
DoDOM: Leveraging DOM Invariants for Web 2.0
Application Robustness Testing

Karthik Pattabiraman Benjamin Zorn
University of British Columbia Microsoft Research (Redmond)

karthikp@ece.ubc.ca ben.zorn@microsoft.com

Abstract—Web 2.0 applications are increasing in popularity.
However, they are also prone to errors because of their dynamic
nature. This paper presents DoDOM, an automated system for
testing the robustness of Web 2.0 applications based on their
Document Object Models (DOMs). DoDOM repeatedly executes
the application under a trace of recorded user actions and
observes the client-side behavior of the application in terms of
its DOM structure. Based on the observations, DoDOM extracts
a set of invariants on the web application’s DOM structure. We
show that invariants exist for real applications and can be learned
within a reasonable number of executions. We further use fault-
injection experiments to demonstrate the uses of the invariants in
detecting errors in web applications. The invariants are found to
provide high coverage in detecting errors that impact the DOM,
with a low rate of false positives.

Keywords-Web 2.0, Dynamic Invariants, Robustness Testing,
Error Detection

I. INTRODUCTION

The web has evolved from a static medium that is viewed
by a passive client to one in which the client is actively
involved in the creation and dissemination of content. The
evolution is enabled by the use of dynamic technologies such
as JavaScript, Silverlight, and Flash, which allow the execution
of client-side scripts in the web browser to provide a rich,
interactive experience for the user. Applications deploying
these technologies are called Rich Internet Applications or
Web 2.0 applications. Web 2.0 applications, such as Gmail
and Facebook, require little installation or maintenance and
have the ability to run on a wide variety of platforms [1].
Consequently, they are increasing in popularity and are being
rapidly adopted.

Unfortunately, Web 2.0 applications are also complex and
prone to errors. First, the distributed nature of the applica-
tion’s logic between the server and client makes it difficult
to understand and debug such applications. This problem is
compounded by the asynchronous behavior of the application.
Second, web applications often integrate data and code from
multiple domains, and the failure of any of these domains
can make the application unstable. Finally, unlike desktop
applications, web applications are rarely designed with a fail-
fast philosophy. Rather, they tend to continue executing even
if some component of the application experiences an error
(e.g., an event-handler throws an exception). This behavior
has its roots in the historical evolution of the web and is
advantageous from the point of view of compatibility and co-
existence. However, it makes it difficult to contain and localize

faults and is hence disadvantageous from the point of view of
reliability. Therefore, it is important to test the robustness of
web applications using fault-injection experiments.

An important challenge in testing Web 2.0 applications’
robustness is lack of determinism from one execution to
another (even with the same input sequence). This is due to a
number of factors, including (1) small changes introduced by
the server, (2) asynchrony in network messages being sent or
received out of order, and (3) small variations in the timing
of events at the client. The non-determinism makes it difficult
to ascertain if an observed change in the execution of a web
application was because of an injected fault. Non-determinism
has been addressed in the context of Web 1.0 applications by
controlling server-side execution [2]. However, these solutions
address only the first source of non-determinism in Web 2.0
applications.

In this paper, we propose a first step towards characterizing
the client-side behavior of web applications with the goal of
testing their robustness using fault injection. Our approach
characterizes the structure of the Document Object Model
(DOM) data-structure in the application using dynamically
derived invariants, and considers deviations from the derived
structure as erroneous executions. The invariants are derived
dynamically by recording a sequence of user interactions with
the application and observing the changes to the DOM by
repeatedly replaying the sequence. Because we repeatedly
execute the web application and derive invariants over its
DOM, we call this approach DoDOM (the DO symbolizes
iteration as in a do-while loop).

The DOM is the central data structure maintained by the
web browser for representing and displaying a web applica-
tion’s output. It is organized hierarchically with each node in
the DOM representing an entity of the web page corresponding
to the application (e.g., list elements, text). Only objects in
the DOM can be displayed by the web browser. Hence, the
DOM is what users ultimately see and interact with in a
web application. Further, multiple client-side scripts in the
application share state and communicate with one another
predominantly through the DOM. Thus, the correctness of the
DOM is essential for the correctness of the application and
hence we focus on DOM-based invariants in this paper.

DoDOM extracts invariants over the DOM structure of a
web application by capturing a user-interaction sequence with
the application, replaying it multiple times and observing
the DOM after each execution. This dynamic approach of



learning invariants is language-neutral and does not need to
statically analyze the code of the web application. This is
important as (1) languages and frameworks for writing web
applications are rapidly evolving and a single application may
combine code from multiple languages and frameworks, and
(2) client-side languages such as JavaScript are notoriously
difficult to analyze statically due to the presence of dynamic
constructs [3].

Prior work has shown that dynamic invariants can be used in
general-purpose programs for testing and error detection [4],
[5], [6]. However, there has been relatively little work on de-
riving dynamic invariants for web applications. We show that
DOM-based invariants (1) exist in web applications, (2) can
be learned automatically, and (3) are useful in detecting errors.
To the best of our knowledge, DoDOM is the first technique
to automatically extract invariants in Web 2.0 applications for
the purpose of error detection1.

The main contributions of the paper are as follows:
• We show that Web 2.0 applications exhibit invariants over

their DOM structures, and build a tool called DoDOM to
replay web applications and extract their invariants.

• We demonstrate the invariant extraction capabilities of
DoDOM for three real Web 2.0 applications: Slashdot,
CNN, and Java Petstore. We show that the invariants can
be learned within 6 executions of each application.

• Using fault-injection experiments, we find that the error-
detection coverage of the invariants is close to 100% for
errors that impact the web page’s DOM. The remaining
errors do not have any effect on the DOM and are hence
not detected by the technique2.

II. OVERVIEW

In this section, we outline the reliability issues with Web 2.0
applications and present our proposed solution. We first
present a brief background on Web 2.0, which may be skipped
by the reader familiar with this paradigm.

