Comparing the Effects of Intermittent and Transient Hardware Faults on Programs

Jiesheng Wei, Layali Rashid, Karthik Pattabiraman and Sathish Gopalakrishnan Department of Electrical and Computer Engineering, the University of British Columbia

Motivation

Consequences

- Increase of intermittent faults [Constantinescu'03]
- Intermittent faults recur quickly [Nightingale' I I]

Intermittent VS. Transient Faults

3

Propagation of Intermittent Faults

Research Questions

- Do intermittent faults differ significantly with transients in their impact on software programs?
- If yes, how do the differences vary with the length (i.e., duration in cycles) of the fault?
- How do the differences vary with the *micro-architectural unit* in which the fault originates?

High-level Methodology

- Perform fault injection at µ-architectural level
- Study effect of the faults at software level

- Motivation and Overview
- Fault Model
- Experiment Setup
- Results
- Conclusion and Future Work

- Motivation and Overview
- Fault Model
- Experiment Setup
- Results
- Conclusion and Future Work

Fault Type

Intermittent: stuck-at-0/1 for specified durations of time

9

Fault Injection Location

- Inject faults in a RISC processor from [Patterson'08]
- Inject only I bit of the selected signal

- Motivation and Overview
- Fault Model
- Experiment Setup
- Results
- Conclusion and Future Work

Experimental Infrastructure

Fault injection framework: sim-outorder in SimpleScalar

Failure Detection

Benchmark Information

7 benchmark programs from Siemens suite [Hutchins'94]

- characteristics of the programs
 - Lines of codes: < 1000 lines</p>
 - Dynamic instruction #: 9,000 ~ 240,000

Experimental Procedure

- Motivation and Overview
- Fault Model
- Experiment Setup
- Results
- Conclusion and Future Work

Research Questions Review

- Do intermittent faults differ significantly with transients in their impact on software programs?
- If yes, how do the differences vary with the length (i.e., duration in cycles) of the fault?
- How do the differences vary with the *micro-architectural unit* in which the fault originates?

Impact of Faults on Programs

- Crash percentage:
 - Stuck-at-I > Transient > Stuck-at-0

Average crash percentage for different programs, 50 cycles for intermittent

Impact of Faults on Programs (cont.)

- SDC percentage:
 - Similar to each other

Average SDC percentage for different programs, 50 cycles for intermittent

Effects of Fault Length

Intermittent:

Crash percentage increases with the increase of fault length

Average crash percentage for different lengths (print_tokens2)

Effects of Intermittent Fault Origin

- Crash percentage:
 - Crash percentage different across different units
 - The difference between two fault types are different across different units

Crash percentage for different units(print_tokens2, 50 cycles)

21

- Motivation and Overview
- Fault Model
- Experiment Setup
- Results
- Conclusion and Future Work

Conclusion and Future Work

Conclusion

- Do intermittent faults differ significantly with transients?
 - Large difference in crash percentage
 - Similar for hang and SDC percentages
- How do the differences vary with the fault length?
 - Crash percentage increases with the increase of fault length
- How do the differences vary with the injected μ-architectural unit?
 - The difference is *dependent* on fault origin location

Future Work

- Consider other models for the two faults
- Develop intermittent-fault-tolerant software systems
- Study more complex processors