
BLOCKWATCH: Leveraging Similarity in Parallel
Programs for Error Detection

Jiesheng Wei, Karthik Pattabiraman
Department of Electrical and Computer Engineering

The University of British Columbia, Canada

Abstract—The scaling of Silicon devices has exacerbated the
unreliability of modern computer systems, and power constraints
have necessitated the involvement of software in hardware error
detection. Simultaneously, the multi-core revolution has impelled
software to become parallel. Therefore, there is a compelling need
to protect parallel programs from hardware errors.

Parallel programs’ tasks have significant similarity in control
data due to the use of high-level programming models. In this
study, we propose BLOCKWATCH to leverage the similarity in
parallel program’s control data for detecting hardware errors.
BLOCKWATCH statically extracts the similarity among differ-
ent threads of a parallel program and checks the similarity
at runtime. We evaluate BLOCKWATCH on seven SPLASH-2
benchmarks to measure its performance overhead and error
detection coverage. We find that BLOCKWATCH incurs an
average overhead of 16% across all programs, and provides an
average SDC coverage of 97% for faults in the control data.

Keywords: Parallel programs, Control-data, SPMD, Static
Analysis, Runtime checks

I. INTRODUCTION

The continued scaling of Silicon devices has exacerbated
their unreliability and error-proneness. In the near future,
microprocessors will experience significantly higher rates of
hardware faults [1]. Processor faults have hitherto been masked
from software through redundancy at the hardware level [2]
(e.g., dual modular redundancy). However, as power con-
sumption becomes a first class concern in computer systems,
hardware-only solutions become infeasible due to their high
power costs. Therefore, software applications must be de-
signed to tolerate hardware faults.

On another front, the microprocessor industry has adopted
the multi-core paradigm, or the integration of multiple cores
on a single die. Already, eight-core processors are available
on the market, and the number of cores is expected to
increase in future generations [3]. The multi-core paradigm
has revolutionized software development, and industry experts
have predicted that parallel programs will become the de-facto
standard in the future [4]. Therefore, parallel programs that
run on future multi-core processors will need to be capable
of detecting and recovering from hardware errors. While
error recovery for parallel programs has received considerable
attention [5], efficient error detection remains a challenge.

In this paper, we explore the use of similarity among
tasks (i.e., threads) of a parallel program for runtime er-
ror detection. The similarity arises as a result of high-level
programming models, such as Single Program Multiple Data

(SPMD) paradigm. Our approach statically extracts the sim-
ilarity through compiler-based analysis, and inserts runtime
checks in the program. The runtime checks compare the
behaviors of the tasks at runtime, and flag any deviation from
the statically extracted similarity as an error. Because we
leverage similarity among a group of tasks for error detection,
we call our approach BLOCKWATCH1.

SPMD is the most commonly used style for parallel pro-
gramming [6]. While there are many sources of similarity in
an SPMD program, we focus on the similarity of control-data
(i.e. the data that is used to make branch and loop decisions),
to detect faults that corrupt the control-data. We define two
threads as exhibiting control-data similarity at a branch if
the behavior of a thread for the branch is constrained by
the behavior of the other threads for the same branch. We
focus on control-data because: (1) control-data is critical for
the correctness of a program, and errors in this data can lead
disproportionately to Silent Data Corruptions (SDCs)2 [7], (2)
SPMD programs exhibit substantial similarity in the control-
data (Section V), and (3) no software technique other than
duplication can protect this class of program data.

Duplication, or running two copies of a program and
comparing their outputs, has been used to detect errors in
sequential programs [8]. The main advantage of duplication
is that it is simple to apply and requires no knowledge of the
application. However, duplication has two main disadvantages
when applied to parallel programs. First, parallel programs are
often non-deterministic, and duplicated versions of a parallel
program may yield different results, thus rendering them
ineffective for error detection. Second, duplication requires
twice the amount of hardware resources, and hence reduces
the resources available for the actual program, thus leading to
significant slowdowns [9].

We are not the first to observe that parallel programs exhibit
similarity among their tasks - other techniques have used
parallel programs’ similarity for error detection [10], [11].
BLOCKWATCH differs from these techniques in two ways.
First, the other techniques learn the similarity by observing
the program at runtime, and may consequently incur false-
positives because they cannot distinguish between an unex-
pected corner case and a deviation due to an error. In contrast,

1BLOCKWATCH is a program for crime prevention by residents watching
for suspicious activities in a neighbourhood and reporting them.

2An SDC is a deviation from the output in an error-free execution. SDCs
are often the most difficult to detect among all failure types.

BLOCKWATCH is based on the static characteristics of the
program, which by definition, incorporates a superset of the
dynamic runtime behaviours, and hence has no false positives.
This is especially important in production settings where a
false-positive can trigger wasteful recovery. Secondly, BLOCK-
WATCH operates at the granularity of individual branches in
the program while the other techniques operate at the function
or region granularities. As a result, BLOCKWATCH can detect
errors that affect a single branch, even if the error does not
cause deviations at other granularities. To our knowledge,
BLOCKWATCH is the first technique to statically extract the
similarity among a parallel programs’ tasks, and leverage it
for runtime error detection.

The main contributions we make in this paper are as follows:

1) Identify generic code patterns that characterize control-
data similarity in parallel programs.

2) Develop compiler techniques to statically extract the
control-data similarity patterns, and instrument the pro-
gram with runtime checks corresponding to the patterns.

3) Build a scalable, lock-free monitor for dynamically
executing the runtime checks inserted by the compiler.

4) Evaluate BLOCKWATCH on seven SPLASH-2 bench-
mark programs [12]. The results of our empirical eval-
uation show that BLOCKWATCH, (1) finds considerable
control-data similarity in the programs (50% to 95%),
(2) incurs average performance overheads of about 16%
across the programs (for 32 threads on a 32-core ma-
chine), and (3) provides average coverage of 97% for
transient errors in the control-data3.

BLOCKWATCH has three aspects that make it practical.
First, BLOCKWATCH does not require any modifications to
the hardware, and can work on today’s multi-core systems.
Secondly, it does not require any intervention from the pro-
grammer, and is fully automated. Finally, BLOCKWATCH
incurs no false positives (i.e., does not detect an error unless
one occurs in the program).

