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Abstract—The trends of shrinking device geometries, lower
voltages and higher frequencies in modern processors are ex-
pected to increase the rate of intermittent faults. This requires
the design of software that are resilient to intermittent faults.
There has been substantial research on software systems that
are resilient to transient faults. However, it is unclear whether
the impact of intermittent faults on programs is similar to that
of transient faults. This is important for deciding if we need
novel techniques for tolerating intermittent faults in software. In
this study, we attempt to answer this question by comparing
the effects of intermittent and transient hardware faults on
programs through fault-injection experiments performed in a
micro-architectural simulator for a simple five-stage pipelined
processor. We also investigate whether the differences (if any)
vary with the length (i.e., duration in cycles) of the fault and
with the micro-architectural unit in which the fault originates.
The result show that intermittent faults’ impact on programs
are significantly different from those of transient faults, and
that the difference depends both on the length of the fault and
the fault’s origin. Therefore, existing software techniques for
ensuring resilience from transient faults may not be sufficient
for intermittent faults, and new techniques are needed.

Index Terms—Micro-architectural-level fault injection; Inter-
mittent fault; Transient fault;

I. INTRODUCTION

Intermittent faults are error bursts that occur repeatedly at
the same micro-architectural location in a processor. Such
faults occur due to process variation, manufacturing residuals,
in-progress wear-out, and voltage and temperature fluctuations
[1][2]. The trends of shrinking device geometries, lower
voltages and higher frequencies in modern processors have
exacerbated these factors, and hence the rate of intermittent
faults is expected to increase [3]. Further, such faults cannot
be entirely masked at the hardware level due to constraints
of power and area. Therefore, there is a compelling need to
design software systems that are resilient to intermittent faults.

An important first step in designing fault-tolerant software is
a study of the effects of faults on programs. Many studies have
examined the impact of transient faults on software programs
[4][5]. Transient faults are caused by a variety of factors
such as ionizing radiation, and unlike intermittent faults, do
not usually reoccur at the same location. However, to our
knowledge, there has been no study on how intermittent faults
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affect software systems, and whether their effects on programs
are different from those of transient faults.

This paper studies the effects of intermittent faults in
the processor on programs executing on it. We characterize
intermittent faults based on their lengths and the micro-
architectural unit at which they originate. We also study
two types of intermittent faults - namely, stuck-at-zero and
stuck-at-one faults. The main question we ask in this paper
is ‘‘Do intermittent faults affect programs differently from
transient faults, and if so, what are the differences?’’. This
question is important to design programs that are resilient to
intermittent faults. For example, if intermittent faults cause
a higher percentage of crashes in programs, then it makes
sense to focus on the design of efficient checkpointing and
recovery techniques. On the other hand, if such faults cause
a higher percentage of Silent Data Corruptions (SDCs), then
application-specific semantic checks may be required.

Because studying hardware faults in a real system is dif-
ficult, fault injection frameworks are widely used for this
purpose. Performing fault injection at the software level [6][7]
can help us understand fault propagation in application pro-
grams. However, such injections may not be an accurate
representation of the the faults in the underlying processor. On
the other hand, fault injections at the circuit or gate levels [8]
can more accurately represent hardware faults in the processor.
However, these studies are often unable to evaluate the effects
of faults on application behavior as they are challenging to
scale to real applications.

This paper introduces a software framework to inject both
intermittent and transient faults at the micro-architectural level
and compare their impact on application programs. Injecting
faults at the micro-architectural level represents a reasonable
trade-off between accuracy and scalability and is well-suited
to the needs of the study. Further, fault injection at the micro-
architectural level enables us to compare fault effects across
different micro-architectural units. Through this study, we
investigate the three research questions below:

1) Do intermittent faults differ significantly in their impact
on software programs?

2) How do the differences vary with the length (i.e., dura-
tion in cycles) of the fault?

3) How do the differences vary with the micro-architectural
unit in which the fault originates?



The results show that intermittent faults differ significantly
from transient faults. We also find that the length of the fault,
the fault type and unit of origin have significant effects on
the differences. From this, one can conclude that we need
to rethink resilient software design for intermittent faults,
and that existing mechanisms for resilience to transient faults
may be insufficient for intermittent faults. This study also
motivates the choice of appropriate software fault models for
representing intermittent faults in the processor.

II. FAULT MODEL

This section describes the fault model(s) considered in the
study and how the faults are represented. As mentioned before,
we consider intermittent hardware faults in processors.