A. Background

Typical Web 2.0 applications consist of both server-side and
client-side code. The server-side code is written in traditional
web-development languages such as PHP, Perl, Java and C.
The client-side code is written using dynamic web languages
such as JavaScript (JS) which are executed within the client’s
browser. Unlike in the Web 1.0 model, where the application
executes primarily at the server with the browser acting as a
front-end for rendering and displaying the server’s responses,
in a Web 2.0 application the client is actively involved in the
application’s logic. This reduces the amount of data exchanged
with the server and makes the application more interactive.
Henceforth, when we say web applications, we mean Web 2.0
applications unless we specify otherwise.

1ATUSA [7] proposes the use of invariants for error detection in Web 2.0
applications but requires the programmer to define the invariants.

2Such errors may be detected through checks in the application’s backend,
but are outside this paper’s scope.

Fig. 1. Example of a DOM tree for a web application.

Typical web applications are event-driven, i.e., they respond
to user events (e.g., mouse clicks), timeouts and receipt of
messages from the server. The developer writes handlers for
each of these events. The event-handlers can (1) invoke other
functions or write to global variables stored on the heap,
(2) read/modify the web page’s contents through its DOM,
or (3) send asynchronous messages to the server through a
technology known as AJAX (Asynchronous JavaScript and
XML) and specify the code to be executed upon receiving a
response. The above actions are executed by client-side scripts
in the web browser.

Web applications typically execute within a single web page.
A web page is represented internally by the browser as its
DOM [8], which as mentioned before, consists of the page’s
elements organized in a hierarchical format. Figure 1 shows
an example of a DOM for a web page. In the figure, the
web page consists of multiple HTML div elements, which
are represented in the top-level nodes of the tree. The ”div”
elements are logical partitions of the page, each of which
consists of nodes representing text and link elements. Further,
the web page has a head node with two client-side scripts as its
child nodes. JavaScript code executing in the web browser can
read and write to the DOM through special APIs. Any changes
made to the DOM cause the web page to be re-rendered by
the web browser. User actions are converted into events by
the browser and sent to the nodes of the DOM on which they
are trigerred. If the node has an installed event handler for the
event, then the event-handler is executed.

B. Scenario

Consider an application developer who wants to test the
robustness of a web application to faults. She would interact
with the application on the client, inject a fault into it and
check if the application behaves as expected. However, this
approach is time consuming and requires the user to repeat
the same interactions with the application for each injected
fault. Further, the user needs to rely on visual perception to
determine whether an injected fault affects the application3.
Finally, web applications exhibit variations in their behavior
from one execution to another (as we show later in this paper).

3While it can be argued that faults that are not perceived by the user do
not matter, it may be that a different user perceives the fault.



Fig. 2. Proposed solution in the context of the example DOM.

In the face of such variations, it becomes challenging to
identify whether a perceived difference is the result of a fault
or if it is due to the natural behavior of the application. Further,
the variations can occur in the middle of the web application’s
execution which makes them difficult to detect.

This paper proposes a systematic method to characterize
the correct behavior of a web application for robustness
testing. We assume that the web developer has one or more
user interaction sequences (i.e., sequences of user actions)
under which she wants to test the application’s robustness.
Our solution involves extracting an invariant characteristic
of the web application’s DOM from multiple executions of
the application. We characterize the expected behavior of the
application based on the invariants. We then inject faults into
the application and consider significant deviations from the
invariant behavior of the application as erroneous executions.

C. Dynamic Invariant Extraction

This section illustrates our proposed solution for the prob-
lem illustrated in Section II-B. The crux of the solution is
in characterizing the invariant portions of the DOM for the
web application under a given sequence of user interactions.
Specifically, we characterize the common portions of the
DOM of the application’s web page over multiple executions,
and the changes made to the DOM by the application in
response to various events (i.e., user actions, timeouts, and
network messages). After each event executes, we check the
conformance of the resulting DOM to the invariant portions.
A deviation indicates an error. We first illustrate using the
example in Figure 1 and then present the general case.

Figure 2 shows the invariant portion of the DOM for the
example considered in Figure 1. In the figure, the darkly-
shaded nodes represent the invariant portions of the tree (also
called the web page’s backbone) while the lightly-shaded
nodes represent the non-invariant portions. We consider two
example faults to illustrate the error-detection process. First,
consider the case where the user clicks on a specific DOM
node which in turn triggers an event handler on the node.
The event handler is supposed to update the left most element
(A) in the invariant DOM but fails to do so because of an
error (e.g., the handler throws an exception). This error will
be detected as the resulting DOM would deviate from the

Executions Event 1 Event 2 ... Event n
Execution 1 T11 T21 ... Tn1

Execution 2 T12 T22 ... Tn2

... ... ... ... ...
Execution M T1M T2M ... TnM

Invariants T1I T2I ... TnI

TABLE I
INVARIANT DOMS.

invariant DOM for the event (in this case, the event is the
mouse click).

Second, assume that the web application is supposed to
import a script from a domain but fails to do so because of the
domain being unavailable. Assume that the script is supposed
to modify the ’div’ element in the far left branch of the tree.
This element is part of the invariant DOM and hence the lack
of modification will be detected as an error. Our hypothesis
is that the majority of the DOM structure is invariant in a
web application and hence the invariant DOM can be used to
detect the majority of errors in a web application.

In the above example, the invariant DOM in Figure 2
represents a snapshot of the DOM during the course of its
evolution in response to events. In reality, the technique will
capture the entire sequence of invariant DOMs and use the
invariant sequence to check for deviations as we show below.