The rest of this paper is organized as follows: Section II
discusses the BLOCKWATCH approach with an example, while
Section III details its implementation. Section IV introduces
the experimental setup, and Section V presents the eval-
uation. Section VI quantitatively compares BLOCKWATCH
to software-based duplication. Finally, Section VII surveys
related work and Section VIII concludes the paper.

II. APPROACH

This section describes the high-level approach of BLOCK-
WATCH. Section II-A presents the fault model for BLOCK-
WATCH, while Section II-B lists the assumptions we make
about the parallel program. Section II-C uses an example
parallel program to illustrate the kinds of similarity considered
by BLOCKWATCH. Section II-D illustrates the runtime checks
introduced by BLOCKWATCH on the example program.

3We measure coverage as fraction of errors that do not lead to SDCs.

A. Fault Model

We consider transient or intermittent hardware faults that
affect at most one processor or core in a multi-processor or
multi-core processor. The fault can occur in the processor
datapath, control logic or memory elements in the core (e.g.,
caches). However, we assume that no more than one core or
processor is affected by a fault at any time. This is reasonable
as faults are relatively rare events (relative to the total time of
execution of a parallel program).

Our fault model also captures certain kinds of software
errors such as rare race conditions and memory corruption
errors that result in a thread deviating from its static semantics.
However, we do not consider software errors in this paper.

B. Assumptions on Parallel Program

We make three assumptions regarding the parallel program.
First, we assume that it is written using a shared memory
model, which is the common case with multi-core processors
today. We have implemented BLOCKWATCH for pthreads style
parallel programs, though it can be extended for other kinds
of shared memory parallel programs (e.g., CUDA programs).
Second, we assume that the parallel program is written in a
SPMD style. This ensures that the code to be executed by each
thread is identical, and hence it suffices to analyze the common
code to identify the similarity of branch runtime behaviour
among threads. Finally, we assume that the entire source code
of the program is available for analysis by BLOCKWATCH.
If this is not the case, BLOCKWATCH will not be able to
statically extract the program’s similarity characteristics.

C. Control-data Similarity in Parallel Programs

We use Figure 1 to illustrate the presence of similarity in the
control-data of a parallel program. In Figure 1, the program
starts from function main(), which spawns nprocs threads, all
of which execute the function slave() concurrently. The slave()
function first assigns a unique thread ID procid to each thread
in line 18 - 21 in Figure 1. It then executes four branches
labeled 1 through 4 in the figure. The bold italic variables
in the slave() are either constants or global variables that are
shared among all threads. In this paper, we include loops in
our definition of branches.

We now illustrate the control-data similarity among the
program’s threads in Figure 1 for each of the four branches
in the slave() function. The generic code patterns that result
in the similarity are shown in Table I. The similarity of the
control-data in the four branches are as follows:

1) Branch 1: The branch condition tests equality of thread
ID and a constant 0. Because the constant is the same
for all threads, and the thread ID is different, at most one
thread will take the branch in a correct execution. This
would be classified as threadID according to Table I.

2) Branch 2: The variable i shares the same initial value,
increment value and end value among all threads. As-
suming there are no break statements in the loop, all
threads execute the same number of loop iterations. This
would be classified as shared according to Table I.

TABLE I
BRANCH CONDITION SIMILARITY CATEGORY DEFINITION

Similarity
Cate-
gory

Static character-
istics of control
data

Branch runtime behaviour
similarity

shared All operands of the
instruction are shared
variables among
threads, such as
global variables and
constants

All threads take the same deci-
sion at the branch.

threadID One operand depends
on thread ID, and the
remaining operands
are shared variables

The branch decision is related
to thread ID, threads of certain
thread IDs are in the same group
and take the same decision. For
example, if the condition com-
parison statement is an equality
comparison between thread ID
and shared variables, no more
than 1 thread goes through the
path and the remaining threads
follow the other path at run time.

partial Local variables, but
these local variables
are assigned with one
of a small subset of
shared variables

The threads which are assigned
to the same shared variable
should take the same decision.

none Local variables that
cannot be statically
inferred to be similar
across threads

No known similarity in branch
runtime behaviour among the
threads.

3) Branch 3: The variable gp[procid].num is thread local
and may be different for different threads. This would
be classified as none according to Table I.

4) Branch 4: The variable private is also thread local.
However, it’s value is either 1 or -1, depending on the
outcome of branch 3. Therefore, threads in which private
takes the same value will make the same decision in this
branch. This is classified as partial according to Table I.

Thus, the control-data for each of the four branches above
belongs to a different similarity category according to Table I.
The table also illustrates the type of similarity exhibited by
the branches belonging to each category. This similarity is
encoded as a runtime check in Section II-D.

Note that the similarity inference only relied on static
analysis of the program’s code, and did not require us to
execute it. In this example, we showed the analysis on the
program’s source code for simplicity. In reality, the analysis
is done on the program’s intermediate code generated by the
compiler (Section III-A).

D. Runtime Checking

In the previous section, we saw how to statically identify the
similarity of the control data used in the branches in Figure 1.
In this section, we illustrate how the similarity can be encoded
as a runtime check within the program.

The basic idea is as follows: the statically inferred branch
similarity behaviour among threads is consistent with the
actual runtime branch behaviour similarity in an error-free ex-
ecution. However, if a hardware error propagates to the branch
condition data of one thread and causes the branch’s outcome

1 int id = 0;
2 long im = DEFAULT N;
3 struct global private ∗gp;
4 int nprocs;
5
6 int main(int argc, char ∗argv[]) {
7 int i ;
8 nprocs = argv[1];
9

10 for(i = 0; i < nprocs; i++)
11 gp[id]. num = rand();
12 for (i = 0; i < nprocs; i++)
13 pthread create((void ∗)slave);
14 }
15
16 void slave() {
17 int private , procid;
18 pthread mutex lock();
19 // procid is the thread id
20 procid = id++;
21 pthread mutex unlock();
22
23 // Branch 1: threadID
24 if (procid == 0) {
25 ...
26 }
27 ...
28 // Branch 2: shared
29 for(i = 0 ; i <= im - 1; i = i + 1) {
30 ...
31 }
32 ...
33 // Branch 3: none
34 if (gp[procid]. num > im - 1) {
35 private = 1 ;
36 }
37 else {
38 private = -1 ;
39 }
40 ...
41 // Branch 4: partial
42 if (private > 0) {
43 ...
44 }
45 }

Fig. 1. Listing of a sample pthreads parallel program to illustrate the
static similarity among all threads in the program. The comments indicate
the similarity categories for each branch according to the classification in
Table I. Note that the comments are not part of the parallel program.

to flip, the program is likely to deviate from the statically
inferred behaviour. BLOCKWATCH detects the deviation and
raises an exception.