For this study, we consider a simple five-stage pipeline RISC
processor adapted from Hennessey and Patterson [9]. Figure 1
shows an architectural block diagram of the processor and its
signals. Although this is a simple processor, it is representative
of many micro-controllers used in embedded systems. The
signals that we consider for fault-injection in the processor
are shown in italics in the figure. Table I presents a detailed
description of the signals considered for fault-injections. It
can be seen from the table that our fault model covers most
signals in the execution data-path in the processor. However,
we do not consider faults that occur in (1) memory and cache,
as we assume that these are ECC-protected, (2) speculative
logic signals, as these are unlikely to impact the program
[10], (3) floating-point unit, as the fault’s classification is
dependent on the application’s tolerance of approximations
in floating point and (4) certain control-logic signals such
as memory acknowledge, due to limitations of our simulation
infrastructure. We also assume that only one signal is affected
by the intermittent fault during the execution of a program.

We model intermittent faults as stuck-at-zero or stuck-at-
one faults for specific durations of time. Prior studies have
observed intermittent stuck-at faults that activate and de-
activate repeatedly [11]. However, we assume that there is
only one intermittent fault burst during the execution of the
program. This is because intermittent faults are typically rare-
events, and it is unlikely that they will recur within the same
program’s execution. Further, we assume that a signal affected
by an intermittent fault is stuck-at-zero or stuck-at-one for the
entire duration of the fault. In other words, we assume that
de-activation time for an intermittent fault is zero during its
occurrence. This is consistent with prior work which finds
that deactivation time in bus- and memory- faults does not
significantly impact the failure rate of programs [11].

Although transient faults may be modeled in a number of
ways, we assume that they result in single bit flips and last
for one clock cycle. This is consistent with prior work [5][6].

III. EXPERIMENTAL SETUP

In this section, we discuss the details of the fault-injection
framework for our experiments.

TABLE I
FAULT LOCATIONS AND DESCRIPTION

Fault lo-
cation

Description

PC Program counter of Instruction Fetch (IF) stage
Opcode Opcode decoded in Instruction Decode (ID) stage
Operand Operand decoded in ID stage. We assume all of the 6

operand signals shown in Figure 1 are equally likely
to be faulty. Therefore, we randomly choose one of
them as the fault injection location in each run.

Mux a Output of operand multiplexer a, which selects data
from register or current PC to output

Mux b Output of operand multiplexer b, which selects data
from register, immediate number, target address,
offset address to output

ALU o Output of Arithmetic Logic Unit (ALU)
MULT o Output of Multiplication/Division Unit
LSU adr Address output of Load Store Unit (LSU)
Ld data Load data of Load Store Unit (LSU)
St data Store data of Load Store Unit (LSU)

A. Experimental infrastructure

We have implemented the fault-injection framework in
the sim-outorder processor simulator from the SimpleScalar
family of simulators using the PISA instruction set. The Sim-
pleScalar micro-architectural simulators model an architecture
that is a close derivative of the MIPS architecture [12]. The
configuration parameters that we use for running the simulator
are shown in Table II. These model the simple processor in
Figure 1.

We have manually examined the source code of the simula-
tor and identified the variables in the simulator that correspond
to the signals in Table I. For each signal identified in the table,
there is a unique variable (or a set of variables) in the sim-
outorder simulator that represents the signal’s value. We wrap
the definition of these variables in the simulator with a custom
fault-injection function to represent the injection of a fault in
the corresponding signal. This function injects the appropriate
type of fault in the signal for a duration specified through
a configuration file (e.g., stuck-at-zero fault for 800 cycles
starting from cycle 10216). Only one bit in the selected signal
is injected, and it is randomly chosen in each run. Only one
fault is injected in each run, and the starting cycle for the
fault is also chosen randomly from the total execution cycles
executed by the program under a fault-free execution (this
value is obtained through profiling).

TABLE II
SIMULATOR CONFIGURATION PARAMETERS

Configuration Parameter Value
Fetch/decode/execute/commit rate 1 per cycle
Branch prediction type Perfect prediction
Register update unit (RUU) size 16
Load/store queue (LSQ) size 8
Register file 32 integer registers,

32 float point registers
Instruction/Data L1 16KB each
L1 hit latency 1 clock cycle
L2 (Unified) 256KB
L2 hit/miss latency 6/18 clock cycles



Fig. 1. Block Diagram of MIPS micro-architecture

B. Failure Detection

We classify the outcome of the injection into one of four
categories: (1) crash, (2) hang, (3) silent data corruption (SDC)
and (4) no effect. Table III presents a detailed classification of
the program’s behaviour under faults and how our simulator
detects the erroneous behavior and classifies it. We modified
the SimpleScalar simulator to detect the errors (as done by
prior work [13]) and classify them. We need to execute the
program once without faults to obtain a golden run.

