires programmer to provide specifications or write annota-

tions in code.
2. Finds only errors that violate the predefined rules.

Engler et al.

[4]

Analyzes source files to find application-specific
programming patterns and identifies violations

of the patterns as bugs.

1. May incur false positives i.e., the violation of the pattern may
not necessarily be a bug.

2. Does not handle runtime errors or hardware faults.

DAIKON
[3]

Infers invariants from the dynamic execution of
program based on representative inputs.

1. Does not take placement of detectors into account - program

may crash before the execution reaches the detector location.
2. Requires programmer to interpret the invariants and locate
bugs and filter out false-invariants.

Voas et al.
[27]

Considers a general methodology to embed de-
tectors in programs to detect errors. Characteriz-

es properties of good detectors.

1. Does not consider how to derive the detectors.
2. Detector placement methodology relies heavily on program-

mer’s knowledge of application.

Rela et al.
[10]

Evaluates the coverage provided by existing

assertions in a program vis-à-vis control-flow
error detection techniques or algorithm-based,

fault-tolerance techniques.

Does not consider deriving or embedding assertions in a program.

Assumes that assertions have already been inserted by program-
mer during program development (for debugging).

Hiller et al.

[11]

Places error detectors in an embedded system to

detect data errors. Considers different classes of
detectors based on properties of the signals in an
embedded system, and the detectors are placed

in the system to maximize the coverage.

1. Programmer needs to specify class and parameters of each de-
tector - detector derivation is not automated.

2. Detector placement is based on extensive fault-injections, which
are time-consuming and effort-intensive.

DIDUCE
[25]

Uses software anomaly detection to locate corner

cases and find bugs. Formulates strict hypothesis
about program behavior in the beginning of the

execution and gradually relaxes the assumptions
as program executes to learn new behavior.

1. Program may crash before reaching detector point, and the

error will not be detected or may skip detection.
2. Does not address errors that occur when the invariants are be-
ing learned (at the beginning of program execution).

Maxion et

al. [26]

Characterizes the generic space of anomaly de-

tectors for embedded applications.

Does not define specific types of error detectors or explain how
they are derived from the application.

The work closest to ours is Hiller et al. [11], which ma-

nually derives detectors for an embedded system using
rule-based templates. They obtain detection coverage of
about 80% with 7 assertions for (random) errors that
cause failure in their embedded system application.
However, in their study, about 2000 errors are injected
into the system during a short period of 40 seconds, and if
one of their executable assertions detects one of the errors
in this period, it is considered a successful detection. In
contrast, we inject only a single error in each run. Further, 7
out of 24 signals are targeted for detection in the embed-

ded system considered in [11], which corresponds to
about 30% of the system. In comparison, we place detec-
tors in only 5% of the application code.

In earlier work [13], we outlined a methodology to de-
rive error detectors automatically based on dynamic ex-
ecution traces of a program. The main difference between
that paper and this one is Section 6.4, which compares the
coverage provided by the derived error detectors with
that provided by the best-value detectors. The compari-
son provides valuable insights into what errors are
missed by the detectors and how to improve detector
coverage.

Pattabiraman et al.: Automated Derivation of Application-specific Error Detectors
 15

Since we published the work in [13], three papers have
been published based on the idea of using dynamically
derived program invariants for runtime error detection
[28-30]. These papers use online or offline profiling of the
program to derive value-based invariants and use special
hardware to check them at runtime. The Appendix dis-
cusses the differences between these papers and ours.

8 CONCLUSIONS

This paper proposed a novel technique for preventing a
wide range of data errors from corrupting the execution
of an application. This technique consists of an automated
methodology to derive fine-grained, application-specific
error detectors using an algorithm based on dynamic
traces of application execution. A set of error detector
classes, parameters, and locations, were derived in order
to maximize the error detection coverage for a target ap-
plication. The paper also presented an automatic frame-
work for synthesizing the detectors in hardware to ensure
low-latency, concurrent error detection. The coverage of
the derived detectors was evaluated using fault-injections
and found to be about 50-75% for failure-causing errors.
The area and performance overheads of the detectors
were about 15% and 5%, respectively.

Acknowledgments. This work was supported in part by
National Science Foundation (NSF) grants CNS-0406351
and CNS-0524695, the Gigascale Systems Research Center
(GSRC/MARCO), Motorola Corporation as part of the
Motorola Center for Communications (UIUC), and Intel
Corporation. We thank Fran Baker for editorial support.

REFERENCES

[1] W. R. Bush, et al., "A static analyzer for finding dynamic

programming errors," Software Practice and Experience, vol. 30, pp.

775-802, 2000.

[2] D. Evans, et al., "LCLint: a tool for using specifications to

check code," in 2nd ACM SIGSOFT symposium on Foundations of

software engineering, New Orleans, Louisiana, United States, 1994, pp.

87-96.

[3] M. D. Ernst, et al., "Dynamically discovering likely program

invariants to support program evolution," in 21st international

conference on Software engineering, Los Angeles, California, United

States, 1999, pp. 213-224.

