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Abstract: This paper proposes a novel technique for preventing a wide range of data errors from corrupting the execution of 

applications. The proposed technique enables automated derivation of fine-grained, application-specific error detectors based 

on dynamic traces of application execution. The technique derives a set of error detectors using rule-based templates to 

maximize the error detection coverage for the application. A probability model is developed to guide the choice of the templates 

and their parameters for error-detection. The paper also presents an automatic framework for synthesizing the set of detectors 

in hardware to enable low-overhead, run-time checking of the application. The coverage of the derived detectors is evaluated 

using fault injection experiments, while the performance and area overhead of the detectors is evaluated by synthesizing them 

on reconfigurable hardware.  
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1 INTRODUCTION

THIS paper presents a technique to derive and implement 
error detectors that protect programs from data errors. 
These are errors that cause a divergence in data values 
from those in an error-free execution of the program. Data 
errors can cause the program to crash, hang, or produce 
incorrect output (fail-silent violations). Such errors can 
result from incorrect computation, and they would not be 
detected by generic techniques such as Error Correcting 
Codes (ECC) in memory and/or registers.  

Many static and dynamic analysis techniques [1-4] 
have been proposed to find bugs in programs. However, 
these techniques are not geared toward detecting runtime 
errors, as they do not consider error propagation. To 
detect runtime errors, we need mechanisms that can pro-
vide high-coverage, low-latency (rapid) error detection to: 
(i) preempt uncontrolled system crash/hang and (ii) pre-
vent propagation of erroneous data and limit the extent of 
the (potential) damage. Eliminating error propagation is 
essential because programs, upon encountering an error 
that could eventually lead to a crash, may execute for bil-
lions of cycles before crashing [5]. During this time, the 
program can exhibit unpredictable behavior, such as writ-
ing corrupted state to a checkpoint or sending a cor-
rupted message to another process [6], which in turn can 
result in extended downtimes [7].  

It is common practice for developers to write assertions 

in programs for detecting runtime errors [8]. However, 
assertions are often cumbersome to write, and they re-
quire considerable programmer effort and expertise to 
develop correctly.  Further, placing an assertion in the 
wrong place can hinder its detection capabilities [9]. As a 
result, programmer-written assertions (by themselves) are 
not very effective in providing high coverage of runtime 
errors [10]. 

Hiller et al. propose a technique to derive assertions in 
an embedded application based on the high-level beha-
vior of its signals [11]. They facilitate the insertion of as-
sertions by means of well-defined classes of signal pat-
terns. In a companion paper, they also describe how to 
place assertions by performing extensive fault-injection 
experiments [12]. However, this technique requires exten-
sive knowledge of the application. Further, performing 
fault-injection may be time-consuming and cumbersome 
for the developer. Therefore, it is desirable to develop an 
automated technique to derive and place detectors in ap-
plication code.  

Our goal is to devise detectors that preemptively detect 
errors impacting the application and to do so in an auto-
mated way without requiring programmer intervention 
or fault-injection into the system. In this paper, the term 
―detectors‖ refers to executable assertions used to detect 
runtime errors. The main contributions are as follows: 
1. Derivation of error detectors based on the dynamic 

execution traces of the application instrumented at 
strategic locations in the code; 

2. Introduction of rule-based templates that capture 
common patterns of the temporal behavior of va-
riables in an application; 

3. Development of a probability model for estimating 
detection coverage that can be used to guide the de-
rivation process to maximize detection coverage for a 
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given cost; and 
4. Synthesis of custom hardware (VHDL code) to im-

plement the derived detectors on Field Programma-
ble Gate Arrays (FPGAs) so that they can be executed 
in parallel with the application.  

The proposed methodology is applied to derive a set of 
detectors for several benchmark programs. Experimental 
evaluation of coverage is performed via random fault 
injection into application data when the application is 
executed on a hardware simulator. We also synthesize the 
detectors on FPGA hardware to measure the additional 
hardware resources and performance overheads incurred 
by the detectors. This paper builds upon the work in our 
earlier conference paper on this topic by comparing the 
coverage of the derived detectors with the highest cover-
age that can be obtained using detectors based on single 
data values (best-value detectors) [13]. The paper also 
compares the proposed technique with other techniques 
that have been published since our conference paper.  

The main results obtained from the study are: 
1. The derived detectors detect 50-75% of errors that 

manifest at the application level, when 100 detectors 
are placed in the application code (this corresponds 
to about 5% of a program’s assembly code, not in-
cluding libraries);  

2. Hardware implementation of the detectors results in 
a performance overhead of about 5%, with area and 
power overheads of about 15% and 5%, respectively;  

3. False positives (detectors flag an error when no error 
is present) are less than 2.5% when the training data 
constitutes 20% of the input sets used for testing; and 

4. The coverage achieved by the derived detectors is 
close to the coverage provided by the best-value de-
tectors (70 to 90% of manifested faults). 

2 APPROACH AND FAULT MODEL 

The derivation and implementation of the error detectors 
in hardware and software encompasses four main phases, 
as shown in Figure 1. 

 

The analysis phase identifies the program locations and 
variables for detector placement based on the Dynamic 
Dependence Graph (DDG) of the program. Fault-
injections are not required. We choose the locations for 
detector placement using the Fanouts heuristic [14]. The 
program code is then instrumented to record the values 
of the chosen variables at the locations selected for detec-
tor placement.  

The design phase uses the dynamic traces of recorded 
values over multiple executions of the application in or-
der to choose the best detector that matches the observed 
values for the variable, based on a set of predetermined 
generic detector classes (Section 3). The best detector is 
the one that maximizes detection coverage with the low-
est cost. This is defined in terms of a probability model. 

After this stage, the detectors can either be integrated 
into application code as software assertions or imple-
mented in hardware. In this paper, we consider a hard-
ware implementation of the derived detectors in order to 
minimize detection latency and performance overheads.  

The synthesis phase converts the generated assertions to 
a Hardware Description Language (HDL) representation 
that is synthesized in hardware. It also inserts special in-
structions in the application code to invoke and configure 
the hardware detectors. This is explained in Section 4.   

Finally, during the checking phase, the custom hard-
ware detectors are deployed in the system to provide 
low-overhead, concurrent run-time error detection for the 
application. When a detector detects a deviation from the 
application’s behavior learned during the design phase, it 
flags an error and halts the program. 

Note that the analysis and design phases are related to 
the derivation of the detectors, while the synthesis and 
checking phases are related to the implementation and 
deployment of the derived detectors, respectively. 

Fault Model. The fault model covers errors in the data 
values used in the program’s execution. This includes 
faults in: (1) the instruction stream, which result in the 
wrong op-code being executed or the wrong registers 
being read or written by the instruction, (2) the functional 
units of the processor, which can result in incorrect compu-
tations, (3) the instruction fetch and decode units, which can 
result in an incorrect instruction being fetched or de-
coded, and (4) the memory and data bus, which can cause 
wrong values to be fetched or written in memory and/or 
processor register file. Note that these errors would not 
be detected by techniques such as ECC (Error Correcting 
Codes) in memory, as they originate in the computation. 