TABLE III
MEASUREMENT OF DIFFERENT TYPES OF FAILURES

Failure type Simulation detection mechanism
Crash: Invalid memory access Check on memory access
Crash: Memory alignment error Check on memory access
Crash: Division-by-zero Check before division operation
Crash: Integer overflow Check after every integer operation
Crash: Invalid instruction Check instruction validity before

instruction execution
Crash: System call error Check in system call
Hang Check if program execution time

is substantially longer than golden
run (5 times as much)

SDC Check if program’s output deviates
from the golden run

C. Benchmark Information

We use the Siemens suite of benchmark programs for our
evaluation [14]. These programs have been extensively used
by the software testing community, and range in size from
100 to 1000 lines of C code. Table IV shows the runtime
characteristics of the Siemens programs.

We do not use larger benchmark suites such as the
SPEC2006 suite [15], because we need to perform hundreds
of thousands of fault-injection experiments in this study.
Programs in the SPEC suite execute millions of dynamic

instructions, and hence take too long to execute in a detailed
micro-architectural simulator for that many injections. The
fault-injection experiments in our study completed within one
day on a quad-core processor.

TABLE IV
CHARACTERISTICS OF PROGRAMS IN SIEMENS BENCHMARK SUITE

Benchmark Number
of in-
structions
committed

Number
of load in-
structions

Number
of store
instruc-
tions

Number
of branch
instruc-
tions

print tokens 27,273 4,630 6,985 5,047
print tokens2 25,093 3,542 6,490 4,883
replace 12,590 1,666 3,981 2,257
schedule 162,497 36,570 22,586 35,108
schedule2 239,993 47,173 35,138 51,284
tcas 8,778 759 3,499 1,479
tot info 26,543 4,418 6,318 5,179

D. Experimental Parameters

Table V summarizes the ranges of parameters used in our
experiments. We conduct 1000 fault-injection runs for each
combination of fault type, fault location and fault length.
Each run injects one fault. Thus,we inject a total of 1,071,000
faults ((2 fault types×9 fault signals×8 fault lengths×1000
for intermittent faults +1 fault type×9 fault signals×1 fault
length×1000 for transient faults)×7 benchmarks).

Note however that not all injected faults may be activated
(i.e., read in the system). We measure the activation rate
of the faults by instrumenting the fault-injected locations in
the simulator, and use the number of activated faults as the
denominator when calculating percentages in this study.

IV. RESULTS

This section describes the results of our experiments and is
organized according to the research questions in Section I.



TABLE V
PARAMETERS FOR A FAULT INJECTION RUN

Experimental
Parameter

Values

Fault type stuck-at-zero, stuck-at-one for intermittent faults,
and bit-flips for transient faults

Fault
location

Signals in Table I except MULT o, since there are
no multiplication operations in many programs

Fault bit Randomly chosen from bits of the selected signal
Fault-
injection
start time

Randomly chosen from the total clock cycles exe-
cuted by the program

Fault length 2, 5, 10, 25, 50, 100, 300 or 800 clock cycles for
intermittent faults

A. Impact of Intermittent Faults on Programs

Table VI presents the average failure rate across differ-
ent benchmarks for transient faults, intermittent stuck-at-zero
faults, and intermittent-stuck-at-one faults. The length of the
intermittent faults for this experiment is 50 clock cycles.

TABLE VI
AVERAGE FAILURE PERCENTAGE ACROSS DIFFERENT PROGRAMS FOR

INTERMITTENT FAULTS AND TRANSIENT FAULTS

Benchmarks Transient
faults

Intermittent
stuck-at-
zero faults

Intermittent
stuck-at-
one faults

crash hang SDC crash hang SDC crash hang SDC
print tokens 47 0 5 30 1 5 71 1 7
print tokens2 46 0 3 26 1 4 70 1 5
replace 44 1 3 30 0 2 65 1 5
schedule 39 1 8 45 1 6 69 1 9
schedule2 47 0 7 46 1 5 68 1 6
tcas 42 0 1 28 0 1 70 1 1
tot info 49 0 4 34 6 4 70 2 7

The results in the table are as follows:
• Crashes are the dominant outcome for all three fault

categories (30 to 71%), followed by SDCs (1 to 9%),
followed by hangs (0 to 6%).