[4] D. Engler, et al., "Bugs as deviant behavior: a general

approach to inferring errors in systems code," in Eighteenth ACM

Symposium on Operating systems principles, Banff, Alberta, Canada,

2001, pp. 57-72.

[5] W. Gu, et al., "Characterization of linux kernel behavior

under errors," in International Conference on Dependable Systems and

Networks, 2003, pp. 459-468.

[6] C. Basile, et al., "Group communication protocols under

errors," in 22nd International Symposium on Reliable Distributed

Systems, 2003, pp. 35-44.

[7] I. Lee and R. K. Iyer, "Software dependability in the Tandem

GUARDIAN system," IEEE Transactions on Software Engineering,

vol. 21, pp. 455-467, 1995.

[8] D. Andrews, "Using executable assertions for testing and

fault tolerance,," in 9th Faul-tolerance Computing Symposium,

Madison, WI, 1979, p. 21.

[9] N. G. Leveson, et al., "The use of self checks and voting in

software error detection: an empirical study," IEEE Transactions on

Software Engineering, vol. 16, pp. 432-443, 1990.

[10] M. Z. Rela, et al., "Experimental evaluation of the fail-silent

behaviour in programs with consistency checks," in Annual Symposium

on Fault-tolerant Computing, Sendai, 1996, pp. 394-403.

[11] M. Hiller, "Executable Assertions for Detecting Data Errors

in Embedded Control Systems," in International Conference on

Dependable Systems and Networks (formerly FTCS-30 and DCCA-8),

2000, p. 24.

[12] M. Hiller, et al., "On the Placement of Software Mechanisms

for Detection of Data Errors," in International Conference on

Dependable Systems and Networks, 2002, pp. 135-144.

[13] K. Pattabiraman, et al., "Dynamic Derivation of Application-

Specific Error Detectors and their Implementation in Hardware," in

Sixth European Dependable Computing Conference, Coimbra,

Portugal, 2006, pp. 97-108.

[14] K. Pattabiraman, et al., "Application-based metrics for

strategic placement of detectors," in Pacific Rim Dependable

Computing, Changsha, China, 2005, pp. 95-102.

[15] J. Ohlsson, et al., "A study of the effects of transient fault

injection into a 32-bit RISC with built-in watchdog," in Twenty-Second

International Symposium on Fault-tolerant Computing, 1992, pp. 316-

325.

[16] N. Mehdizadeh, et al., "Analyzing fault effects in the 32-bit

OpenRISC 1200 microprocessor," in Third International Conference on

Availability, Reliability and Security (ARES), 2008, pp. 648-652.

[17] J. Gray, "Why do computers stop and what can be done

about it," in Symposium on Reliable Distributed Systems, 1986, pp. 3–

12.

[18] J. Voas, "Software testability measurement for intelligent

assertion placement," Software Quality Control, vol. 6, pp. 327-336,

1997.

[19] N. Nakka, et al., "An Architectural Framework for Providing

Reliability and Security Support," in International Conference on

Dependable Systems and Networks, 2004, p. 585.

[20] D. A. Patterson and J. L. Hennessy, Computer architecture:

a quantitative approach: Morgan Kaufmann Publishers Inc., 1990.

[21] M. Hutchins, et al., "Experiments of the effectiveness of

dataflow- and controlflow-based test adequacy criteria," in 16th

international conference on Software engineering, Sorrento, Italy,

1994, pp. 191-200.

[22] T. Austin, et al., "SimpleScalar: An Infrastructure for

Computer System Modeling," Computer, vol. 35, pp. 59-67, 2002.

[23] N. J. Wang and S. J. Patel, "ReStore: Symptom-Based Soft

Error Detection in Microprocessors," IEEE Trans. Dependable Secur.

Comput., vol. 3, pp. 188-201, 2006.

[24] G. C. Necula, et al., "CCured: type-safe retrofitting of legacy

code," in ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, Portland, Oregon, 2002, pp. 128-139.

[25] S. Hangal and M. S. Lam, "Tracking down software bugs

using automatic anomaly detection," in 24th International Conference

on Software Engineering, Orlando, Florida, 2002, pp. 291-301.

[26] R. A. Maxion and K. M. C. Tan, "Anomaly Detection in

Embedded Systems," IEEE Trans. Comput., vol. 51, pp. 108-120, 2002.

[27] M. V. Jeffrey and W. M. Keith, "The Avalanche Paradigm:

An Experimental Software Programming Technique for Improving

Fault-tolerance," presented at the Proceedings of the IEEE Symposium

and Workshop on Engineering of Computer Based Systems, 1996.

[28] P. Racunas, et al., "Perturbation-based Fault Screening,"

presented at the Proceedings of the 2007 IEEE 13th International

Symposium on High Performance Computer Architecture, 2007.

[29] M. Dimitrov and H. Zhou, "Unified Architectural Support

for Soft-Error Protection or Software Bug Detection," presented at the

Proceedings of the 16th International Conference on Parallel

Architecture and Compilation Techniques, 2007.

[30] S. Sahoo, et al., "Using likely program invariants to detect

hardware errors," in Proceedings of International Conference on

Dependable Systems and Networks (DSN), Anchorage, AK, 2008, pp.