It is important to understand that some of the faults 
mentioned above will fail to result in data value errors, in 
which case they will not be detected by the proposed 
technique. However, studies have shown that 60-70% of 
errors in the processor result in data value errors [15-16]. 

The fault-model also represents certain types of soft-

ware errors that result in data-value corruptions, such as: 
(1) synchronization errors or race conditions, which can 
result in corruptions of data values due to incorrect se-
quencing of operations, (2) memory corruption errors, 
e.g., buffer-overflows and dangling pointer references, 
which can cause arbitrary data values to be overwritten in 

Figure 1: Steps in detector derivation process 
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memory, and (3) the use of uninitialized or incorrectly 
initialized values, which can result in the use of unpre-
dictable values depending on the platform and environ-
ment. These errors often escape conventional testing and 
debugging techniques and manifest themselves in the 
field [17]. 

3 DERIVATION: ANALYSIS AND DESIGN  

In this paper, an error detector is an assertion based on the 
value of a single variable1 of the program at a specific 
location in its code. A detector for a variable is placed 
immediately after the instruction that writes to the varia-
ble. Since a detector is placed in the code, it is invoked 
each time the detector’s location is executed. An example 
code fragment is shown in Table 1. 

Table 1: Example code fragment 

void foo() { 

         int k = 0;   

         for (; k<N; k++) { 

       …. 

      } 

} 

 
In the example, assume that the detector placement me-

thodology has identified variable k as the critical variable 
to be checked within the loop. Although this example 
illustrates a simple loop, our technique is general and 
does not depend on the structure of the source program 
(or even require the program’s source code for the mat-
ter). Nevertheless, we show the source-level representa-
tion of the code for clarity. 

Variable k is initialized at the beginning of the loop and 
incremented by 1 within the loop. Within the loop, the 
value of k depends on its value in the previous iteration. 
Hence, the rule for k can be written as ―either the current 
value of k is zero, or it is greater than the previous value 
of k by 1.” We refer to the current value of the detector 
variable k as ki and the previous value as ki-1. Thus, the 
detector can be expressed as: (ki – ki-1 == 1) or (ki == 0). 

As seen from the example, a detector can be con-
structed for a target variable by observing the dynamic 
evolution of the variable over time. The detector consists 
of a rule describing the allowed values of the variable at 
the selected location in the program, and an exception 
condition to cover correct values that do not fall into the 
rule. If the detector rule fails, then the exception condition 
is checked, and if this also fails, the detector flags an er-
ror. Detector rules can belong to one of six generic classes 
and are parameterized for the variable checked. The rule 
classes are shown in Table 2. These rule classes are chosen 
based on observations about the behavior of program 
variables and are similar to those in Hiller et al. [11].  

The exception condition involves equality constraints 
on the current and previous values of the variable, as well 
as logical combinations (and, or) of two of these con-
straints. The equality constraints take the following 
forms: ai == d, where d is a constant parameter; ai-1== d, 

 

1 In this paper, a variable refers to any register, cache or memory location.  

where d is a constant parameter; and ai==ai-1. However, 
not all combinations of the above three clauses are logical-
ly consistent. For example, the exception condition (ai==1 
and ai==2) is logically inconsistent, as ai cannot take two 
different values at the same time. Of the 27 possible com-
binations of the clauses, only 8 are logically consistent. 
Hence, there are a total of 48 rule class, exception pairs 
that can be used to construct a detector for a particular 
location. 

For the example involving the loop index variable k, 
discussed in this section, the rule class is Constant-
Difference of 1, and the exception condition is (ki == 0).  

3.1 Dynamic Derivation of Detectors 

This section describes our overall methodology for auto-
matically deriving detectors based on the dynamic trace 
of values produced during the application’s execution. By 
automatic derivation, we mean determination of the rule 
and the exception condition for each variable targeted for 
error detection. The basic steps in the algorithm are:   
1. The program points for the placement of detectors 

(both variables and locations) are chosen based on 
the Dynamic Dependance Graph (DDG) of the pro-
gram as shown in prior work[14].  

2. The program is instrumented to record the run-time 
evolution of the values of the detector variables at 
their respective locations and executed over multiple 
inputs.  This obtains dynamic traces of the checked 
values. 

3. The dynamic traces of the values obtained are ana-
lyzed to choose a set of detectors (both rule class and 
exception condition) that match the observed values.  

4. A probabilistic model is applied to the set of chosen 
detectors to find the best detector for a given location. 
The best detector is characterized in terms of its 
tightness and execution cost (see next section). 

3.2 Detector Tightness and Execution Cost 

A qualitative notion of the tightness of a detector was first 
introduced in [18]. We define tightness in a quantitative 
sense as the conditional probability that the detector de-
tects an error, given that there is an error in the value of 
the variable that it checks. Note that this is not the same 
as the coverage, as the coverage of the detector is the prob-
ability that it detects an error given that there is an error 
in any value used in the program. Hence, in addition to 
tightness, coverage also depends on the probability that 
an error propagates to the detector’s variable.   

To characterize the tightness of a detector, we must 
consider both the rule and the exception condition, as the 
error will not be detected if either passes. Tightness also 
depends on the parameters of the detector and the proba-
bility distribution of the observed stream of data values in 
a fault-free execution of the program. For an incorrect 
value to go undetected, either the rule or the exception 
condition or both must evaluate to true. This can happen 
in four mutually exclusive ways, as shown in Table 3.  
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Table 2: Generic rule classes 

 
Table 3: Probability values for computing tightness 

Symbol Explanation 

P( R | R ) Probability that an error in a value that originally sa-
tisfied the rule (in a correct execution) also causes the 
incorrect value to satisfy the rule. 

P( R | X ) Probability that an error in a value that originally sa-
tisfied the exception condition (in a correct execution) 

causes the incorrect value to satisfy the rule. 

P( X | R ) Probability that an error in a value that originally sa-

tisfied the rule (in a correct execution) causes the in-
correct value to satisfy the exception condition. 

P( X | X ) Probability that an error in a value that originally sa-
tisfied the exception condition (in a correct execution) 
causes the incorrect value to satisfy the exception con-

dition. 

 
The tightness of a detector is defined as (1 – P(I)), 

where P(I) is the probability of an incorrect value passing 
undetected through the detector. This probability can be 
expressed using the terms in Table 3, as follows: 

 
P(I) =       P( R ) [ P( R | R ) + P( X | R ) ]  
 + P( X ) [ P( R | X) + P( X | X ) ]                                  (1) 

 
where P(R) is the probability of the value belonging to the 
rule, and P(X) is the probability of the value belonging to 
the exception condition, both of which are derived from 
the observed value stream on a per-application basis. 

The computation of tightness can be automated, since 
there are only a limited number of rule-exception pairs2. 
These probabilities can be precomputed as a function of 
the detector’s parameters as well as on the frequency of 
elements in the observed data stream for each rule-
exception pair. We do not list all the probabilities, but 
instead illustrate with an example. 