An invariant DOM is a subset of the web application’s DOM
that is shared by multiple executions of the application. We
derive an invariant DOM for each event in the application (an
event refers to a user action, network message or timeout).
Table I shows the DOMs obtained during multiple executions
of the web application under a given sequence of events.
The rows of the table indicate different executions of the
web application, while the columns indicate the events in
the application. The DOMs are indicated by Tij , where i
is the event after which the DOM is obtained and j is the
corresponding execution. The invariant DOMs TiI are derived
from the DOMs of individual executions Tij corresponding
to the event i. As can be seen from the table, the invariant
DOMs generalize across multiple executions to incorporate
only the common features of each DOM. However, they are
specific to a given sequence of events in order to ensure high
error-detection coverage. We consider the implication of this
trade-off in Section VI.

D. Fault Model

This section discusses the errors injected in this study to
evaluate the derived invariants. Note that we inject errors
(i.e., manifestations of faults) rather than the underlying faults.
However, in keeping with convention, we refer to these exper-
iments as fault injections.

Event errors: These correspond to errors encountered when
processing events in the client-side code of the application.
These can be caused by exceptions in the corresponding event
handlers or the events not being triggered correctly. In some
cases, the web browser may abort an event handler if it
executes for too long.



Domain failures: These can be caused by a network failure
or by the unavailability of the domains’ servers. They can
also be caused by client-side plugins or administrative proxies
which may block scripts from certain domains.

While the above errors may seem somewhat simplistic,
it is a first step towards characterizing faults in Web 2.0
applications. Prior work has characterized fault-models for
Web 1.0 applications [9], which comprise only server-side
code. However, to the best of our knowledge, there has been
no similar effort to characterize common failure modes of
Web 2.0 applications which involve significant amounts of
client-side processing. We also note that our method to extract
invariant DOMs is independent of the fault model, which
is only used to evaluate the invariants. Future work will
attempt to extend the scope of the injections and consider
more realistic faults.

III. APPROACH

The overall approach for extracting and learning invariants
over the DOMs of web applications consists of the following
steps: First, we record a sequence of user interactions and
events on a page (trace). We then replay this trace over mul-
tiple executions and capture the sequence of DOMs generated
after each event in the trace. Finally, we extract invariants
over the set of all DOM sequences using an offline learning
process. We built a tool, DoDOM, to automate the process of
recording a user-interaction sequence with a web application,
replaying it, and extracting invariants from the observed DOM
sequences.

In this section, we first describe the challenges encountered
in the above process and then discuss how DoDOM address
these challenges. We also discuss the design choices and the
trade-offs made in DoDOM.

A. Challenges

We identify three main challenges in extracting invariants
using DoDOM. First, we need to record the sequence of user-
interactions with the web application in an unobtrusive manner
because we want to obtain realistic user-interaction sequences.
Second, we need to replay the user-interaction events on
the web application on the same DOM nodes on which
they occurred when recording the sequence. In particular, the
web page rendered by the application may undergo minor
changes from one execution to another (because of server-
side changes4) and hence the replay should be robust to such
changes. Finally, it is desirable that the method be independent
of the web browser and that it not require any changes to the
same.

DoDOM addresses the above challenges as follows. First,
during recording, it passively records the interaction of a user
with the web application without requiring the user to perform
any additional steps. Second, in order to find nodes during
replay, it uses both the contents of a node in the DOM and
its relative position to other nodes. Further, the comparison

4For ease of deployment, we do not require the execution of the server code
to be controlled. This is especially important when testing real web sites.

Fig. 3. Architecture of DoDOM system: The components we added are
lightly shaded.

is not exact, but is based on heuristic measures, thereby
ensuring that events are played back on the original nodes
on which they occurred even if the web page has undergone
small changes during replay. Finally, the DoDOM tool is
predominantly implemented using JavaScript (with a small
portion implemented as a proxy server), and hence does not
require any modifications to the web browser.

B. DoDOM Operation

Figure 3 shows the architecture of DoDOM. DoDOM con-
sists of three components as follows.

(1) The proxy is a client-side proxy server written as a
plugin in the Fiddler web application testing framework [10].
The proxy’s main purpose is to inject the JS logger code
into the web page(s) of the application, collect the events and
responses sent by the JS logger and record them.

(2) The JS logger is a piece of JavaScript code that is
executed on the client’s browser for each iFrame in the page.
The JS logger can read/write to the web page’s DOM, install
event handlers that trap the page’s handlers and log changes
to the DOM. It can also intercept messages sent by the
client through the XMLHttp interface and the corresponding
response (i.e., AJAX messages).

(3) The invariant extractor performs offline analysis of
multiple executions recorded by the proxy and extracts the
invariants. It runs outside the web browser.

The proxy injects the JS logger script into every page
loaded by the browser (a page is defined as any entity that
consists of a head tag). The proxy also assigns to each JS
logger script a unique tag called the pageID. The pageID is
used to distinguish individual iframes in a multi-frame web
application. The JS logger script is instantiated at the client
after the page completes loading (after the onLoad event),
upon which it performs the following actions (in sequence):
(1) Creates a compact representation of the web page’s DOM,
and sends it back to the proxy. (2) Installs a new replacement
handler for all DOM elements that have event handlers and
stores the old handler as part of the element. (3) Replaces
the setTimeout and setInterval API calls in the window object
with custom versions (after storing the old handler) to intercept
timeouts. (4) Replaces the XMLHttpRequest object with a



custom version that intercepts all messages sent to the server
using the AJAX interface and their corresponding responses.
(5) Installs change handlers on each element of the DOM tree
to track any additions, modifications, and removals of the sub-
tree rooted at the element. The above operations are performed
using the DOM API calls in JavaScript.

The JS logger operates in two modes: record and replay.
During record mode, the user interacts normally with the page
by moving the mouse, clicking on objects, etc. The browser
translates the user’s actions into user-events and invokes the
replacement event handlers installed by the JS logger on the
corresponding DOM nodes. The handlers create a snapshot
of each event and send it to the proxy, which in turn adds
the events to a global queue for the page. The JS logger
periodically polls the proxy for outstanding events, upon which
the enqueued events are sent to the client (in order). The JS
logger then invokes event’s original handers on the node on
which they occured.