70-79.

16 IEEE TRANSACTIONS ON Dependable and Secure Computing, TDSC-2008-11-0184

 Authors’ Biographies
Karthik Pattabiraman received the
M.S and PhD degree in computer
science from the University of Illinois
at Urbana-Champaign (UIUC) in
2004 and 2009. He is currently an as-
sistant professor at the University of
British Columbia in electrical and

computer engineering. His research interests include de-
sign of reliable and secure applications using static and
dynamic analysis, as well as experimental and formal
techniques for dependability validation. Karthik’s disser-
tation proposed the idea of application-aware dependa-
bility and he was the lead graduate student in the Trusted
Illiac project at the University of Illinois. Based on his dis-
sertation work, Karthik Pattabiraman was awarded the
William C. Carter award in 2008 by the IFIP Working
Group on Dependability (WG 10.4) and the IEEE Tech-
nical Committee on Fault-tolerant Computting (TC-FTC).
He is a member of the IEEE and IEEE Computer Society.

Dr. Giacinto Paolo Saggese received
the M.S. (Summa cum Laude) in Elec-
trical Engineering from the University
of Naples in 2000 and the Ph.D. in
Electrical and Computer Engineering
from University of Naples in 2004.
From 2003 to 2004 he was at Universi-
ty of Illinois at Urbana Champaign
(UIUC) as a visiting scholar complet-

ing his PhD thesis on custom hardware for cryptographic
and secure applications. From 2004 to 2005 he was a Post
Doc at UIUC doing research on soft errors and automatic
application of reliability-enhancing techniques. From 2006
to 2007 he was a Verification Architect at NVIDIA Corp.
In 2007 he co-founded ZeroSoft Inc., a start-up develop-
ing innovative tools for verification, serving as VP of En-
gineering. In 2010, after ZeroSoft technology was success-
fully adopted by major semiconductor compa-
nies, ZeroSoft was acquired by Synopsys Inc, where Gia-
cinto Paolo is now a Principal Engineer.

Daniel Chen received his BS degree
in computer engineering from Uni-
versity of Illinois at Urbana-
Champaign in 2005. He subsequently
received the MS degree in computer
engineering from University of Illi-
nois at Urbana-Champaign in 2008.
He is currently working as a visiting

computer engineer for the Center for Reliable and High-
Performance Computing at the University of Illinois at
Urbana-Champaign. His research interests include com-
puter security and reliability.

Dr. Zbigniew T. Kalbarczyk is currently Research
Professor at the Center for Reliable and High-
Performance Computing in the Coordinated Science
Laboratory of the University of Illinois at Urbana-
Champaign. Dr. Kalbarczyk’s research interests are in the

area of design and validation of reliable
and secure computing systems.
Currently, he is a lead researcher on the
project to explore and develop high
availability and security infrastructure
(including use of dedicated software and
reprogrammable hardware) capable of
managing redundant resources to foil
security threats, detect errors in both the

user applications and the infrastructure components, and
recover quickly from failures when they occur. His
research involves also designing of techniques for
automated validation and benchmarking of dependable
computing systems using formal (e.g., model checking)
and experimental methods (e.g., fault/attack injection).
He served as a program Chair of Dependable Computing
and Communication Symposium (DCCS), a track of the
International Conference on Dependable Systems and
Networks (DSN) 2007 and Program Co-Chair of
Computer Performance and Dependability Symposium, a
track of the DSN 2002. Dr. Kalbarczyk has published over
90 technical papers and is regularly invited to give
tutorials and lectures on issues related to design and
assessment of complex computing systems. He holds PhD
degree in computer science from the Technical University
of Sofia, Bulgaria. He is a member of the IEEE, the IEEE
Computer Society, and IFIP Working Group 10.4 on
Dependable Computing and Fault Tolerance.

Ravishankar K. Iyer is Interim
Vice Chancellor for Research at
the University of Illinois at Urba-
na-Champaign, where he is a
George and Ann Fisher Distin-
guished Professor of Engineering.
He holds appointments in the De-
partment of Electrical and Com-

puter Engineering and the Department of Computer
Science. He is Director of the Center for Reliable and
High-Performance Computing at the Coordinated Science
Laboratory and Chief Scientist at the Information Trust
Institute. Iyer’s research interests are in the area of de-
pendable and secure systems. He has been responsible
for major advances in the design and validation of de-
pendable computing systems. He currently leads the
TRUSTED ILLIAC project at Illinois, which is developing
application-aware adaptive architectures for supporting a
wide range of dependability and security requirements in
heterogeneous environments. Professor Iyer is a Fellow
the AAAS, the IEEE and the ACM. He has received sever-
al awards including the Humboldt Foundation Senior
Distinguished Scientist Award for excellence in research
and teaching, the AIAA Information Systems Award and
Medal for “fundamental and pioneering contributions
towards the design, evaluation, and validation of de-
pendable aerospace computing systems,” and the IEEE
Emanuel R. Piore Award “for fundamental contributions
to measurement, evaluation, and design of reliable com-
puting systems.”

