YARRA

Modular Protection against Non-control Data Attacks

COLE SCHLESINGER

& 5 JUNE 28m, 2011
PR

Ay

Adyviser: David Walker

Joint work with Karthik Pattabiraman, CSF 2011
Nikhil Swamy, David Walker, and Ben
Zorn.

Report from the Front Lmes

. ""

The battle:
Attackers vs. C, C++ programmers

The battleground:
Legacy code, new projects, and new components

Control-flow attack: alters control
data to execute malicious code or
out-of-context library code.

— stack-smashing, return-to-libc attacks,
etc.

— many protections, including control
flow integrity

* Non-control-data attack: alters
non-control data to break program
invariants.

— configuration data
— user input

— user identity data

— decision-making data

A non-control data attack

[source: Akritidis et al.; inspired by true nullhttpd attack]

Web Server Code:
1 static char cgiCmd[1024]; | /
2 static char cgiDir[1024]; «—— ~
3 void ProcessCGIRequest(char* msg, int sz) { > cgiCmd
4 int flag, i=0;
5 while (i < sz) {
6 cgiCmd([i] = msgl[i]; h overflow
7 i++;
8 }
9 flag = CheckRequest(cgiCmd); —
10 if (flag) { > cgiDir
11 Log(" ... ");
12 ExecuteRequest(cgiDir, cgiCmd); S
13 }}

Array Bounds Checking

cgiCmd(i]

program code

cgiDir[i]

* Must check every indexing operation
— even on non-critical data
— and inside libraries

Three Goals

1: Targeted Protection

——————————

Protect critical data
(without protecting all data)

2: Modular Protection

program code

without checking all the code

3: Format Preservation

struct{... }

and without changing/padding
objects in memory.

10

YARRA: An Extension to C

Critical memory model = formal basis for partial memory safety!

critical write

write read critical read

/ %if not equal

Heap

LN

Shadow

1: Targeted Protection

Shadow A

cgiDir[i]

Protect critical data
(without protecting all data)

12

2: Modular Protection

Shadow

cgiDir[i]

Protect critical data
(without protecting all data)

13

3: Format Preservation

Shadow
| |

struct{ ..., cgiDir, ... }

and without changing/padding
objects in memory.

14

YARRA: An Extension to C

Inverse array bounds checking — YARRA = ARRAY™!

Formalization Implementation
* Language design based on Compiler + runtime system
the abstraction of critical implementing YARRA
data and heap partitions. semantics in two different
* Program logic + a frame rule ways.
for modular reasoning and * Evaluation on four open
partial memory safety. source programs with known
* Formal protection against non-control data
non-control data attacks. vulnerabilities.

* Negligible end-to-end
overhead.

Language Extensions

Heap

Shadow
Heaps

Language Extensions

yarra struct {int a; int b;} X;

Heap

Shadow
Heaps

Language Extensions

X *px = malloc(sizeof(X));

Heap a, b:

Shadow
Heaps

Language Extensions

bless (X, pXx);

Heap a, b:

Shadow |
Heaps

Language Extensions

px->a = 3;

Heap a, b: 3!
1

Shadow |
Heaps

Language Extensions

...............

T
Heap v - > 3 E 4
| 1
Shadow | ¥
31 4
Heaps

Language Extensions

unbless (X, px);

I
Heap a,b:| 31 4
!

Shadow
Heaps

Language Extensions

free(px);

Heap

Shadow
Heaps

type declarations for data
with high integrity

1 yarra struct {char cc;} cchar;
2 yarra struct {char dc;} dchar;
3 static cchar cgiCmd[1024];
4 static dchar cgiDir[1024];

5 void ProcessCGIRequest(charx msg, int sz) {

6 int flag, i=0;

7 while (i < sz) {

8 cgiCmd[i].cc = msq[i];

9 i++;
10 }
11 flag = CheckRequest(cgiCmd);
12 if (flag) {

13 Log("..."); ===

14 ExecuteRequest(cgiDir, cgiCmd);

15 }}

high integrity data structures
protected by run-time system

, cgiCmd

~—

» cgiDir

to has type dcharf]

on overflow, access pointer has type cchar[] but memory written

>

24

Implementation

———‘

A

-

—
-
”~
A" 4

-

/

Instrument
reads/writes

Lock critical heaps using

hardware page protections

YARRA-protected
executable

source

. NO source

25

Program Logic

Classical Hoare-style program logic:

AR {P}s{Q}

A modified set

P precondition
S statement

postcondition

The Frame Rule

C;AN\ FV(F) F {P} s {Q}
DAF{PAFYs{QAF)

F'is preserved across s if s does not modify
the free variables of F.

Key technical idea:
* A partitioned model of the heap
* Non-critical data resides in the normal heap H
* Values of critical type Y reside in a separate heap region named Y.

Invariants on Y are preserved over modifications to H.

[''HE{H(1) =3} s {True}

T-Frame

["HE {H({1) =3AY(42) =4}

{True NY ({2) = 4}

Defining an Attack Model

Formally See the paper.

Informally An attacker is a program that
is free to make arbitrary
changes in the heap H.

(Trivial) Attack Specification
H F {True} s {True}

The Frame Rule in Action

1 yarra struct {char cc;} cchar;
2 yarra struct {char dc;} dchar;
3 static cchar cgiCmd[1024]; validDir(dchar, cgiDir)
4 static dchar cgiDir[1024];
5 void ProcessCGIRequest(char msg, int sz) {
6 int flag, i=0;
7 while (i < sz) {
8 cgiCmd[i].cc = msq[i];
9 i++;
10 }
11 flag = CheckRequest(cgiCmd);
12 if (flag) {
13 Log("..."); \;
14 ExecuteRequest(cgiDir, cgiCmd); validDir(dchar, cgiDir)

15 }}

30

Evaluation & Results

Protecting Security-critical Data

sshd 60,148 497 0.8%
wu-ftpd 17,993 262 1.5%
telnetd 3,962 63 1.6%
ghttpd 514 69 13%

e SSHD: OpenSSH daemon

e WU-FTPD: ftp server

e TelnetD: telnet server

e Ghttpd: web server

Protecting Security-critical Data

Module Performance

Unprotected Secure

2.00x
1.50x
1.00x

.50x

.00x

Normalized Overhead

openssh ftpd ghttpd telnetd

Protecting Security-critical Data

End-to-End Performance

Unprotected Secure

2.00x
1.50x
1.00x

.50x

.00x

Normalized Overhead

openssh ftpd ghttpd telnetd

Summary

— YARRA characterizes partial memory safety in an
unsafe context.

— The program logic admits a powerful type-based
frame rule for modular reasoning.

— The language extension is minimal and easy to
use, and we have two implementations of the
semantics.

— We can harden real non-control data
vulnerabilities with negligible performance cost.

Looking Ahead

 YARRA for static verification

— Right now: VCC + YARRA

— Managed/unmanaged language interaction
* YARRA with other runtime protections

— YARRA + CFl, SFI and more.