Example of Tightness Calculation. Consider a detector 
in which the rule expression belongs to the class Bounded-
Range with parameters min = 5 and max = 100, and the 
exception condition is of the form (ai==0).  We make the 
following assumptions about errors in the program: 
1. The distribution of errors in the detector variable is 

uniform across the range of all possible values the va-
riable can take for its type (say, N);  

2. An error in the current value of the variable is not 
affected by an error in the previous value of the vari-

 

2 There are 6 types of rule classes and 8 types of exception conditions, 
leading to a total of 48 rule-exception pairs. 

able; and  
3. Errors in one detector location are independent of 

errors in another detector location.  

These are optimistic assumptions, hence the estimation 
of tightness is an upper bound on the actual value of the 
detector’s tightness (and hence its coverage). Relaxing 
these assumptions may yield higher accuracy, but it re-
quires apriori knowledge of the application’s semantics 
and error behavior in the application, which cannot be 
obtained through dynamic analysis. 

Table 4 shows the precomputed probability values for 
this detector in terms of N and the detector’s parameters.  

 
Table 4: Probability values for computing tightness 
of detector “Bounded-Range (5, 100) except: (ai==0)”  

 
Substituting these probability values in equation (1):  

P(I) = P(R) [ 95/N + 1/N ] + P(X) [96/N + 0 ] 
 = (96/N)[ P(R) + P(X) ] = 96/N 

The above derivation uses the fact that P(R) + P(X) = 1, 
since the value must satisfy either the rule or the excep-
tion in an error-free execution, and since the two events 
are mutually exclusive. 

Consider a new detector in which the rule belongs to 
the Constant class (with parameter 5). Let us assume that 
the exception condition is the same as the old detector’s. 
For this new detector:  

P(R|R) = 0, P(R|X) = 1/N, 
P(X|X) = 0 and P(X|R) = 1/N 

Substitution of the above values in equation (1), yields 
the following expression for P(I): 

Class Name Generic Rule (ai , ai-1) Description 

Constant ( ai == c ) 
The value of the variable in the current invocation of the detector is a constant 

given by parameter c.  

Alternate 
(( ai == x /\ ai-1== y )) \/ ( ai == y 

/\ ai-1== x ) 
The values of the variable in the current and previous invocations of the de-

tector alternate between parameters x and y, respectively. 

Constant-Difference  ( ai - ai-1 == c ) 
The value of the variable in the current invocation of the detector differs from 

its value in the previous invocation by a constant c. 

Bounded-Difference ( min <= ai - ai-1 <= max ) 
The difference between the values of the variable in the previous and current 

invocations of the detector lies between min and max. 

Multi-Value ai є { x, y, … } 
The value of the variable in the current invocation of the detector is one of the 

set of values x, y, … 

Bounded-Range ( min <= ai  <= max ) 
The value of the variable in the current invocation of the detector lies between 

the parameters min and max. 

Symbol Value Explanation 

P (R | R) ( 95 / N ) Each rule value can turn into any 
of the other 95 rule values with 
equal probability. 

P (R | X) ( 96 / N )  An exception value can turn into 
one of 96 rule values with equal 

probability 

 P (X | R) ( 1 / N )  A rule value can incorrectly sa-

tisfy the exception condition if it 
turns into 0. 

P (X | X) 0 An exception value cannot 
change into another exception val-

ue, as there is only one value per-
mitted by the exception condition 
(in this example, the value is 0). 
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P(I)  = P(R) [ 0 + 1/N ] + P(X) [1/N + 0 ] 
        = (1/N)[ P(R) + P(X) ] = 1/N 

Note that the probability of missing an error in the first 
detector is 96 times the probability of missing an error in 
the second detector. The tightness of the first detector is 
correspondingly much less than the tightness of the 
second (which matches with our intuition). 

The above model is used only to compare the relative 
tightness of the detectors, not to compute the actual prob-
ability values, which may be very small. The range of 
values for the detector variable represented by the symbol 
N gets eliminated in the comparison among detectors for 
the same variable/location, and it does not influence the 
choice of the detector.  

Execution Cost. The execution cost of a detector is the 
amortized computation cost in executing the detector 
over multiple values observed at the detector point. The 
execution cost of a detector is calculated as the number of 
basic arithmetic and comparison operations executed in a 
single invocation of the detector, averaged over the entire 
lifetime of the program’s execution. An operation usually 
corresponds to a single arithmetic or logical operator.  
Note that the computation of the execution cost assumes 
an error-free execution of the program. 

For example, the detector considered above has two 
comparison operations for the rule and one comparison 
operation for the exception. Assume that the rule is satis-
fied 80% of the time, which implies that the exception 
condition is satisfied the remaining 20% of the time, i.e., 
80% of the data points in the trace satisfy the rule while 
20% satisfy the exception condition. Therefore, the total 
execution cost for the detector is (2 * 0.8 + 3 * 0.2 =) 2.2 
operations3. 

3.3 Detector Derivation Algorithm 

For each location identified by the detector placement 
analysis in [14], the detector derivation algorithm first 
chooses the rule class corresponding to the detector loca-
tion and then forms the associated exception condition. 
The algorithm attempts to maximize the tightness to ex-
ecution cost ratio for the detector. We refer to the evolu-
tion of a program variable over time as the stream of values 
for that variable. The steps in the algorithm are as follows: 
1. To derive the rule, each of the rule classes in Table 2 

is tried in sequence against the observed value stream 
to determine which rule classes satisfy the observed 
value stream. The parameters of the rule are learned 
from appropriate samples (for each rule class) from 
the observed stream. For the same location, it is poss-
ible to generate multiple rules that are considered 
candidates for exception derivation in the next step.   

2. For each rule derived in step 1, the associated excep-
tion condition is derived. Each value in the stream 
that does not satisfy the rule is used as a seed for ge-
nerating exception conditions for that rule (through 
exhaustive search among the exception conditions). If 
it is not possible to derive an exception condition for 

 

3When a detector is invoked, the rule is checked first, and only if it fails 
is the exception condition checked for the value. 

the observed value according to the conditions in Sec-
tion 3, the current rule is discarded and the next rule 
is tried from the set of rules derived in step 2.  

3. For each rule-exception pair generated, the tightness 
and execution cost of the detector are calculated. The 
detector with the highest tightness to execution cost 
ratio is chosen as the final detector for that location 
and exported to a text file for synthesis to hardware. 

The time complexity of the above algorithm is directly 
dependent on the number of values observed at each de-
tector location (say m), the number of detector locations 
considered in the application (say n), and the number of 
streams or inputs on which the algorithm is trained (say 
k). The time also depends on the number of rules and ex-
ception classes, both of which are constants. Therefore, 
the overall time complexity of the algorithm is given by 
O(m * n * k). 

4 DEPLOYMENT:  SYNTHESIS AND HARDWARE 

IMPLEMENTATION 

This section discusses the hardware implementation of 
the detectors derived using the algorithm in Section 5, 
and it can be skipped if the reader is not interested in the 
hardware details. 