As an example, we use branch 1 in Figure 1 to explain the
runtime checks. As we show in Section II-C, branch 1 belongs
to category threadID according to the classification in Table I.
This means that no more than one thread (thread 0 in this case)
takes the branch. To check this constraint, we insert a call to
the checking code immediately after the branch decision to
record its status. Assume that a hardware error propagates to
procid variable in thread 2, thus causing it to take the branch.
This violates the constraint that no more than one thread takes

the branch, and is hence detected by the check.

III. IMPLEMENTATION

The implementation of BLOCKWATCH consists of two
steps. The first step is to infer the branches’ similarity category
through static analysis at compile time, and is described in
Section III-A. The second step is to compare the actual runtime
behaviours’ of the branches with the inferred behavior ac-
cording to the branches’ similarity categories using a runtime
monitor, and is described in Section III-B.

A. Similarity Category Identification

In this section, we introduce an algorithm to identify the
branches’ similarity categories. Our algorithm is implemented
as part of an optimizing compiler. The algorithm assumes that
the program has been translated into a low-level intermediate
representation (IR) by the compiler’s front-end. Therefore, all
the branches in the program, including those in loops, have
been explicitly represented as branch instructions prior to the
algorithm. Further, we assume that the IR uses Static Single
Assignment (SSA) form [13], which requires that a variable
be assigned exactly once in the program i.e., every variable in
the program has a unique instruction that assigns to it.

As we show in Section II, the similarity category of a branch
depends upon the nature of the variables used in the branch
condition i.e., whether they are shared, dependent on the thread
ID or local to the thread. Therefore, in order to infer the
similarity category of a branch, we need to find the similarity
categories of the operands used in the branch instruction.
However, the operands may themselves be produced by other
instructions, and hence we need to determine the operand type
of all instructions in the program. This determination is based
on whether each operand is derived from a shared variable
(shared), a variable containing the thread ID4 (threadID), or
from a local variable that can only take one of a small number
of shared variables (partial).

Initially, all instructions in the program are assigned a
classification of “NA”, or “Not Assigned”. Then instructions
that are directly assigned from the thread ID variable are
assigned to the category threadID. Similarly, instructions that
are directly assigned from a shared variable are assigned to
the category shared. After this step, the similarity categories
are propagated to other instructions in the program as follows:
(1) if it is a unary instruction, the similarity category of the
instruction is the same as that of its (only) operand, (2) if it
is a binary or ternary instruction, we consider each operand
separately and update the similarity category of the instruction
based on the rules in Table II.

Propagation Rules: Before we present the overall algo-
rithm, we first explain Table II. The rows of Table II corre-
spond to the current instruction’s similarity category, while the
columns correspond to the operand’s similarity category. The
entries in the table indicate the similarity category to which
the instruction should be assigned after processing the operand.

4We look for common code patterns that compute the thread ID. These can
be customized for different libraries.

Because we process each operand separately and update the
instruction’s similarity category after doing so, the same table
applies for both binary and ternary instructions.

TABLE II
RULES TO INFER INSTRUCTION’S SIMILARITY CATEGORY FROM ITS

CURRENT CATEGORY AND THE OPERAND’S CATEGORY

curr inst
operand NA shared threadID partial none

NA NA shared threadID partial none
shared NA shared threadID partial none
threadID NA threadID threadID none none
partial NA partial none partial none
none NA none none none none

We explain the rationale behind Table II with an example.
Assume that the current instruction’s similarity category is
partial. This corresponds to the fifth row in Table II. If the
next operand belongs to category NA, then the instruction’s
category is set to NA and the inferring process ends for this
instruction (the instruction will be revisited later). If the next
operand is shared or partial, the instruction’s category is set to
partial because the instruction continues to depend on local
variables that may come from one of the shared variables.
If the next operand belongs to threadID, the instruction’s
category is set to none because the instruction depends neither
exclusively on one of several shared variables nor the thread
ID, and hence does not satisfy either category. If the next
operand belongs to none, then the instruction’s category also
becomes none as it depends on private variables. Note that
the inference rules are conservative: even if a single operand
belongs to category none, the instruction is updated to this
category (see optimizations for how to mitigate this effect).

One case where we deviate from the rules in Table II is
when a local variable is assigned with a shared value in one
outcome of an if-else branch but not assigned in another, or
is assigned different values in both outcomes. We update its
category to partial instead of shared at the convergence point
of the branch (i.e., the phi instruction in the SSA form). This
is because the shared value is only one possible value that the
variable may take at runtime. An example of this case occurs
in the variable private in Figure 1, which is assigned to one
of the two different constants 1 and −1 in the two outcomes
of branch 3. Hence, its category is assigned to partial.

Multiple Instances: Because a static branch in the program
may be executed multiple times e.g., if it is inside a loop or
the function containing it is called multiple times, its similarity
category may vary depending on the way we group the runtime
instances to check. We illustrate this case with an example
in Figure 2, which is adapted from FFT in the SPLASH-2
Benchmark Suite [12].

In Figure 2, there are two functions slave() and foo() that
are executed by each thread. The slave() function calls foo()
in two different places. Consider branch 1 which is inside
function foo(). The function is called at two different places
in slave(), each time with a different local variable. However,
in each invocation of the function, the local variable used in
the branch condition is the same, namely arg.

1 bool test ;
2 void slave() {
3 ...
4 foo (1);
5 ...
6 if (test) {
7 foo (2);
8 }
9 ...

10 }
11 void foo(int arg) {
12 // Branch 2
13 for(int i = 0; i < 5; i = i + 1) {
14 // Branch 1
15 if (i < arg) {
16 ...
17 }
18 }
19 }

Fig. 2. Example code of multiple runtime instances of the same branch

There are two ways to classify the similarity of this branch.
We can classify it as shared in which case we need to track
the value at each call site separately and ensure that we are
comparing the values from each call site separately. Another
possibility is to merge the values across the call sites, and treat
the branch as belonging to category partial, as it is derived
from multiple shared variables. In this case, we need not track
each invocation separately. We adopt the former policy in spite
of the additional performance overhead it entails, as it allows
us to perform tighter checks on the branch.