• Intermittent stuck-at-one faults incur higher percentages
of crashes when compared with intermittent stuck-at-zero
faults. This is because a program usually grows from
small addresses to big addresses and hence, a larger
address is more likely to be out of the memory bounds
of the program. Because the main reason of crashes for
all the faults except those originating from Opcode is
invalid memory access, and stuck-at-one faults change
original address to a larger value while stuck-at-zero
faults change it to a smaller value, the former will incur
higher percentages of crashes.

• Intermittent stuck-at-zero faults incur a lower percentage
of crashes compared to transient faults for all but two pro-
grams, schedule and schedule2. This is because in general
transient faults are guaranteed to change the value of the
signal (as they flip a bit), while an intermittent stuck-
at-zero fault will only change the signal if the chosen
bit is 1. As mentioned before, most bits in the injected
signals are 0s and hence unlikely to change due to an
intermittent stuck-at-zero fault. However, both schedule

and schedule2 execute significantly higher numbers of
instructions than the other programs (see Table IV), and
hence, there is a higher likelihood of the intermittent fault
persisting and propagating in these programs, thus leading
to crashes. This shows that the number of instructions
executed by a benchmark can also affect fault propagation
characteristics.

• SDCs do not differ by much between intermittent stuck-
at-zero faults and transient faults. However, the occur-
rence of SDCs for intermittent stuck-at-one faults is
slightly higher than the corresponding values for either
transient faults or intermittent stuck-at-zero faults. Hangs
do not change much across the fault types.

B. Effect of Intermittent Fault Lengths

Fig. 2. Average program crash percentage of transient faults and intermittent
faults with the increase of intermittent fault length (Note that the transient
faults last exactly 1 clock cycle, i.e., have a length of 1.)

Fig. 3. Average program SDC percentage of transient faults and intermittent
faults with the increase of intermittent fault length (Note that the transient
faults last exactly 1 clock cycle, i.e., have a length of 1)

In this section, we focus on one benchmark program,
print tokens2, to understand the variation in the effects of
intermittent faults with the length of the fault. Due to space



constraints, we are unable to present the results for the other
benchmarks, but we have observed similar trends across all
benchmarks.

Figures 2 and 3 show the variation in the percentage of
crashes and SDCs respectively. We do not present results for
hangs because the percentages of hangs is very small (less
than 2%) and there is no clear trend because of the relatively
small number of samples.

The main results are as follows:
• The percentage of crashes increases as the fault length of

intermittent faults increases. However, the growth flattens
out as the fault length increases, as the crashes caused
by faults of longer fault length overlap significantly
with those covered by the faults of shorter fault length.
Moreover, intermittent stuck-at-one faults have higher
crash percentages than that of stuck-at-zero faults, though
their difference stays constant as fault length increases.
This is consistent with the results in Section IV-A.

• Transient faults’ crash percentage does not change as
they last only one cycle. The intermittent stuck-at-one
faults’ crash percentages equal the transient faults’ crash
percentages when the fault length is 3 clock cycles, while
for intermittent stuck-at-zero faults, they become equal
when the fault length is over 800 clock cycles.

• For both types of intermittent faults, the SDC percentage
first increases, and then saturates, before decreasing (for
intermittent stuck-at-one faults) . This is because, as the
fault length increases, some of faults that may have been
benign lead to SDCs, thus increasing the percentage of
SDCs. However, as the fault length increases even further,
some faults that would have caused SDCs cause the the
program to crash, thus decreasing the SDC percentage.

• Comparing the SDCs for intermittent stuck-at-zero faults
with those of intermittent stuck-at-one faults, we find that
the latter is initially higher than the former, but as fault
length increases beyond 300 clock cycles, the percentage
of SDCs for the latter drops below the former. The first
effect is because stuck-at-one faults are more likely to
impact the program than stuck-at-zero faults, and hence
a fault that would be benign in the stuck-at-zero case
causes an SDC in the stuck-at-one case. However, if the
fault length increases beyond a point (i.e., 300 cycles),
the same fault is more likely to cause a crash in the stuck-
at-one case, while it is more likely to cause an SDC in
the stuck-at-zero case.