During replay, the proxy reads in the list of events from the
event log and populates the queue with the events. It injects
the JS logger into the web page as before. However, when the
JS logger polls for events, the proxy retrieves the events from
the queue and sends them to the client one at a time along with
the corresponding node on which the event occurred5. The JS
logger attempts to identify the node using the node’s contents
sent by the proxy and its relative position in the DOM tree
(i.e., pre-order traversal index). If an exact match is not found,
it searches the DOM for the closest match starting from the
node with the same pre-order index as the original node6.

The proxy records the changes made to the web page’s
DOM tree after every event. The invariant extractor post-
processes these traces to obtain a sequence of invariant DOM
trees for each event. Each tree in the invariant sequence is
learned independently based on the corresponding trees in the
individual executions.

The algorithm for learning each of the invariant DOM trees
from a set of execution traces is as follows (the pseudo-code
for the complete algorithm can be found in [11]). We set the
initial invariant tree to the tree obtained from the first execution
trace. For each event in the execution trace, we compare its
tree with the corresponding invariant tree recursively starting
from the root nodes and traversing the tree in post order. When
any of the following three conditions are met, the node is
removed and a dummy node substituted in its place to hold
the tree together. (1) the contents of a node of the invariant
tree do not match the corresponding nodes in the execution
tree, (2) a node in the invariant tree has more children than
its corresponding node in the execution tree, (3) the invariant
tree has nodes that are not present in the execution tree. The
comparison among nodes’ contents is based on the fraction of
its field-value pairs that match each other. If this fraction is
higher than a value known as the match threshold, then the

5It also introduces a time delay corresponding to the occurrence of the
event in the recording mode.

6The closest match is the node(s) with the highest fraction of matching
field-value pairs.

nodes are considered to match each other. The comparison
does not take into account the order of the field-value pairs in
each node.

The match threshold thus determines how much of the
invariant tree is pruned away because of differences among
the DOMs of individual executions. A high match threshold
means that only nodes that match closely across executions
will be retained in the invariant tree. On the other hand, a
low match threshold indicates that that the invariant tree may
contain nodes that exhibit high variation in their contents
among executions. Therefore an invariant tree with a high
match threshold has high content similarity with individual
executions.

C. Trade-offs and Limitations

For portability and ease of deployment, DoDOM is imple-
mented predominantly in JS with a small part implemented
as a client-side proxy. However, the use of JS incurs certain
limitations. First, the JS logger is executed only after the on-
Load event in a web page. Therefore, it cannot trap events that
occur before the firing of the onLoad event and would hence
ignore them. Second, DoDOM traps events by hooking into
the event handlers of DOM nodes and replacing the existing
functions with a custom wrapper. This behavior requires the
web application to use the DOM 1.0 event model because the
DOM 2.0 event model does not provide any way to remove a
handler from the chain of event-listeners on a DOM node, or to
ensure that the event handlers are invoked in a specific order.
However, most applications are written using the DOM 1.0
model for compatibility reasons7. Finally, DoDOM’s reliability
is limited by the reliability of the web browser’s JavaScript
Virtual Machine (JS VM). In our experiments, we did not find
cases where the JavaScript VM crashed or hung. Nonetheless,
we provide a heartbeat service to detect crashes or hangs of
the JS VM and reload the page.

Currently, DoDOM only supports single web page appli-
cations, i.e., web applications where the user interacts with
the application on a single web page. However, even single
web page applications often consist of multiple iframes each
of which contains its own DOM. The user may interact with
multiple iframes, and therefore it is necessary to record the
interactions on a per-frame basis. This is done by assigning
a unique tag to each frame (pageID) and using the tag
to disambiguate interactions for different iframes. A similar
mechanism can be applied for multi-page web applications
which consist of multiple pages displayed in sequence.

Finally, DoDOM assumes that the web application uses
standard mechanisms such as AJAX for communication be-
tween the client and the server. However, some frameworks
such as Dojo use their own custom mechanisms for han-
dling communications with the server (e.g., hidden iframes).
DoDOM cannot currently support such mechanisms.

7The DOM 3.0 specification allows for removing event handlers and con-
trolling their order, but unfortunately, is not implemented by most browsers.



IV. EXPERIMENTAL SETUP

This section describes the experiments performed and the
benchmarks used to evaluate DoDOM. We used an Intel Core2
Duo Intel dual-core processor (running at 3 GigaHertz) with
4 GigaBytes RAM. We used Firefox version 3.5 on Windows
Vista as the platform for evaluation.

The main research questions are:
Q1. How many executions do we need to learn the invariant

DOMs for a web application?
Q2. How many event errors impact the web application’s

DOM and how effective are the invariants at detecting these
errors?

Q3. How many domain failures impact the web application’s
DOM and how effective are the invariants at detecting these
errors?

Invariant Extraction: The goal of this experiment is to
answer Q1. We first record the sequence of user interactions
and create a log of events. We then replay the user events
multiple times using DoDOM. From the set of all executions
(i.e., replay sequences), we randomly choose a subset of
executions used to learn the invariants, called the training set.
In these experiments, we vary the size of the training set in
order to understand how quickly the invariants converge to a
stable value. We also vary the match threshold described in
Section III to understand how much variation is present among
individual executions.

We measure the following characteristics of the DOM tree
in order to measure its convergence. (1) number of nodes in
the DOM, (2) average number of children per node, i.e., its
fanout, (3) maximum number of levels from each node, i.e.,
the height of the sub tree, and (4) average number of total
descendants per node.