Algorithm: We now present the overall algorithm for
inferring each instruction’s similarity category in Figure 3.
The algorithm iterates over all instructions in the program and
updates the similarity category of each instruction by calling
the visit function (lines 4 - 10) on the instruction. This process
is repeated until there are no more changes in the instructions’
similarity categories. The categorymap contains the inferred
categories of all similar branches at the end of the iterations.
The other branches are assigned to none in line 18. One
exception is when the branch’s category is threadID, where
we divide it to two subcategories in the end: first is branches
whose operators are = or ! =, and branches of this category
have no more than 1 thread goes one path while the remaining
threads take the other path (see Table II); the remaining
branches belong to the second subcategory (branches whose
operators are >, <, etc.). For branches of this subcategory,
1 thread must take the its neighbour threads’ branch runtime
behaviour if the two neighbour threads take the same decision
(e.g. if thread 2 and thread 4 takes the branch, thread 3 also
has to take the branch), as the thread ID flows monotonically.

The visitInst() function takes an instruction as an argument,
and walks through each of its operands in turn. For each
operand, it infers the similarity category based on the category
of the operand or by looking up the operand in the catego-
rymap. Then it calls function lookupTable() with the current
instruction’s category as well as the category of the operand.

1 map categorymap;
2
3 main() {
4 bool changed = true;
5 while(changed) {
6 changed = false;
7 for (inst in program) {
8 changed = visitInst (inst) || changed;
9 }

10 }
11
12 for(branch in program) {
13 if (branch in categorymap) {
14 branchcategory =
15 categorymap[branch];
16 }
17 else {
18 branchcategory = ‘‘none’’ ;
19 }
20 }
21 }
22
23 bool visitInst (inst) {
24 Category category = NA;
25
26 for(op in operands) {
27 if (op is constant/global) {
28 category = lookupTable(
29 category, ‘‘ share’ ’);
30 }
31 else if (op is thread id) {
32 category = lookupTable(
33 category, ‘‘ threadID’ ’);
34 }
35 else if (op in categorymap) {
36 category = lookupTable(
37 category, categorymap[op]);
38 }
39 else{ // op is NA
40 return false ;
41 }
42 }
43
44 Category old = categorymap[inst];
45 categorymap[inst] = category;
46 return (category != old);
47 }

Fig. 3. Pseudo-code to show the similarity category identification algorithm

The lookupTable() function uses Table II to find the similarity
category of the current instruction and update it accordingly.

Note that the algorithm terminates in a finite number of
iterations (say k) because the number of similarity categories is
finite and the updated categories in Table II flow monotonically
(i.e., in one direction only). Also, each iteration is proportional
to the number of instructions in the program (say N). In the
worst case, ‘k’ can be at most equal to ‘N’, and hence the
worst-case complexity of the algorithm is O(N2). In practice,
‘k’ is less than ten for the programs we studied.

Example: We illustrate the algorithm in Figure 3 with the
example in Figure 2. Table III shows the similarity categories

TABLE III
EXAMPLE OF CATEGORY PROPAGATION ALGORITHM ON FIGURE 2

Variables
and
Branches

Initial 1st itera-
tion

2nd iter-
ation

3rd iter-
ation

Final
Cate-
gory

test shared shared shared shared shared
arg NA shared shared shared shared
i NA shared shared shared shared
Branch 1 NA NA shared shared shared
Branch 2 NA NA shared shared shared

of the variables and branches in the example after each
iteration of the algorithm. The variables are used as proxies
for the instructions that define them (these are not visible at
the source code level) 5. The algorithm converges within three
iterations in this example. Note that the categories of the two
branches in the first iteration are NA because in SSA form,
the definition instruction of variable i has two operands: 0 and
i+ 1, and i+ 1 is executed after the branch 1 and branch 2.
Therefore, when we visit the two branches in the first iteration,
the category of i is still NA and hence the branches’ categories
are not updated. Later in this iteration, the category of i is
determined as shared and the two branches’ categories are
changed in the 2nd iteration, after which there are no more
changes.

Optimizations: We perform two optimizations over the
base algorithm in Figure 3 to improve the coverage and the
performance of the technique.

Because the algorithm for inferring static branch similarity
is conservative, it will label some branches as none even
if there is a single operand that it determines as private
(not shared). However, in practice we find that considerable
similarity exists even in these branches, as the private variable
may have the same value across threads. We therefore promote
such branches to the partial category and only compare the
threads which have the same value for the private variable.

In some cases, a branch can be executed by no more than
one thread at a time (e.g., branches inside critical sections).
We remove the checks on such branches as BLOCKWATCH
needs a minimum of two threads to detect errors that violate
the threads’ similarity. Checking such branches would incur
runtime overheads while providing no coverage benefit.

B. Runtime Checking

This section details the implementation of a runtime mon-
itor to check the statically inferred similar branches in Sec-
tion III-A. The monitor is spawned as a separate thread in the
program6, and has three design goals as follows.

1) Asynchronous: The monitor must interfere minimally
with the program’s execution. In particular, it should not
be in the critical path of the program, and must execute
asynchronously with the program’s threads.

2) Unique branch identifier and fast lookup: The monitor
must assign a unique identifier for each runtime branch.

5In SSA form, instructions and variables are synonymous with each other.
6BLOCKWATCH adds instrumentation to the program to spawn the monitor

thread.

Fig. 4. Monitor architecture

Moreover, given a specific branch identifier, it must be
possible to do a fast lookup of the branch’s runtime
characteristics of different threads. The two requirements
are important for correlating the information across
multiple threads when storing the branches’ runtime
behaviours.

3) Lock freedom: The monitor must acquire no locks, as
doing so may introduce deadlocks in the program, and
also lead to unnecessary serialization of the program.

Architecture: We achieve goals 1 and 3 through separate
front-end queues for each thread to send its branch informa-
tion. The monitor thread asynchronously scans the queues and
processes the information without using any locks. We achieve
goal 2 through the use of a back-end hash table to store the
branches based on their identifiers. The architecture of the
monitor is illustrated in Figure 4.

Operation: The operation of the monitor is as follows:

• When a branch is executed by a thread in the program,
it will execute an instrumentation function that transfers
the branch’s information to the monitor. This function is
inserted by the compiler for the branches identified as
similar by the algorithm in Section III-A.