C. Effect of Intermittent Fault Origin

To understand the effects of faults originating in different
micro-architectural units, we classify the outcomes of the fault-
injection experiments based on the signal that is injected.
Due to space constraints, we present results only for the
print tokens2 program as in the previous section. In this
experiment, we fix the type of intermittent fault to be stuck-at-
zero and fault length to be 50 cycles as we did before. Figure
4 shows the effects of intermittent faults and transient faults
across different signals.

The main take-away from the data graphs is that for all
signals except Opcode and Mux b, the percentage of crashes
caused by transient faults is higher than those caused by
intermittent faults. This is because the majority of bits in these
signals are always zeroes, and hence an intermittent stuck-at-
zero fault is unlikely to change their value. On the other hand,
a transient fault is guaranteed to change their values by flipping
a bit (however, not all such changes impact the program,
which is why the percentages of failures is not 100%). For the
Opcode signal though, every bit can be 1, and hence a stuck-at-
zero fault is more likely to change the signals. Therefore, they
have a more pronounced effect than transient faults, which last
for only one cycle. We need further investigation to understand
why this is so for the Mux b signal.

Figure 4 also shows that the difference of the crash percent-
ages between transient and intermittent faults varies across
different units, which means that the vulnerability of a unit
to transient faults is often different from its vulnerability to
intermittent faults.

V. RELATED WORK

Fault injection framework at micro-architectural level:
Fault injection frameworks built on top of micro-processor
simulators are widely used to study different types of hard-
ware faults. Li et al. [16] inject permanent faults in three
micro-architectural units (ALU, Address Generation Unit and
decoder) using a software simulator to analyze the accuracy
of micro-architectural fault model versus a gate-level fault
model. Karimi et al. [17] inject faults into different micro-
architectural-level control logic signals to study their impact
on instruction execution. Both studies have similar goals as
our study. However, they cover only a small subset of micro-
architectural signals. The transient fault injection framework
proposed in [18] performs a comprehensive fault-injection
study in a Verilog model of the processor and studies the
impact of faults on processor state and programs. However,
their work breaks a program into many breakpoints and treats
an injected fault at a breakpoint as benign if the fault does
not propagate to the next breakpoint. In contrast, we consider
the effects of faults on the entire program, which is more
representative of their final outcome. Further, none of the three
studies consider intermittent faults, which is our focus.

Studies of comparison between different fault types:
Gracia et al. [11] compare the impact of intermittent faults
in registers, buses and memory on application programs with
those of transient faults and permanent faults. In later work
[19], they extend the comparison to determine which fault
type is more likely to be detected in a fault tolerant system
and handled by the existing recovery mechanisms. However,
neither study consider impact of faults in the signals of the
processor’s pipeline stages, which our study does.

Other studies of intermittent faults: Rashid et al. [7]
study the impact of intermittent faults at the program level
by gathering the fault-free program execution and predicting
the propagation of errors using the program’s trace. However,
because they inject faults at the program level, they are unable



Fig. 4. Effect of stuck-at-zero intermittent faults and transient faults across different units in the processor. Fault length for intermittent faults is 50 cycles.

to accurately model intermittent faults in individual micro-
architectural units. Pan et al. [20] propose a new metric
Intermittent Vulnerability Factor (IVF) to characterize the vul-
nerability of different micro-architectural units to intermittent
faults. Similar to us, their goal is to study the differences in the
sensitivites of different micro-architectural units to intermittent
faults. However, they use analytical modeling methods which
are known to be less accurate than a fault-injection based
approach, which we use in our study.

VI. CONCLUSIONS AND FUTURE WORK

This paper builds a micro-architectural fault injection frame-
work to compare the impact of transient faults and intermittent
faults on application programs. Results show that transient
faults and intermittent faults have substantial differences in
the percentage of crashes they cause in programs. However,
the differences are less marked for SDCs and hangs. We also
find that the differences are dependent on (1) the length of the
intermittent fault, (2) the fault type, and (3) its origin in terms
of the micro-architectural unit.

Future work will attempt to fully understand the differences
among transient and intermittent faults better, and to build a
model for representing intermittent faults at the program level.
We will also investigate techniques to build software systems
that are resilient to intermittent faults based on the results of
this study. Finally, we will extend the study to more complex
processors, including those supporting out-of-order execution.
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