We also compare the invariant DOM sequence learned from
the training set with the DOM sequences from all executions.
If any of the DOMs in its sequence exhibits a mismatch with
the corresponding DOM in the invariant sequence, we consider
the execution a false positive.

Event Errors: The goal of this experiment is to answer
Q2. We measure the error-detection coverage of the invariant
sequences for event errors corresponding to those in Sec-
tion II-D. Table II shows the types of faults introduced and the
injection method. Each run injects at most one fault to ensure
that the fault’s effects can be uniquely determined. After a
fault is injected, the sequence of DOMs corresponding to the
execution is compared with the sequence of invariant DOMs.
We classify the execution as a successful detection if any of
the DOM trees in the sequence exhibits a mismatch with the
corresponding DOM in the invariant sequence. The coverage
obtained by DoDOM for a fault is calculated as the percentage
of successful detections among the total number of executions
corresponding to the fault.

Domain Failures: The goal of this experiment is to answer
Q3. It emulates the effect of domain failures as described in
Section II-D using the NoScript plugin in Firefox8. First, the

8Available at http://noscript.net/.

Fault Type Injection Method
User-Event Error Do not replay the event at the client
Message Error Do not forward the message to the server
Timeout Error Do not replay the timeout at the client

TABLE II
FAULTS INJECTED AND THEIR CHARACTERIZATION.

Website Lines of No. of No. of No. of
JS code domains events DOM nodes

Java Petstore 499 1 211 398
Slashdot 9647 5 13 5162

CNN 15603 9 9 2417

TABLE III
CHARACTERISTICS OF THE WEB APPLICATIONS.

invariant DOM sequence is obtained from multiple executions.
Then, each domain in the web page is blocked one at a
time and the corresponding DOM sequences are obtained.
The DOM sequence for a blocked domain is compared to the
invariant DOM sequence, and a mismatch indicates that the
domain’s failure is detected by the invariants.

Benchmarks: We demonstrate DoDOM on three represen-
tative Web 2.0 applications: Slashdot, CNN and JavaPetStore.
Slashdot aggregates technology-related news from different
web sites and allows users to comment on a news story. Java
Petstore is a freely available Web 2.0 application that mimics
an e-commerce web site for buying pets [12]. CNN is a popular
news web site that delivers customized content to its readers.

Table III summarizes the characteristics of the web applica-
tions which include the number of domains in the application,
the total number of lines of JS code (obtained with Firefox’s
Phoenix plugin9), and the number of events in the recorded
trace for the application.

We choose the Slashdot application as the primary source
of measurements as it represents a middle ground among the
applications in terms of lines of code and number of domains.
We interact normally with a Slashdot news story and replay
the interactions with DoDOM. The results reported are for a
specific news story on Slashdot with close to 300 comments.
We obtain a total of 13 events for the story including user
interactions and timeout, and perform a total of 58 replays. We
also repeated the measurements with a different sequence of
interactions, but the results were similar and are not reported.

For the other two applications, we measured only the invari-
ant extraction capabilities of DoDOM, using 50 replays each.
Java Petstore allows the user to browse through pet listings
and choose a pet corresponding to the user’s preferences. We
interact with the first page of the application by moving over
and clicking on different elements of the page. For CNN, we
interact with the main page of the application, which displays
the daily news, by moving the mouse over various elements
of the page and clicking on them as a normal user would.

9Available at https://addons.mozilla.org/en-US/firefox/addon/11708/.



V. RESULTS

In this section, we present the results corresponding to the
research questions in Section IV. We first summarize the main
results and then present the details. The results presented
pertain to the Slashdot application. We present the results for
the other applications at the end of this section.

R1: corresponds to Q1: We show that the invariant DOM
sequences converge with a training set size of 6 executions,
which corresponds to 10% of the total executions. We further
show that the invariant DOM converges to 99% of the original
DOM size, suggesting that most of the DOM is invariant.

R2: corresponds to Q2: The invariants detect 100% of the
injected event errors that affect the DOM.

R3: corresponds to Q3: Only one the 5 domains included
by Slashdot has an effect on the DOM. DoDOM provides
100% coverage for failures of this domain.

Invariant Extraction: In this experiment, we vary the
training set size10 from 1 to 10 over 58 executions and
obtain the invariant DOM sequence. The characteristics of
the invariant DOM corresponding to the metrics listed in
Section IV are shown in Figure 4 (a) to (d). In each graph in
the figure, the X-axis represents the event number and the Y-
axis represents a metric corresponding to the event. The lines
in each graph represent the invariants obtained with a training
set of a specific size. Note that the Y-axis in each graph does
not start from 0, and there is very little variation among the
different training set sizes.

We observe that the number of nodes monotonically in-
creases with the event number, while the maximum number
of levels in the DOM monotonically decreases with the event
number. The other two metrics, namely the number of children
and the number of descendants, show no consistent trend.

Figure 4 (a) shows that as the training set size increases,
the number of nodes in the DOM decreases because more and
more nodes are eliminated from the invariant DOMs. However,
the number stops decreasing once the training set reaches a
size of 6 (roughly 10% of the 58 executions). Nonetheless,
the converged values are within 1% of their original values
(i.e., the number of DOM nodes for any given execution).
This shows that the amount of variation among executions,
while non-trivial, is within 1% of each other. Similarly, the
other three metrics, namely the maximum number of levels,
the average number of children, and the average number of
descendants, steadily increase with increase in the training set
size, but also stabilize at a training set size of 6. This shows
that the invariant DOMs can be learned using only 10% of the
executions.

False Positives: To further confirm the convergence of the
invariants, we measure the false-positive rate for the execu-
tions11. Table IV shows the false-positive rate as a function of
the size of the training set for different values of the match

10We also varied the inputs included in the training set, but the results were
similar and are hence not reported.

11Recall that a false positive is an execution that deviates from the invariant
DOM sequence derived from the training set.