In this paper, we discuss the hardware implementation 
of the derived error detectors in the context of the Relia-
bility and Security Engine (RSE) framework [19]. The RSE 
is a reconfigurable, processor-level framework that pro-
vides reliability and security functions according to the 
requirements and characteristics of the application. The 
RSE Framework consists of RSE modules, which provide 
the reliability and security services, and the RSE Interface, 
which provides a standard, well-defined and extensible 
interface between the modules and the main processor 
pipeline. The interface collects the intermediate pipeline 
signals and converts it to a generic format that can be 
used by the RSE modules for error and attack detection. 
The application interfaces with the RSE modules using 
special instructions called CHECK instructions.  

In this paper, we consider a simple DLX processor [20] 
augmented with the RSE. The DLX is a RISC processor 
with a five-stage pipeline with in-order issue but out-of-
order execution. The detectors are implemented as a sep-
arate module of the RSE called the Error Detector Module 
(EDM). The detectors are configured into the EDM at ap-
plication-load time and are invoked from the application 
using CHECK instructions. 

4.1 Synthesis of Error Detector Module 

The output of the detector derivation algorithm in Section 
3.3 is a list of detectors in the program. This list is used to 
synthesize hardware checkers that implement the derived 
detectors in the EDM. The application is instrumented 

with CHECK instructions to invoke the hardware check-
ers, and the EDM is generated using the synthesized 
hardware checkers. These two steps are carried out at 
compile time through an automated design flow, illu-
strated in Figure 2. 
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Figure 2: Design flow to instrument application and 
generate the EDM from the list of detectors 

Figure 2 shows the automated design flow from the 
application code to the hardware. Given the application 
code (in the form of assembly code), the design flow pro-
duces the instrumented application code and the hard-
ware description of the EDM tailored for the target appli-
cation. The target processor description (a DLX-like proces-
sor in the current implementation) and the configuration 
information are provided as parameters to the design flow. 
These are used to extract, from the main pipeline of the 
processor, the signals needed by the EDM for performing 
error detection. The output of the Error Detector Module 
generation phase in Figure 2 is a Virtual Hardware De-
scription Language (VHDL) representation, which is in 
turn used by the synthesis phase to instantiate the various 
hardware components considered in Section 6.  

Each detector in the list of detectors derived in the de-
sign phases is characterized by the following attributes: 
(1) location of the detector in terms of the Program Coun-
ter (PC) value at which it is to be invoked, (2) processor 
registers that must be checked by the detector, and (3) 
detector class and exception parameters. Figure 3 shows 
the format of each detector, which consists of six words.  
 

PC 

Rule Class Exception  

Cl
ass 

Re
gis

ter 

Pa-
ram

1 

Pa-
ram

2 

Op

era
tor 
 

Cl
ass

1 

Cl
ass

2 

Pa-
ram

1  

Pa-
ram

2 

32 
bit 

3 
bit 

5 
bit 

32 
bit 

32 
bit 

2 
bit  

2 
bit 

2 
bit 

32 
bit 

32 
bit 

Figure 3: Format of detector and bit width 

In our current deployment, the application is 
represented as assembly code. The header of the assembly 
file is instrumented with special instructions to load the 
detectors of the application into the EDM. Each of these 
instructions loads a single 32-bit value, and since each 
detector consists of six words, we need six instructions 
per detector to perform the loading. However, these in-
structions are executed only once during the lifetime of 
the application. The application code is also instrumented 
with CHECK instructions to invoke the detectors during 
its execution. 

4.2 Structure of Error Detector Module 

Figure 4 shows the overall architecture of the Error Detec-
tor Module (EDM). As mentioned before, the EDM is im-
plemented as a module in the Reliability and Security 
Engine (RSE). As shown in the figure, the RSE interface 
extracts signals of interest from the processor’s pipeline 
and conveys this information to the EDM for use in detec-
tion.  The main components of the EDM are as follows: 

The Shadow Register File (SRF) keeps track of current 
and last values of the microprocessor’s registers checked 
by the detectors (i.e., ai and ai-1, where a can be any archi-
tectural register). This component delivers the required 
values ai and ai-1 when a detector is executed (based on the 
detector’s rule and exception condition). When a new 
value regValue is written at time i by the processor in reg-
ister R of the processor file (based on the value regSel), a 
copy of the new value Ri is stored in the SRF. The old val-
ue Ri-1 is also retained. Since not all the registers of the 
processor architecture have to be checked by the detec-
tors, a mapping between the physical addresses of the 
microprocessor registers and the logical addresses of the 
corresponding registers in the SRF is kept in a hardware 
structure named Phys2Log.  

The Detector Table stores the information needed to ex-
ecute a detector. The size of the table is directly propor-
tional to the number of detectors needed by an applica-
tion. It consists of comparators for checking the current 
PC against the PCs of the detectors and triggering them if 
necessary and a Random Access Memory (RAM) for stor-
ing the parameters of rules and exceptions. When a detec-
tor is triggered by the current PC, the Detector Table first 
selects the register R that has to be checked from the SRF, 
which in turn forces the values Ri-1 and Ri-1 to be placed on 
the dual data-path buses. It then activates the Rule and 
Exception Checkers to perform the computations asso-
ciated with the detector. If the computations fail, the Error 
Signal Computation flags the Violation Detection signal. 

Rule and Exception Checkers are the actual data-paths 
used to carry out the computation of the detector rules 
and exception conditions. A number of checker compo-
nents are instantiated to perform the required computa-
tions according to the rule classes and exceptions needed 
by an application. Note that the number of checkers in-
stantiated is equal to the number of detector classes and 
exceptions (at most 48) rather than to the number of de-
tectors inserted in an application.  

5 EXPERIMENTAL EVALUATION 

This section describes the experimental infrastructure and 
application workload used to evaluate the coverage and 
overheads of the derived detectors.  We use fault-injection 
on the application executed to completion in a processor 
simulator to evaluate the coverage of the derived detec-
tors. We implement the detectors on Field Programmable 
Gate Array (FPGA) hardware to evaluate their perfor-
mance and area overheads.  
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Figure 4: Architectural diagram of synthesized processor 

5.1 Application Programs 

The system is evaluated with six of seven programs 
from the Siemens suite [21]  of programs (Table 5). These 
programs are equipped with extensive test suites.  

Table 5: Benchmark Programs 
Benchmark  Description 

Replace Searches a text file for a regular expression 

and replaces the expression with a string 

Schedule, Schedule2 A priority scheduler for multiple job tasks 

Print_tokens, 

Print_tokens2 

Breaks the input stream into a series of lexi-

cal tokens according to pre-specified rules 

Tot_info Offers a series of data analysis functions 

 

5.2 Infrastructure 

The tracings of the application’s execution and the fault-
injections are performed using a functional simulator in 
the SimpleScalar family of processor simulators [22]. The 
simulator allows fine-grained tracing of the application 
without modifying the application code and provides a 
virtual sandbox in which to execute the application and 
study its behavior under faults.  