• The function appends the branch information to the
thread-specific front-end queue of the monitor (recall that
in a shared memory architecture, the entire address space
is visible to all the threads), without taking a lock. The
function returns immediately after the insertion.

• The monitor thread asynchronously removes the branch
information from the thread-specific front-end queues in
round robin fashion. No lock is required as the removal
is done from the front of the queue while the insertion is

1 void slave() {
2 ...
3 sendBranchCondition(4 /∗static branch ID∗/, procid,
4 private /∗condition∗/ , loop iter);
5 /∗ loop iter here means the loop iteration
6 number of all outer loops∗/
7
8 // Branch 4: Partial
9 if (private > 0) {

10 sendBranchAddr(4 /∗static branch ID∗/, procid,
11 TAKEN /∗behaviour∗/, loop iter);
12 ...
13 }
14 else {
15 sendBranchAddr(4 /∗static branch ID∗/, procid,
16 NOTTAKEN /∗behaviour∗/, loop iter);
17 }
18 }

Fig. 5. Example code to show the instrumented program

done at the back. Further the queues are of fixed length7,
so there is no need to dynamically allocate memory.

• The monitor thread inserts the branch information into
the back-end hash-table using the identifier of the branch
as the key (see below). Thus, the same instance of a given
branch across different threads will all occupy the same
entry in the hash table.

• Once all threads have reported the outcomes of a specific
branch, the monitor checks them by reading the hash table
entry corresponding to the branch.

Instrumentation: We instrument the similar branches iden-
tified by the static analysis algorithm in Section III-A with
calls to our custom library, which send the branches’ runtime
behaviours to the monitor.

We illustrate the instrumentation with an example. Figure 5
shows the instrumentation added for branch 4 in Figure 1.
Recall that this branch belongs to the partial category. The
library calls are highlighted with boldface in Figure 5, and
consist of the following two functions.

• sendBranchCondition: Sends the branch condition to the
monitor, so that the monitor can check if all threads for
which the condition variable is identical, have the same
branch outcome.

• sendBranchAddr: Sends the branch address to the moni-
tor, so that the monitor can compare the target addresses
of all threads for which the condition is the same.

In both cases, the functions send the static branch identifier,
the outer loop iteration number, and the thread ID. The former
two fields are used to find the hash table key of the branch,
while the thread ID is used to identify which thread sends the
data.

Hash table: The hash table identifier of a branch is
obtained by combining its static identifier with a runtime
identifier. The static identifier encodes the static position of

7We set the queue length to a sufficiently large value to prevent it from
being a bottleneck. This value can be modified if needed.

the branch in the program. Each branch within a function
or loop is assigned the same static identifier. The runtime
identifier distinguishes among different instances of the branch
in different loop iterations and at different call sites (through
instrumentation).

With the hash table identifier information, we implement
the hash table as shown in Figure 6. In Figure 6, the hash
table is implemented as a 2-level table. In the first level,
the function ID (added by instrumented code) and the static
branch identifier is used to generate the key for the map.
In the second level, the loop iteration number of all outer
loops is used to generate the key for the hash table and the
branch runtime behaviours across threads are the value of
the hash table. The static branch identifier is put in the first
level because different runtime instances of the same static
branch share some information (e.g. similarity category) and
all runtime instances can share the one copy of data if it is
put in the first level. The function IDs of the call sites and
the loop iteration numbers are put in two separate levels due
to memory and performance overhead considerations (better
utilize the memory in L1 table and improve hash table access
performance of L2 table).

Performance Optimizations: For performance considera-
tions, the monitor executes asynchronously and does not affect
the program execution. For the original program, it only needs
to send the branch runtime behaviours to the front-end queue.
In order to further improve the performance, we do two main
optimizations:

1) Multi-core optimization: since we need the loop it-
eration numbers and call site identifiers to generate
runtime identifiers for the hash table, we maintain the
information across threads in the same object. This can
lead to false sharing8. According to the cache coherence
protocol [14], a thread in one processor core will invalid
the cache lines of another thread on another core when
it writes to the cache lines which have another copy
on that core. Because of the invalidation of cache line,
different threads have to re-fetch the data in the memory
and this will lead to the increase of execution time. Since
different cores in a processor have separate L1 and L2
caches, the multi-core optimization makes sure different
threads’ data occupy different L2 cache lines and hence
reduce the false sharing.

2) Multi-processor optimization: Although data of dif-
ferent threads are put in different L2 cache lines and
it reduces the false sharing, they may be put in the
same L3 cache line in current multi-core processors. It
won’t affect the performance when the program runs on
multi-core processors where L3 cache is shared among
the cores in a processor. However, when the program
runs on multi-processors, L3 cache is not shared among
the processors and it will lead to false sharing in L3

8False sharing happens when one processor core attempts to periodically
access data that will never be altered by another core, but that data shares a
cache line with data that is altered, and the caching protocol may force the
first core to reload the whole cache line despite a lack of logical necessity

Fig. 6. Back-end hash table

cache line, which will cause the invalidation of L3 cache
line when there is a write to the shared cache lines.
Therefore, we use thread-local object to store data of
different threads and ensure they are not put on the same
L3 cache line, which further improves the performance
on multi-processors.

IV. EXPERIMENTAL SETUP

In this section, we first describe the tools used in implement-
ing BLOCKWATCH. Then we describe the benchmarks used to
evaluate BLOCKWATCH. Finally, we discuss how we evaluate
the performance and the fault coverage of BLOCKWATCH.

Implementation Tools: We implement BLOCKWATCH
using the LLVM compiler infrastructure [15]. LLVM is a
compilation infrastructure for lifelong program analysis and
transformation. It has an intermediate representation (IR)
that uses Static Single Assignment (SSA) form. The IR is
manipulated by our custom passes before being compiled to
machine code. We first compile the program to LLVM IR
and apply BLOCKWATCH’s static analysis to: (1) analyze the
program’s IR and find the similarity category for each branch;
(2) instrument the program’s IR with calls to our custom
library. Finally, we compile the instrumented IR to machine
code on our target platform. We also use the Boost library’s
hash table in the runtime monitor’s implementation [16].