Training Set Match Threshold
Size 0.95 0.50 0.05

2 53 53 53
4 29 29 29
6 1 1 0
8 1 1 0
10 1 1 0

TABLE IV
FALSE POSITIVES VERSUS TRAINING SET SIZE OF A TOTAL OF 58

EXECUTIONS.

threshold (introduced in Section III). As can be seen in the
table, the false-positive rate initially starts out high when the
training set is very small (2 executions), but quickly decreases
with increase in the training set size. For a training set size of
6 or more, the false-positive rate is nearly zero. This confirms
the earlier observation that a training set size of 6 is the point
at which the invariant DOMs stabilize.

Interestingly, the false positives do not drop to 0 when
the match thresholds are 0.95 and 0.50, but remain stable
at 1 up to a total of 10 executions. This suggests that one
of executions exhibits significant content differences from the
invariant DOM. Nonetheless, the false-positive curve drops to
0 when the match threshold is decreased to 0.05, suggesting
that the execution conforms to the structural characteristics of
the invariant DOM. We cannot fully explain this deviation as
we are using a live web-site whose server-side code is not
available to us.

Coverage for Event Errors: We measure the error-
detection coverage of the invariants for event errors through
fault-injection experiments shown in Table II. For each event
in the trace (13 in all), we inject a fault corresponding to
the event and compare the resulting DOM sequence with the
invariant DOM sequence. A mismatch among the sequences
indicates that the fault was successfully detected. For each
fault, the application is executed five times, so there are a total
of 65 executions (= 5 * 13) performed in this experiment.
Table V shows the error-detection coverage for each fault
(event-number) that was injected. Based on the previous results
for false positives, we focus on the invariants derived with
training sets of 6 or more. As before, the match threshold was
set to 0.95 for these experiments.

Table V shows that the detection rate of the invariants is
either 0% (0 detections) or 100% (5 detections) depending on
the injected fault. The reason for the differences among events
is as follows. Either an event-handler affects the DOM or it
does not. The events that have 0 detection rates (namely 1,
3, 7, 9, 11 and 12) are timeout events, and their handlers do
not update the DOM, an observation confirmed by examining
the handler’s source code). The other events are mouse-
clicks and message-handling events, and the corresponding
handlers either add or remove nodes from the DOM. Thus,
the invariants detect all event errors that affect the DOM.

Domain Failures: The goal of this study is to measure the
error-detection coverage of the invariant DOMs for failures of



(a)

5050

5100

5150

5200

5250

5300

5350

0 1 2 3 4 5 6 7 8 9 10 11 12 13

N

U

M

N

O

D

E

S

Events

Number of Nodes in DOM-Tree

Training set = 2

Training set = 4

Training set = 6

Training set = 8

Training set = 10

(b)

2.824

2.826

2.828

2.83

2.832

2.834

2.836

2.838

2.84

0 1 2 3 4 5 6 7 8 9 10 11 12 13

N

U

M

C

H

I

L

D

R

E

N Events

Avg. Number of Children in DOM-Tree

Training set = 2

Training set = 4

Training set = 6

Training set = 8

Training set = 10

(c)

2.85

2.86

2.87

2.88

2.89

2.9

2.91

0 1 2 3 4 5 6 7 8 9 10 11 12 13

M

A

X

L

E

V

E

L

S

Events

Max. Number of Levels in DOM-Tree

Training set = 2

Training set = 4

Training set = 6

Training set = 8

Training set = 10

(d)

83.5

83.6

83.7

83.8

83.9

84

84.1

84.2

84.3

84.4

84.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

D

e

s

c

e

n

d

a

n

t

s

Events

Number of Descendants in DOM-Tree

Training set = 2

Training set = 4

Training set = 6

Training set = 8

Training set = 10

Fig. 4. Invariant Characteristics of the DOM.

Event No. Affects DOM? Injected Detected
1 No 5 0
2 Yes 5 5
3 No 5 0
4 Yes 5 5
5 No 5 0
6 Yes 5 5
7 No 5 0
8 Yes 5 5
9 No 5 0
10 Yes 5 5
11 No 5 0
12 No 5 0
13 Yes 5 5

TABLE V
ERROR-DETECTION COVERAGE OF THE DOM INVARIANTS.

the domains in Slashdot. The experiment involves blocking
each domain in the application using the NoScript plugin and
replaying the events with DoDOM. Table VI shows the results.
In Table VI, the first column shows the blocked domain while
the second and third column respectively show the number
of executions performed for that domain and the number of
executions that resulted in a mismatch between the invariant
DOM and the observed DOM12. The no domain case in which
no domain was blocked, yields 0 mismatches, showing that the
invariants incur no false positives for this experiment.

We consider two questions with Table VI. First, how
many domains affect the DOM and second, how many of
these are detected using the invariants. From the table, one

12The number of executions is different for different blocked domains,
because we capped the total time for each experiment to 30 minutes.

Domain Affects Total No. of
Name DOM? executions detections

No domain No 90 0
doubleClick.net No 16 0

fsdn.com Yes 27 27
Google Ads No 31 0

mediaplex.com Maybe 81 2
2mdn.com No 25 0

TABLE VI
DOMAIN FAILURES FOR SLASHDOT: THE LEFT-MOST COLUMN SHOWS

THE BLOCKED DOMAIN.

can observe that only Fsdn.com and mediaplex.com exhibit
mismatches between the invariant and observed DOMs. Of
the two domains, mediaplex.com differs from the invariant
DOM in only 2 executions out of over 80 executions. Hence,
these two executions are likely false-positives. On the other
hand, Fsdn.com exhibits mismatches in 27 of 27 executions.
Therefore, this domain likely has an influence on the DOM,
and its failure is detected by the derived invariants. Hence, the
invariants detect failures of all domains that affect the DOM.