We modified the simulator to track dependencies 
among data values in both registers and memory by sha-
dowing each register/location with four extra bytes (in-
visible to the application) that store a unique tag for that 
location. For each instruction executed by the application, 
the simulator prints (to the trace file) the tag of the in-
struction’s operands and the tag of the resulting value.  
The trace file is analyzed offline by specialized scripts to 
construct the DDG and compute the metrics for placing 
detectors in the code as described in our prior work [14].  

The effectiveness of the detectors is assessed using fault 
injection. Fault locations are specified randomly from the 
dynamic set of tags produced in the program. In this 
mode, the tags are tracked by the simulator, but the ex-
ecuted instructions are not written to the trace file. When 
the current instruction’s tag value equals the value of a 
specified fault location, a random bit is flipped in the val-
ue produced by the current instruction. 

Once a fault is injected, the execution sequence is moni-
tored to see if a detector location is reached. If so, the val-
ue at the detector location is written to a file for offline 
comparison with the derived detectors for the applica-
tion. This process is continued until the application ends. 
Note that only a single fault is injected in each execution 
of the application. This is because a transient fault is like-
ly to occur at most once during an execution. 

Since the simulator does not model the operating sys-
tem or other aspects of a real system, such as virtual 
memory management, we modified the simulator to more 
accurately represent real-world counterparts. This is done 
by translating the errors detected by the simulator to their 
corresponding real-world consequence using the map-
ping in Table 6. The simulator has been calibrated by in-
jecting faults in the real system and comparing it to the 
simulated system [14]. 

Table 6: Types of errors detected by simulator and 
their real-world consequences 
Type of 
Error  

Consequence  Simulator Detection 
Mechanism 

Invalid 

Memory 
Access 

Crash (SIGSEGV) Consistency checks on ad-

dress range 

Memory 
alignment 

Error 

Crash ( SIGBUS) Check on memory address 
alignment 

Divide-by-

Zero 

Crash (SIGFPE) Check before divide opera-

tion 

Integer 

Overflow 

Crash (SIGFPE) Check after every integer 

operation 

Illegal In-
struction 

Crash (SIGILL) Check instruction validity 
before decoding 

System Call 
Error 

Crash (SIGSYS) None, as simulator executes 
system calls on behalf of ap-

plication 

Infinite 

Loops 

Program Hang 

(live-lock) 

Program executes of double 

the number of instructions in 
the golden run 

Indefinite 
Wait  

Program Hang 
(deadlock) 

Program execution takes five 
times more time than the 

golden run 

Incorrect 
Output 

Fail-Silent Viola-
tion 

Compare outputs at the end 
of the run 
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5.3 Experimental Procedure 

The experiment is divided into four parts: 
1. Placement of detectors and instrumentation of code. 

The dynamic instruction trace of the program is ob-
tained from the simulator and the Dynamic Depen-
dence Graph (DDG) is constructed from the trace. 
The detector placement points (both variables and lo-
cations) are chosen based on the technique described 
in [14]. For each application, up to 100 detector points 
are chosen by the analysis, which corresponds to less 
than 5% of static instructions in the assembly code of 
the benchmark programs (excluding libraries). 

2. Deriving the detectors based on training set. The 
simulator records the values of the selected variables 
at the detector locations for representative inputs. 
The dynamic values obtained are used to derive the 
detectors based on the algorithm in Section 3.1. The 
training set consists of 200 inputs, which are random-
ly sampled from a test suite consisting of 1000 inputs 
for each program. These test suites are provided as 
part of the Siemens benchmark suite [21]. 

3. Fault-injections and coverage estimation. Fault-
injection experiments are performed by flipping sin-
gle bits in data-values chosen at random from the set 
of all data values produced during the course of the 
program’s execution. After injecting the fault, the da-
ta values at the detector locations are recorded and 
the outcome of the simulated program is classified as 
a crash, hang, fail-silent violation, or success (benign). 
The values recorded at the detector locations are then 
checked offline by the derived detectors to assess 
their coverage. The coverage of a detector is ex-
pressed in terms of the type of program outcome it 
detects, e.g., a detector is said to detect a program 
crash if the program would have crashed had the de-
tector not detected the error.  In case the detector 
does not detect the error at all, its coverage is counted 
as zero for all four outcome categories. 

4. Computation of false positives. The application code 
instrumented with the derived detectors is executed 
for all 1000 inputs, including the 200 that were used 
for training. No faults are injected in these runs. If a 
detector detects an error, then that input is consi-
dered a false positive, as there was no injected error 
but an alarm was raised. We assume that there are no 
residual errors in the test suite used for training. 

For the fault-injection experiments, each application is 
executed with over 10 inputs chosen at random from 
those used in the training phase. For each input, 1000 lo-
cations are chosen at random from the data values pro-
duced by the application. A fault-injection run consists of 
a single bit-flip (chosen at random) in the one of the 1000 
locations. We perform 5 runs for each application-input 
combination, which corresponds to a total of 50,000 fault-
injection runs per application. 

6 RESULTS 

This section presents the results of the evaluation per-
formed in Section 5. 

6.1 Detection Coverage of Derived Detectors 

The coverage of the detectors derived using the algorithm 
in Section 3.1 is evaluated using fault-injections. Figure 5, 
Figure 6, and Figure 7 show the coverage for crashes, fail- 
silence violations (FSVs) and hangs obtained for the target 
applications (expressed as percentages) as a function of 
the number of detectors placed in each application, rang-
ing from 1 to 100. The following trends may be observed 
from Figure 5, Figure 6, and Figure 7. The coverage for 
each type of failure increases as the number of detectors 
increases, but less than linearly, as there is an overlap 
among the errors detected by the detectors. Further, the 
individual error coverage of the derived detectors de-
pends on the type of failure (crash, FSV, hang) detected 
and the application. In general, crashes exhibit the highest 
coverage, followed by FSVs and hangs.  

 
Figure 5: Crash coverage of derived detectors 

 

 
Figure 6: FSV coverage of derived detectors 
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Figure 7: Hang coverage of derived detectors 

 

 
Figure 8: Total coverage of derived detectors 

Table 7: Range of detection coverage for 100 detectors 
Type of Failure Minimum Coverage Maximum Coverage 

Program Crash 45% (print_tokens) 65% (tot_info) 

Fail-Silent Violation (FSV) 25% (schedule2) 75% (tot_info) 

Program Hang 0% (print_tokens2) 55% (replace) 

Program Failures 50% (replace, schedule2, print_tokens, tot_info) 75% (schedule, print_tokens2) 

Figure 8 shows the percentage of total manifested er-
rors (crash, hang, and FSV) detected by the derived detec-
tors. This is obtained by weighing the detection coverage 
for the individual failure categories (in Figure 5, Figure 6, 
and Figure 7) with the fraction of observed errors that 
result in the failure category (not shown in the figures). 
The coverage obtained for each type of failure when 100 
detectors are placed in each the application is summa-
rized in Table 7. The derived detectors can detect 50- 75% 
of the errors that manifest in the application. This is be-
cause the majority of errors that manifest in an applica-
tion result in crashes (70-75%) and the rest in fail-silent 
violations (20-30%) and hangs (0-5%). Hence the coverage 
for the total manifested errors is dominated by crashes. 