Benchmarks: We use seven programs in the SPLASH-
2 Benchmark Suite [12] for evaluating BLOCKWATCH. The
SPLASH-2 Benchmark Suite has been extensively used for
studies of shared memory parallel programs. We use the
default configurations of the suite except that we vary the
number of threads in order to study the scalability of BLOCK-
WATCH. Table IV describes the characteristics of the seven
programs. In the table, the parallel section refers to the part of
the program which is executed concurrently by two or more
threads. Because BLOCKWATCH relies on the similarity across
threads to detect errors, we focus on the parallel section of the
program.

TABLE IV
CHARACTERISTICS OF BENCHMARK PROGRAMS

Benchmark Total
lines
of code
(LOC)

LOC in
parallel
section

Total
number
of
branches

Number of
branches in
parallel sec-
tion

continuous ocean 5329 4217 876 785
FFT 1086 561 110 44
FMM 4772 3246 395 321
non-continuous
ocean

3549 2487 543 478

radix 1112 441 99 35
raytrace 10861 7709 726 268
water-nsquared 2564 1474 144 103

Performance Evaluation: We evaluate the performance
overhead of BLOCKWATCH on a 32-core processor that con-
tains four 8-core AMD Opteron 6128 processors running at
2 Ghz each. In order to study the performance overhead
and the scalability of BLOCKWATCH, we vary the number
of threads from 1 to 32 and measure the time spent in
the parallel section of the program, both with and without
BLOCKWATCH. For execution time with BLOCKWATCH, we
measure it under both multi-core optimization and multi-
processor optimization cases separately. We do not measure
the checking time of monitor thread, as the monitor thread is
executed asynchronously and hence does not have a significant
effect on the execution time of the program’s parallel section.
The SPLASH-2 programs can scale at least to 64 threads [12].

To measure the performance with 32 threads, we disable
the monitor thread during the execution of the main program
so as not to interfere with it (this is because our machine has
only 32 cores and we need 33 threads for the program with
the monitor). We have verified that the difference in execution
times is negligible under this scenario for the 16 thread case.
Note that the threads still send the branch information to the
front-end queues of the monitor - the only difference is that
the monitor does not do anything with the information. We do

not have a machine with more than 32 cores, and hence we
adopt this approach.

False Positives: To verify there are no false positives, we
perform 100 error-free runs for each program instrumented
by BLOCKWATCH and check if there are errors reported by
it. The results show that BLOCKWATCH does not report any
errors, i.e., there are no false positives.

Coverage Evaluation: We evaluate the error detection
coverage of BLOCKWATCH through fault injection studies.
Specially, we focus on detections of Silent Data Corruptions
(SDCs). SDCs are failures in which the program finishes
executing but the output deviates from the golden result in
an error-free run. In this paper, we focus on SDCs because
crashes and hangs can be easily detected through other means
(e.g., heartbeats). Further, the program can be restarted from
a checkpoint upon a crash or a hang, and continued.

We build a fault injector with the PIN tool [17]. PIN
is a dynamic instrumentation framework for programs on
X86 processors. The goal of the fault injector is to simulate
transient hardware faults that propagate to a branch instruction
in exactly one thread of the program. We focus on branch
instructions because BLOCKWATCH targets hardware faults
that propagate to the control data of programs (i.e., data used
by branches) in this study.

The fault injection procedure consists of three steps. First,
we instrument an m-thread program using PIN and record the
number of branches executed by each thread of the program
at runtime (say ni where 0 < i < m). In the second step,
we randomly pick a thread from 1 to m, say j, and choose
the jth thread to inject faults. Then we select a number from
1 to nj , say k, and choose the kth branch of jth thread
at runtime to inject. Thirdly, we flip a single bit in either
the flag register or condition variable of the chosen branch
instruction of jth thread. The former fault leads to the branch
being flipped, i.e., going the wrong (but legal) way. This is to
verify the correctness of BLOCKWATCH in detecting branch
runtime behaviour deviations. The latter fault may or may
not lead to the branch being flipped. For example, a fault
in a branch condition that flips the least significant bit of
the condition variable, may not affect the comparison being
performed by the branch. However, the corruption introduced
in the condition variable will persist even after the execution
of the branch, and is more representative of hardware faults
in the control data. This is to verify that the effectiveness
of BLOCKWATCH in detecting control-data errors. In the
technical report, we also inject faults that only propagate to the
flag register and condition data of the instrumented branches
(branches that belong to shared, threadID or partial), and
we also inject faults that propagate to any instructions in the
program. Only one fault is injected in each run of the program
to ensure controllability.

Because PIN can monitor all executed instructions in the
program, the fault injection considers all branches in the
program, and is not restricted to those that are instrumented by
BLOCKWATCH. However, we do not consider the instrumen-
tation added by BLOCKWATCH for injection, as errors that

affect these branches can at worst lead to additional crashes
or hangs, but not to SDCs, as they do not affect the program.

After injecting the fault, we track its activation and whether
it is detected by the monitor. If not, we let the program execute
to completion (if it does not crash/hang), and compare the
results with the golden result to measure the SDC percentage.

For each experiment, we inject 1000 faults of each type
and find how many faults are activated9. We calculate the
coverage as the probability that an activated fault will not
lead to an SDC [18]. In other words, coverage = 1−SDCf ,
where SDCf is the fraction of activated faults that lead to an
SDC. Thus the coverage includes faults that lead to program
crashes/hangs as well as masked faults. In reality, even an
unprotected program will typically have non-zero coverage
due to natural redundancies and memory protections provided
by the operating system, and hence we measure the coverage
of the program both with and without BLOCKWATCH.

V. RESULTS

In this section, we present the results of the evaluation
of BLOCKWATCH. First, we present the relative frequencies
of the branch similarity categories in the benchmark pro-
grams as discovered by BLOCKWATCH. Then we present
the performance overheads and error detection coverage of
BLOCKWATCH for the programs.

A. Similarity Category Statistics of Branches

We run the static analysis part of BLOCKWATCH on the
seven SPLASH-2 programs. Table V shows the number of
branches in each program that fall into the similarity cate-
gories in Table I, as discovered by the static analysis phase
of BLOCKWATCH. We also calculate the percentage of the
branches that belong to each similarity category based on the
total number of branches in the program’s parallel section.