Other applications: We run DoDOM on two other web
applications, namely CNN and Java PetStore, to test its
invariant extraction capabilities. As before, we measure the
convergence of the invariant DOMs for the two applications
as a function of the training set size. Table VII shows the
results for both applications. The table focuses on the final
events in the applications’ traces. As can be seen in the table,
the invariant DOMs stabilize with a training set size of 6 for
both applications. Similar results were obtained for the other
events, but are not presented due to space constraints.



Training Set Java PetStore CNN
Size NumNodes NumChildren MaxLevels Descendants NumNodes NumChildren MaxLevels Descendants

2 397 3.04 2.81 44.2 2413 2.47 2.63 48.4
4 397 3.04 2.94 44.2 2408 2.47 2.63 48.5
6 387 3.10 2.94 45.5 2407 2.47 2.63 48.5
8 387 3.10 2.94 45.5 2407 2.47 2.63 48.5

10 387 3.10 2.94 45.5 2407 2.47 2.63 48.5

TABLE VII
RESULTS FOR JAVA PETSTORE AND CNN APPLICATIONS.

Threats to Validity: An internal threat to validity is the
limited number of applications we examined in the study. We
chose popular Web 2.0 applications without apriori knowledge
of their behavior. However, it is possible that there are web
applications that do not exhibit any invariants over their DOMs
(see Section VI). An external threat to validity is that our fault-
injection is limited to event errors and domain failures. While
DOM invariants are effective at detecting the injected errors, it
is possible that they may not detect more subtle bugs. Future
work will consider more extensive fault models.

Performance overhead: We also evaluate the performance
overhead of the DoDOM tool. The JS logger consists of about
1500 lines of JavaScript code. When compressed, this code
occupies 16.5 Kilobytes, which constitutes less than 10% of
the code loaded by typical Web 2.0 applications [13]. Further,
the JS logger incurs an overhead of 3.5 seconds to traverse
the entire DOM and install event handlers after the page
is loaded. The time taken for Slashdot to finish loading is
approximately 10 seconds, so DoDOM adds an overhead of
35% to the initial load time. However, once the page has
been loaded, DoDOM incurs negligible overhead in capturing
and replaying the events in the trace. Finally, the invariant
extraction procedure is performed offline and hence does not
contribute to the performance overhead of DoDOM.

VI. DISCUSSION

In this paper, we consider a single kind of DOM invariants,
namely those that are specific to a given user interaction
sequence. We showed that such invariants are highly effective
at detecting errors in the application and can be used in robust-
ness testing of the application. However, it may be possible
to generalize the invariants across multiple user-interaction
sequences, in order to capture the most typical behavior of
the web application under common usage scenarios. Such
invariants may have broad uses beyond error detection. We
consider some of the use cases below.

Dependability Benchmarking: One of the main challenges
in benchmarking the dependability of web applications is
in ensuring the repeatability of the benchmarking experi-
ments [14]. This is because web applications exhibit a high
degree of variation from one execution to another, and it
is challenging to obtain a characterization of the common
aspects of the application across different executions. Such
a characterization can be provided by the invariants.

Security Enforcement: The invariants can also be used to
check if a web page has been tampered with either during
transmission or rendering at the client. This is similar to the
Web Tripwire project [15], with the difference that we can
apply it to arbitrary web applications that execute client-side
code. Further, the invariants can also help identify if a web
page has been permanently defaced or its contents have been
significantly modified (for example, through a Type 2 XSS
attack [16]).

Better Domain Filtering: Section V shows that failures of
the majority of domains do not impact the invariant DOM
for Slashdot. We believe this is also likely to be so for
many web applications that include multiple domains. We
could filter such domains at the client and prevent them from
being loaded in the first place, for advertisement blocking or
performance optimization. The NoScript plugin already allows
domain filtering but leaves it to the user to decide which
domains to block. With an approach such as DoDOM, we
can automate the decision making process based on which
domains impact the invariant DOM.

Criteria for choosing Applications: An interesting ques-
tion to ask is ”What kinds of web applications are likely to
exhibit invariants across multiple user-interaction sequences?”
We believe any application that has a fixed static structure (i.e.,
its backbone) in addition to dynamically generated content
will fall into this category. Examples of such applications are
news websites, e-commerce sites and online forums. However,
certain applications such as office applications or productivity
tasks may not satisfy this requirement because their content is
highly dependent on the user and the specific task performed
and hence may not exhibit generalizable invariants.

Standard frameworks such as Dojo and AJAX.Net are being
increasingly used to construct web applications [17]. We
hypothesize that applications written using these frameworks
are more likely to exhibit invariants over their DOM structures
by virtue of following programming patterns that are specific
to the framework. We will explore this hypothesis in future
work.

VII. RELATED WORK

A number of approaches have been developed to test
web applications that execute primarily at the server, i.e.,
Web 1.0 applications [18], [19]. An example of this approach
is Veriweb [18], which systematically explores a web site by
navigating to each of its pages. However, Veriweb cannot be



applied to Web 2.0 applications which often execute within a
single page. Marchetto et al. [20] propose an approach to test
Web 2.0 applications using an abstract state machine model
provided by the developer. Mesbah and Deursen [7] extend this
work to infer the state machine model automatically by finding
clickable elements in the application and emulating clicks on
them using an automated tool called ATUSA. Similar to our
work, they use invariants on the DOM tree to check the validity
of a state. Unlike DoDOM however, the invariants used in
ATUSA correspond to generic invariants on the validity of the
DOM, and are not specific to the web application being tested.
Further, while ATUSA allows the programmer to specify other
invariants, it leaves open the question of how to derive them.

There has been substantial work on regression testing of
web applications [2], [21], [22]. These papers also capture a
user’s interaction with the application, replay their executions,
and automatically characterize the invariant properties of its
output. However, they differ from DoDOM in two ways. First,
they consider only the server-side state of the application
during replay, and hence do not apply to Web 2.0 applications.
Secondly, the techniques assume that the web page does not
change once it is loaded, which does not hold for Web 2.0
applications that continue to change even after they are loaded.