The results for coverage correspond to errors that occur 
in any data value used within the program, not just for 
errors that occur in the data values checked by the detec-
tor. For example, if even a single bit-flip occurs in a single 
instance of any data value used in the program and this 
error results in a program crash, hang, or fail-silence vi-
olation, then one of the 100 detectors placed in the pro-
gram will detect the error 50-75% of the time. As men-
tioned in Section 5.1, 100 detectors correspond to less than 
5% of program locations in the program’s assembly code, 
not including library functions. 

6.2 False Positives 

False positives can occur when a detector flags an error 
even if there is no error in the application. A false positive 
for an input can occur when the values at the detector 
points for the input do not obey either the detector’s rule 
or the exception condition learned from the training in-
puts. This occurs if the training set is not comprehensive 
enough, i.e., it does not cover all the values that may be 
exhibited by a variable checked by a detector.  

The training set for learning the detectors consists of 
200 inputs, and the false positives are computed across 

1000 inputs for each application. No faults were injected 
in these runs. Therefore, any alarm raised by the detectors 
for any of the 1000 inputs is a false positive.  If even a sin-
gle detector detects an error for a particular input, then the 
entire input is treated as a false positive, even if no other detec-
tor detects an error for the input. 

Figure 9 presents the percentage of false positives for 
each of the target applications as a function of the number 
of detectors placed in the program. Across all applica-
tions, the false positives are no more than 2.5% when 100 
detectors are placed in the program. For the replace, sche-
dule2, print_tokens, and print_tokens2 applications, the false 
positives are observed in less than 1% of the inputs, while 
for the schedule and tot_info applications, the false posi-
tives are observed in about 2% of the inputs. While the 
number of false positives increases as the number of de-
tectors increases, it reaches a plateau as the number of 
detectors is increased beyond 50. This is because a false 
positive input is likely to trigger multiple detectors once 
the number of detectors passes a certain critical threshold 
(which occurs at around 50 detectors in the benchmark 
programs). However, no such plateau was reached for the 
coverage results in Figure 8, even up to 100 detectors.   

Effect of False Positives. When a detector raises an 
alarm, we need to determine whether an error was really 
present or whether it is a false positive. If the error was 
caused by a transient fault (as we assume in this paper), 
then it is likely to be wiped out when the program is re-
executed. If, on the other hand, the detection was a false 
positive and hence a characteristic of the input given to 
the program, the detector will raise an alarm again during 
re-execution. In this case, the alarm can be ignored, and 
the program be allowed to continue. Thus, the impact of a 
false positive is essentially a loss in performance due to 
re-execution overhead.  Since the percentage of false posi-
tives is less than 2.5%, the re-execution overhead is small. 
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Figure 9: Percentage of false positives for 1000 inputs  

 
Note that rollback recovery or re-execution may not 

always be possible in certain systems. For example, in 
real-time systems, re-execution can lead to missed dead-
lines, and in distributed systems, it may trigger system-

wide rollback. In such systems, false positives may cause 
an impact that goes beyond loss of performance, for ex-
ample, violations of specifications. Recovery techniques 
are outside the scope of this study, hence we assume that 
rollback recovery is both feasible and results in only a 
(modest) performance overhead. Similar assumptions 
have been made by prior work [23]. 

6.3 Effect of Training Set Size  

The results reported in Section 6.1 and 6.2 for coverage 
and false positives of the derived detectors used a train-
ing set of 200 inputs from a total of 1000 inputs for each 
application. In this section, we consider the effects of va-
rying the size of the training set from 100 inputs to 300 
inputs. In these experiments, the number of detectors in 
each application is fixed at 100, and the coverages for dif-
ferent kinds of failures and false positives are evaluated 
for each application. The results are shown in Figure 10, 
Figure 11, Figure 12, and Figure 13. 

 

 
Figure 10: Crash coverage for different training 
set sizes 

 
Figure 11: FSV coverage for different training set siz-
es 

 
Figure 12: Hang coverage for different training set 
sizes 

 
Figure 13: False positives for different training set 
sizes 

The results from the graphs are: 
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 The false positives decrease from 5% to 2% as the 
training set size is increased from 100 inputs to 200 
inputs, and to less than 1% for 300 inputs across all 
programs except tot_info (for which the false positives 
are 1.5% for 300 inputs). 

 The coverages for crashes and hangs remain constant 
as the training set size increases for all applications 
(Figure 8, Figure 10), except in the case of tot_info, 
where the coverage first decreases from 100 to 200 
inputs and then remains constant from 200 to 300 in-
puts (for crashes and hangs). 

 The coverage for fail-silent violations decreases mar-
ginally as the size of the training set increases from 
100 inputs to 300 inputs (Figure 9). This decrease in 
fail-silent violations is less than 2% for all applica-
tions except tot_info (5%).  

Therefore, increasing the training set size from 100 to 
200 inputs decreases the false positives significantly, 
while increasing it from 200 to 300 inputs does not have 
as large an impact on false positives. However, the impact 
on the detection coverage from increasing the training set 
size is minimal. This suggests that the detectors, once 
learned, are relatively stable across different inputs, and 
that their detection capabilities are not affected by the 
input beyond a certain number of training inputs (200). 

Note that different training set sizes may also influence 
the code coverage achieved. In our experiments, the test 
suites had sufficiently high code coverage that this was 
not a major issue. However, it is possible in other applica-
tions that some test suites have lower code coverage than 
others, which may reduce their error detection coverage.  
In such cases, care must be taken to ensure that training 
sets have approximately similar code coverage.  

Another consequence of choosing different training set 
sizes is that it introduces differences in the execution time 
of the detectors. We found such differences to be margin-
al in terms of the overall execution time of the program. 
Nonetheless, this is a potential issue in some applications. 

6.4 Comparison with Best-Value Detectors 

As seen in Section 6.1, the derived detectors detect 
about 45-65% of crashes, 25-80% of fail-silent violations, 
and 0-55% of hangs in a program. This section investi-
gates why the remaining errors are not detected and how 
the detectors can be improved.  To form the basis of the 
discussion, we consider a hypothetical detector that keeps 
track of the entire history of data values observed at a 
detector location and uses this knowledge to flag an error. 
We call this a best-value detector, as it represents the max-
imum coverage that can be obtained by a single value-
based detector (including one written by a programmer). 
This section represents the main contribution of this paper over 
and above our previous work [13].  

The best-value detector may not be achievable in prac-
tice, as in addition to requiring enormous space and time 
overheads (to store the entire history of values), it as-
sumes apriori knowledge of all possible inputs to the 
program. Nonetheless, the coverage of the best-value de-
tector provides an upper bound on the coverage that can 
be obtained with data-value based detectors, such as the 

detectors considered in this paper. Further, it provides 
insights into improving the coverage of the derived detec-
tors, which is the main motivation for this study. 