TABLE V
SIMILARITY CATEGORY STATISTICS OF THE BRANCHES IN 7 PROGRAMS

Program Total No.(%) of branches of each category
shared threadID partial none

continuous
ocean

785 30
(4%)

12
(2%)

723
(92%)

20
(2%)

FFT 44 14
(32%)

11
(25%)

18
(41%)

1
(2%)

FMM 321 51
(16%)

8
(2%)

98
(31%)

164
(51%)

non-continuous
ocean

478 22
(5%)

116
(24%)

329
(69%)

11
(2%)

radix 35 11
(31%)

9
(26%)

7
(20%)

8
(23%)

raytrace 268 12
(4%)

4
(1%)

117
(44%)

135
(51%)

water-nsquared 103 34
(33%)

12
(12%)

26
(25%)

31
(30%)

The results in Table V are as follows. In general, between
49% to 98% of the branches fall into the shared, threadID and
partial categories. This means the BLOCKWATCH is able to

9An activated fault is one that is exercised in the system in some way. Over
75% of the injected faults are activated in our experiments.

statically identify at least 50% of the branches as similar across
the seven programs. FMM and raytrace have relatively fewer
similar branches, as many branches in these programs have
both variables in the branch conditions to be local variables.
These branches are identified as belonging to category none
according to the propagation rules in Section III-A.

Thus we see that a significant fraction of branches in each
program are identified as similar by the static analysis phase
of BLOCKWATCH, and are hence eligible for checking in
the runtime phase. This shows that BLOCKWATCH can be
applied to commonly used parallel programs. Note that our
static analysis is rather conservative and hence these are lower
bounds on the number of similar branches in a program.

B. Performance Overheads

Comparison of multi-core optimization and multi-
processor optimization: Figure 7 shows the execution time
of the seven SPLASH-2 programs with BLOCKWATCH for
multi-core optimization and multi-processor optimization in 4-
thread case. The results are normalized to the execution time
of the program without BLOCKWATCH for the same number
of threads, and hence the baseline is 1.0. It shows that the
geometric mean of the performance overhead for multi-core
optimization is 2.65X, and the multi-processor optimization
brings the overhead down to 2.15X. The reason is that the
computer used for evaluation is a multi-processor and L3 cache
is not shared across processors. Multi-processor optimization
reduces false sharing of BLOCKWATCH in L3 cache and
hence decreases the performance overhead. Note that the
performance results hereafter are data with multi-processor
optimization.

Performance overhead: Figure 8 shows the execution
times of the seven SPLASH-2 programs with BLOCKWATCH
for 4 threads and 32 threads. The results are normalized to the
execution time of the program without BLOCKWATCH (for the
same number of threads), and hence the baseline is 1.0.

From Figure 8, the geometric mean of the performance
overhead of BLOCKWATCH is 2.15X with 4 threads, and
1.16X with 32 threads. Thus the performance overhead of
BLOCKWATCH with 32 threads is only 16%, and is lower
than that for 4 threads (see below for why).

Scalability: We study the scalability of BLOCKWATCH by
considering the variation of the geometric mean of the perfor-
mance overheads (across all 7 programs) with the number of
threads. The results are shown in Figure 9 as the number of
threads is varied from 1 to 32.

In Figure 9, we find that the overhead of BLOCKWATCH
first increases as the number of threads increases from 1 to
2, and then decreases as the number of threads increases
from 2 to 32. The reason for the overhead increase from 1
to 2 threads is that the machine we use consists of four 8-
core processors and is not fully symmetric. This asymmetry
causes the memory access time to depend on where the threads
execute. When we increase the number of threads from 1 to
2, the operating system schedules the 2 threads to cores in
different processors. Thus, the threads cannot share data at

Fig. 9. Geometric mean of BLOCKWATCH overhead (baseline is program
without BLOCKWATCH) Vs. number of threads

the cache level and the memory access time increases. This
hurts the program with BLOCKWATCH more than the original
program, and the overhead of BLOCKWATCH increases.

The reason for the decrease of overhead from 2 to 32
threads is that when the number of threads doubles, the
work done by each thread reduces by half and so does the
number of branches executed by each thread. However, due to
communication and waiting among threads, the reduction in
execution time of the program is less than 2X. Nonetheless,
when the number of threads increases, the relative time spent
on BLOCKWATCH reduces and so does the overhead of
BLOCKWATCH (upto 32 threads in Figure 9).

C. Error Detection Coverage

We study the coverage (for SDC) with BLOCKWATCH
under five kinds of faults: branch-flip faults, branch-condition
faults, branch-flip faults in instrumented branches, branch-
condition faults in instrumented branches and regular instruc-
tion faults. The first type of fault is guaranteed to flip the
branch but does not corrupt any program data directly. The
second type of fault corrupts the branch’s condition data but
does not necessarily lead to branch flip. The third and the forth
types of faults are similar to former two types, but they are
injected only into the instrumented branches. The final type
of faults that propagate to any instructions.

The results are shown in Figure 10 to Figure 14. Note
that the coverage of y axis in all five figures starts from
50%. In the figures, coverageoriginal is the coverage of the
original program, and coverageBLOCKWATCH is the coverage of
the program protected by BLOCKWATCH.

1) Coverage results for branch-flip faults: Figure 10
shows the coverage with and without BLOCKWATCH for
all programs under branch flip faults. Across the pro-
grams, the average coverageoriginal is 83%, while average
coverageBLOCKWATCH is 97% for the 4-thread program, and
98% for the 32-thread program. Other than raytrace, all pro-
grams have a coverage value between 99% - 100% when pro-
tected with BLOCKWATCH, whereas without BLOCKWATCH,
their coverage value is between 60% (radix) and 98% (FMM).
In other words, BLOCKWATCH detects almost all branch-flip
faults that cause SDCs for six of the seven programs.

Fig. 7. Execution time of program with BLOCKWATCH/ execution time of program without BLOCKWATCH for multi-core optimization and multi-processor
optimization in 4-thread case. Lower is better

Fig. 8. Execution time of program with BLOCKWATCH/ execution time of program without BLOCKWATCH. Lower is better

Fig. 10. coverageoriginal (baseline) and coverageBLOCKWATCH (aggregated number) for branch-flip faults: The dark part is due to the detection provided
by BLOCKWATCH. Higher is better.