Concurrent to our work, Roest et al. [23] propose a method
for regression testing of Web 2.0 applications by specifying
oracle comparators. This work requires developers to manu-
ally specify the comparators based on generic templates. In
contrast, our approach is fully automatic.

Finally, Swaddler [24] derives dynamic invariants on web
applications written using the PHP language and uses the
inferred invariants to detect security attacks that attempt to
bypass the application’s workflow and force the application
into an inconsistent state. However, Swaddler’s analysis and
enforcement is implemented on the server side and hence
cannot be used for Web 2.0 applications.

VIII. CONCLUSION

This paper presents an automated approach to test the
robustness of Web 2.0 applications and compare their out-
puts using DOM-based invariants. The approach automatically
derives invariants on web pages’ DOMs through dynamic
execution and uses the invariants to detect errors. We present
DoDOM, an automated tool to extract DOM invariants over
multiple executions of the application. We show that DOM
invariants (1) exist in real web applications, (2) can be learned
using DoDOM within a small number of executions (six in our
experiments), and (3) can be used to detect event errors and
domain failures that affect the DOM with high accuracy.

As future work, we plan to (1) consider more realistic fault
models, (2) extract invariants across multiple user-interaction
sequences, and (3) implement DoDOM in the web browser.

ACKNOWLEDGEMENTS

We thank Nikhil Swamy, Benjamin Livshits, Emre Kiciman
and Trishul Chilimbi for their insightful comments about this
work. We also thank Suzanne Zorn for help with editing this
paper and the anonymous reviewers for helpful feedback.

REFERENCES

[1] T. OReilly, “What is Web 2.0: Design patterns and business models for
the next generation of software,” 2005.

[2] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock, “Automated replay
and failure detection for web applications,” in Intl. Conference of
Automated Software Engineering (ASE), 2005, pp. 253–262.

[3] A. Guha, S. Krishnamurthi, and T. Jim, “Using static analysis for AJAX
intrusion detection,” in Intl. conference on World Wide Web (WWW),
2009, pp. 561–570.

[4] T. Chilimbi and V. Ganapathy, “HeapMD: Identifying heap-based bugs
using anomaly detection,” pp. 219–228, 2006.

[5] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin, “Quickly
detecting relevant program invariants,” in International Conference on
Software Engineering (ICSE), 2000, pp. 449–458.

[6] S. Hangal and M. Lam, “Tracking down software bugs using automatic
anomaly detection,” in International Conference on Software Engineer-
ing (ICSE), vol. 24, 2002, pp. 291–301.

[7] A. Mesbah and A. van Deursen, “Invariant-based automatic testing
of AJAX user interfaces,” in International Conference on Software
Engineering (ICSE), 2009, pp. 210–220.

[8] A. e. a. Le Hors, “Document Object Model (DOM) level 3 core
specification,” W3C Recommendation, 2004.

[9] S. Pertet and P. Narasimhan, “Causes of failure in web applications,”
Carnegie Mellon University Tech Report, CMU-PDL-05-109, 2005.

[10] Microsoft, “Fiddler: Web debugging proxy.” [Online]. Available:
http://www.fiddler2.com/Fiddler/help/WebTest.asp

[11] K. Pattabiraman and B. Zorn, “DoDOM: Leveraging DOM invariants for
Web 2.0 applications’ reliability,” Microsoft Research Technical Report
(MSR-TR-2009-176), December 2009.

[12] Sun-Microsystems. Java Petstore 2.0. [Online]. Available:
http://java.sun.com/developer/technicalArticles/J2EE/petstore/

[13] B. Livshits and E. Kiciman, “Doloto: code splitting for network-bound
Web 2.0 applications,” in Intl. Symposium on Foundations of Software
Engineering (FSE), 2008, pp. 350–360.

[14] J. Durães, M. Vieira, and H. Madeira, “Dependability benchmarking of
web-servers,” Lecture notes in computer science, pp. 297–310, 2004.

[15] C. Reis, S. Gribble, T. Kohno, and N. Weaver, “Detecting in-flight
page changes with web tripwires,” in USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2008, pp. 31–44.

[16] S. Di Paola and G. Fedon, “Subverting AJAX,” in 23rd Chaos Commu-
nication Congress, 2006.

[17] B. Livshits and U. Erlingsson, “Using web application construction
frameworks to protect against code injection attacks,” in Workshop on
Programming Languages and Analysis for Security (PLAS), 2007, pp.
95–104.

[18] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb: Automatically
testing dynamic web sites,” in Proceedings of 11th International World
Wide Web Conference (WWW), 2002.

[19] F. Ricca and P. Tonella, “Analysis and testing of web applications,” in
Intl. Conference on Software Engineering (ICSE), 2001, pp. 25–36.

[20] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of AJAX
web applications,” in Intl. Conference on Software Testing Verification
and Validation (ICST), 2008, pp. 121–130.

[21] K. Dobolyi and W. Weimer, “Harnessing web-based application similari-
ties to aid in regression testing,” in International Symposium on Software
Reliability Engineering (ISSRE), 2009, pp. 71–80.

[22] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S. Ecott,
“Automated oracle comparators for testing web applications,” In the
International Symposium on Software Reliability Engineering (ISSRE),
pp. 117–126, 2007.

[23] D. Roest, A. Mesbah, and A. van Duersen, “Regression Testing AJAX
Applications: Coping with Dynamism,” in Intl. Conference on Software
Testing, Verification and Validation (ICST), 2010, pp. 127–136.

[24] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, “Swaddler: An
approach for the anomaly-based detection of state violations in web
applications,” Lecture Notes in Computer Science (LNCS), vol. 4637,
p. 63, 2007.