We build the best-value detector by executing the pro-
gram under a specific set of inputs and storing the entire 
sequence of values observed at each location at which a 
detector is placed. This fault-free execution is referred to 
as the golden run of the program. Faults are injected into 
the program, and the values of the detector locations are 
recorded. An offline post-processing phase compares 
each value at the detector location with the value record-
ed in the golden run. If the program completed execution 
under the fault, the entire value sequence is compared 
and any deviation is reported as a successful detection. If 
the program crashes (hangs), only mismatches in the val-
ues that were recorded before the crash (hang) are re-
ported as detections. 

In this study, the number of detectors in the program is 
fixed at 100, which is the maximum number of detectors 
considered in the previous studies (Section 6.1 and 0). For 
each application, both the best-value detectors and the 
derived detectors are placed at the same variables and 
locations. For fault-injection, the program is executed un-
der the same set of inputs (10 in this study) that were 
used to derive the best-value detectors. The same set of 
faults is injected for evaluating both the best-value detec-
tors and the derived detectors.  

Figures 14 through 17 show the coverage obtained with 
the best value detectors for crashes, fail-silent violations, 
and hangs. The corresponding coverage obtained by the 
derived detectors (for 100 detectors) is also shown in the 
graphs for ease of comparison.  

The results of the comparison are as follows: 
Crashes. Compared to the best-value detectors, the de-

rived detectors detect between 75% (replace) and 100% 
(schedule2, print_tokens2) of errors that result in crashes 
(Figure 14) 

FSVs. Compared to the best-value detectors, the de-
rived detectors detect between 40% (print_tokens2) and 
85% (tot_info) errors that result in fail-silent violations 
(Figure 15). 

Hangs. Compared to the best-value detectors, the de-
rived detectors detect between 50% (tot_info) and 100% 
(schedule2, print_tokens2) for program hangs (Figure 16). 

Note that the best-value detectors do not obtain 100% 
coverage for any of the failure categories. This is because 
they are placed only at critical variables in the applica-
tion, and not all errors in the application may propagate 
to the critical variable. Further, the best-value detectors 
do not include timing information, hence they may not 
detect changes in the control-flow of the application un-
less there is a corresponding change in the application’s 
data values. This is the main difference between the best-
value detectors and the ideal detectors introduced in our 
earlier study [14], which keep track of both data and tim-
ing information to detect errors. The ideal detectors 
achieved coverage of between 90% and 100% when 100 
detectors were placed in the program. We do not consider 
ideal detectors in this paper. 
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Figure 14: Comparison between best-value detectors and derived detectors for crashes 

 
Figure 15: Comparison between best-value detectors and derived detectors for FSV 

 
Figure 16: Comparison between best-value detectors and derived detectors for hangs 

 

 
Figure 17: Comparison between best-value detectors and derived detectors for manifested errors 
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Figure 17 shows the coverage obtained by the derived 
detectors vis-à-vis the best-value detectors for all mani-
fested errors in the application. The derived detectors 
achieve between 70% (replace) and 90% (print_tokens2) of 
the coverage provided by the best-value detectors. The 
overall coverage is high because the total number of ma-
nifested errors is dominated by crashes, for which the 
derived detectors obtain high coverage relative to the 
best-value detectors. This is because crashes are often 
caused by egregious corruptions of data values, which are 
easily detected by the derived detectors.  

However, derived detector coverage for Fail-Silent Vi-
olations (FSVs) is not as high as the corresponding cover-
age of the best-value detectors. This is because subtle vi-
olations in data values may not be detected easily by the 
derived detectors. The best-value detectors are tailored 
for each input (based on the golden run of the application 
for the input) and hence have 100% knowledge of the ap-
plication’s data values for that input. In contrast, the de-
rived detectors should be general across inputs, otherwise 
they will incur false positives. This suggests that FSVs are 
caused by corruptions in data values that are invalid for 
the given input but may be valid for a different input. 
Since the derived detectors are not input-specific, they 
have no way of distinguishing an incorrect value from the 
correct value. Therefore one way of improving the cover-
age of derived detectors with respect to FSVs is to make 
them input-specific. This is an avenue for future work. 

Finally, the coverage of the best-value detectors for 
hangs exhibits wide variation across applications. As 
mentioned earlier, hangs are often caused by changes in 
the control-flow of the application, which is not detected 
by either the best-value detector or the derived detector 
(unless it causes a data error). As a result, the best-value 
detectors exhibit high levels of hang coverage only for 
those applications in which the control-flow is highly de-
pendent on its data values (e.g., replace and schedule). 
This can be remedied by including control-flow or timing 
information in the detectors, a direction for future work. 

6.5 Hardware Implementation Results 

The proposed design of the DLX processor, the RSE Inter-
face, and the Error Detector Modules for different appli-
cations were synthesized using Xilinx ISE 7.1 tools target-
ing a Xilinx Virtex-E FPGA. The Xilinx Virtex series of 
FPGAs consists mainly of several types of logic cells: (1) 
4-input Look-Up Tables (LUTs) statically programmed 
during the bootstrap with the configuration bit-stream, 
(2) flip-flops (FFs), storage elements in the user visible 
system state, and (3) Block RAM (BRAMs), which are 
memory blocks that can store up to 4096 bits. Four LUTs 
and four FFs compose a logic unit called Slice.  

Area and Clock Period Overhead. Table 8 reports the 
synthesis results in terms of area (i.e., FFs, LUTs, BRAMs, 
and total Slices) and minimum clock frequency, for the 
unmodified DLX processor and the complete RSE Inter-
face. It can be observed that the RSE interface has an area 
overhead of 14.9% over the unmodified DLX processor 
and a negligible impact on its clock period. 

Table 9 shows the synthesis results in terms of area and 

minimum clock period for each of the benchmarks consi-
dered in Section 5.1.  The benchmark name is shown in 
the first column, and the number of (unique) detectors 
synthesized for the program is shown in the second col-
umn. The third, fourth, and fifth columns report the 
number of flip-flops, the number of BRAMs, and the 
number of LUTs respectively. Column 6 reports the num-
ber of slices, while column 7 reports the maximum clock 
period achieved during synthesis. Finally, columns 8 and 
9 report the overheads of the EDM in terms of the percen-
tage of extra slices, with and without the RSE. 
  
Table 8: Area and timing results for the DLX proces-

sor and the RSE Framework 

 FFs LUTs BRAMs Slices 
Clock 

Period (ns) 

DLX processor 4873 16395 0 9526 58.8 

RSE Interface 2465 2329 0 1420 2.01 

The results for the area overheads in Table 9 are that the 
number of slices required for the implementation of the 
EDM ranges is between 2685 and 2911 and that the num-
ber of additional BRAMs required is 9.  

Performance Overhead. The performance overhead in-
curred due to the extra hardware is calculated as: 

Overhead = [ (Total clock cycles + Extra clock cycles) *  

(Twith EDM – T without EDM ) ]  / (Total Clock Cycles * Twithout EDM) 

where Twith EDM and Twithout EDM are the clock cycle times 
with and without the EDM respectively, and Extra clock 
cycles is the number of additional clock cycles to execute 
the code instrumented with the CHECK instructions. 

Due to space constraints, we only report results for the 
benchmark with the highest overheads, namely schedule2. 
For this program, The number of extra clock cycles is 594, 
while the total number of clock cycles is nearly 1 million 
(the exact value does not matter in the above calculation), 
T with EDM is 58.82 ns and Twithout EDM is 55.55 ns. Using the 
above formula, the total performance overhead is 5.6%. 

We obtain such a low overhead because (1) the 
detectors are executed by the EDM concurrently with the 
application within a few cycles, hence the latency of the 
detectors’ execution may be overlapped with the 
execution of the application, and (2) the clock period of 
the superscalar DLX processor is only marginally 
impacted by the RSE interface and the EDM. 

7 RELATED WORK 

Broadly, error detection techniques can be classified 
based on two criteria: (1) how detectors are derived (static 
or dynamic) and (2) how checking is performed (static or 
dynamic).  These lead to 4 categories of detectors that 
span the spectrum of purely static techniques [1-2, 4, 24] 
to purely dynamic techniques [25-26].  This categorization 
also includes hybrid techniques in which the detectors are 
derived statically and checked dynamically [10-11, 27] 
and those in which the detectors are derived dynamically 
but checked statically (for example, DAIKON [3]). These 
techniques are described in further detail in Table 10. 
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Table 9: Area and timing overheads across benchmarks 

Benchmark 
Name 

Number 

of Unique 
Detectors 

FFs BRAMs LUTs Slices 
Clock Pe-
riod [ns] 

EDM Slice 
Overhead [%] 

EDM + RSE Inter-

face Slice Over-
head [%] 

tot_info 91 2913 9 5174 2685 20.7 28.2 43.1 

replace2 91 2913 9 5176 2686 21.6 28.2 43.1 

print_tokens 98 3169 9 5575 2876 19.7 30.2 45.1 

print_tokens2 98 3169 9 5578 2875 21.1 30.2 45.1 

schedule 98 3169 9 5578 2875 20.4 30.2 45.1 

schedule2 99 3201 9 5626 2911 19.9 30.6 45.5 

 
Table 10: Related techniques 

Technique Description Comments 

Prefix [1] 
Uses symbolic execution through selected paths 
in a program to find known kinds of errors (e.g., 

NULL pointer dereferences). 

1. Requires programmer to write annotations in the source code.  

2. Has high false positive rate due to infeasible paths. 

C-Cured 

[24] 

Verifies that pointers do not write outside their 
intended memory objects, thereby ensuring 
memory safety. 

1. Protects only against errors that violate memory safety – does 

not protect computation errors.  
2. Does not handle hardware errors or errors originating in unve-
rified code. 

 

LCLINT [2] 

Checks whether a program conforms to its speci-

fication and whether it adheres to predefined 
programming rules. 

1. Requires programmer to provide specifications or write annota-

tions in code. 
2. Finds only errors that violate the predefined rules. 

Engler et al. 

[4] 

Analyzes source files to find application-specific 
programming patterns and identifies violations 

of the patterns as bugs. 

1. May incur false positives i.e., the violation of the pattern may 
not necessarily be a bug.  

2. Does not handle runtime errors or hardware faults. 

DAIKON 
[3] 

Infers invariants from the dynamic execution of 
program based on representative inputs. 

1. Does not take placement of detectors into account - program 

may crash before the execution reaches the detector location.  
2. Requires programmer to interpret the invariants and locate 
bugs and filter out false-invariants. 

Voas et al.   
[27] 

Considers a general methodology to embed de-
tectors in programs to detect errors. Characteriz-

es properties of good detectors.  

1.  Does not consider how to derive the detectors. 
2. Detector placement methodology relies heavily on program-

mer’s knowledge of application. 

Rela et al. 
[10]  

Evaluates the coverage provided by existing 

assertions in a program vis-à-vis control-flow 
error detection techniques or algorithm-based, 

fault-tolerance techniques. 

Does not consider deriving or embedding assertions in a program. 

Assumes that assertions have already been inserted by program-
mer during program development (for debugging). 

 

Hiller et al. 

[11] 

Places error detectors in an embedded system to 

detect data errors. Considers different classes of 
detectors based on properties of the signals in an 
embedded system, and the detectors are placed 

in the system to maximize the coverage. 

1. Programmer needs to specify class and parameters of each de-
tector - detector derivation is not automated. 

2. Detector placement is based on extensive fault-injections, which 
are time-consuming and effort-intensive. 

DIDUCE 
[25] 

Uses software anomaly detection to locate corner 

cases and find bugs. Formulates strict hypothesis 
about program behavior in the beginning of the 

execution and gradually relaxes the assumptions 
as program executes to learn new behavior. 

1. Program may crash before reaching detector point, and the 

error will not be detected or may skip detection. 
2. Does not address errors that occur when the invariants are be-
ing learned (at the beginning of program execution). 

Maxion et 

al. [26] 

Characterizes the generic space of anomaly de-

tectors for embedded applications.  

Does not define specific types of error detectors or explain how 
they are derived from the application. 
 

 
The work closest to ours is Hiller et al. [11], which ma-

nually derives detectors for an embedded system using 
rule-based templates. They obtain detection coverage of 
about 80% with 7 assertions for (random) errors that 
cause failure in their embedded system application. 
However, in their study, about 2000 errors are injected 
into the system during a short period of 40 seconds, and if 
one of their executable assertions detects one of the errors 
in this period, it is considered a successful detection. In 
contrast, we inject only a single error in each run. Further, 7 
out of 24 signals are targeted for detection in the embed-

ded system considered in [11], which corresponds to 
about 30% of the system. In comparison, we place detec-
tors in only 5% of the application code. 

In earlier work [13], we outlined a methodology to de-
rive error detectors automatically based on dynamic ex-
ecution traces of a program. The main difference between 
that paper and this one is Section 6.4, which compares the 
coverage provided by the derived error detectors with 
that provided by the best-value detectors. The compari-
son provides valuable insights into what errors are 
missed by the detectors and how to improve detector 
coverage.   
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Since we published the work in [13], three papers have 
been published based on the idea of using dynamically 
derived program invariants for runtime error detection 
[28-30]. These papers use online or offline profiling of the 
program to derive value-based invariants and use special 
hardware to check them at runtime. The Appendix dis-
cusses the differences between these papers and ours. 

8 CONCLUSIONS 

This paper proposed a novel technique for preventing a 
wide range of data errors from corrupting the execution 
of an application. This technique consists of an automated 
methodology to derive fine-grained, application-specific 
error detectors using an algorithm based on dynamic 
traces of application execution. A set of error detector 
classes, parameters, and locations, were derived in order 
to maximize the error detection coverage for a target ap-
plication. The paper also presented an automatic frame-
work for synthesizing the detectors in hardware to ensure 
low-latency, concurrent error detection. The coverage of 
the derived detectors was evaluated using fault-injections 
and found to be about 50-75% for failure-causing errors. 
The area and performance overheads of the detectors 
were about 15% and 5%, respectively. 
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