For raytrace, the coverage with BLOCKWATCH is about
85%, which is comparable to the coverage obtained without
BLOCKWATCH (for both 4 and 32 threads). Thus, the cov-
erage benefit provided by BLOCKWATCH for this program is
negligible. There are two main reasons for this result. First,
raytrace makes extensive use of function pointers, that may
point to different functions for different threads at runtime.
Therefore, the number of threads that execute the same func-
tion is low, and hence BLOCKWATCH does not have enough
threads to compare at runtime. Second, BLOCKWATCH uses
the outer loops’ iteration numbers to generate the hash table
key for a branch (Section III-B). However, due to the overhead
considerations, we choose to only check the branches whose
nesting levels are smaller than six. In other words, any branch
that occurs in loops deeper than six levels of nesting is not
checked by BLOCKWATCH. Raytrace has many loops deeper
than six levels of nesting.

2) Coverage results for branch-condition faults: Figure 11
shows the results of coverage of the seven programs both with
and without BLOCKWATCH, when faults are injected into the
branch’s condition data. The results are similar to those in
Figure 10. For example, when BLOCKWATCH is used, the
coverage increases from 90% to 97% for both the 4-thread
and 32-thread cases. However, the average coverageoriginal
value is 90%, which is much higher than the coverageoriginal
for branch-flip faults (average 83%). This is because unlike
branch-flip faults, branch-condition faults may or may not
cause the branch to flip, and branch flips are more likely to
lead to SDCs.

3) Coverage results for branch-flip faults and branch-
condition faults in instrumented branches: Figure 12 and
Figure 13 show the results of coverage of the seven programs
both with and without BLOCKWATCH, when faults are injected
into the instrumented branch’s flag register and condition
data. For continuous ocean, FFT and non-continuous ocean,
The results are consistent with the corresponding results in
Figure 12 and Figure 13. This is because we instrument almost
all branches in the parallel section(98%). For the remaining 4
benchmarks, the coverage for instrumented branches is higher
than the corresponding coverage for all branches.

4) Coverage results for regular instruction faults: Figure 14
shows the results of coverage of the seven programs where
faults are propagated to any regular instructions. The results
show that BLOCKWATCH detects a small proportion of the
SDCs. The reason is that the faults that propagate to the
regular instructions may not corrupt the control-data and lead
to branch flip, which is the errors that BLOCKWATCH is
applicable to.

VI. DISCUSSION

In this section, we compare the error-detection coverage
and performance overhead of BLOCKWATCH with that of
software-based duplication.

Coverage: Duplication is a general technique that can
protect programs from a large class of errors. However, we
focus on control-data errors in this section as this is the

focus of BLOCKWATCH. Our results show that BLOCKWATCH
improves the SDC coverage of the SPLASH-2 programs under
both branch-flip faults and branch-condition faults. Other than
raytrace, all programs have a coverage value between 98% and
100% for errors in the control data. This indicates that when
the program is protected with BLOCKWATCH, the percentage
of SDCs is less than 2% for 6 of the 7 programs. To our
knowledge, duplication is the only other generic technique that
can provide near 100% coverage for SDCs. However, it has
other disadvantages (see below).

The coverage results can be improved in several ways: for
example, we use a fairly conservative method to classify the
branches’ category in this study, the result of which is that
there are some branches that may have runtime similarities
but are not checked by BLOCKWATCH. Therefore, we can
improve the coverage of BLOCKWATCH by using a more
aggressive static analysis or by incorporating the program’s
dynamic information in the classification of the branches.

Performance: The average performance overhead of
BLOCKWATCH is 115% for 4 threads and 16% for 32 threads.
In contrast, software-based duplication incurs overheads of
200% to 300% for sequential programs [9]. Although this
overhead can be reduced through the use of speculative
optimizations, doing so is not straightforward for parallel
programs due to their non-determinism. Thus, the overhead
of BLOCKWATCH is comparable to that of software-based
duplication in the 4-thread case, but is almost an order of
magnitude lower in the 32-thread case.

Further, BLOCKWATCH is scalable while duplication is not.
This is because duplication requires program determinism,
which may not hold for parallel programs. This problem can
be solved through using determinism inducing techniques [19],
[20]. However, determinism inducing techniques require the
replica threads and the programs’ threads to follow the same
execution order. Forcing execution order among threads incurs
communication and waiting overheads that are proportional to
the number of threads in the program, and does not scale. In
contrast, BLOCKWATCH scales as it neither requires program
determinism nor locking.

BLOCKWATCH can be optimized to further reduce its over-
head. For example, our current implementation adds checks for
every branch that is eligible for checking. However, there may
be many branches that depend on the same set of variables, and
faults propagating to the data will affect all of them. Therefore,
it is sufficient to check one of the branches.

As we scale BLOCKWATCH to higher numbers of threads,
it is possible that the monitor itself becomes a bottleneck. To
alleviate this, we can have multiple monitor threads structured
in a hierarchical fashion, each of which is assigned to a sub-
group of threads. This is an avenue for future work.

In this study, we use a sufficiently large fixed-size queue
for each thread to buffer the branch runtime behaviours. it is
not memory efficient and sometimes it is not easy to decide
an appropriate queue size. To further optimize it, we can
implement a queue array for each thread and dynamically
allocate and deallocate a fixed-size queue when necessary. In

Fig. 11. coverageoriginal (baseline) and coverageBLOCKWATCH (aggregated number) for branch-condition faults: The dark part is due to the detection
provided by BLOCKWATCH. Higher is better

Fig. 12. coverageoriginal (baseline) and coverageBLOCKWATCH (aggregated number) for branch-flip faults in instrumented branches: The dark part is due
to the detection provided by BLOCKWATCH. Higher is better.

Fig. 13. coverageoriginal (baseline) and coverageBLOCKWATCH (aggregated number) for branch-condition faults in instrumented branches: The dark part
is due to the detection provided by BLOCKWATCH. Higher is better

Fig. 14. coverageoriginal (baseline) and coverageBLOCKWATCH (aggregated number) for regular instruction faults: The dark part is due to the detection
provided by BLOCKWATCH. Higher is better

this way, we can dynamically change the front-end queue’s
size while guaranteeing lock-free architecture.

VII. RELATED WORK

We classify related work on error detection into five broad
categories. For brevity, we consider only software techniques,
as BLOCKWATCH is software-based. Also, we discuss dupli-
cation in detail in Section VI, and do not consider it here.

Control-flow checking: Control-flow Checking (CFC) tech-
niques such as ECCA [21], PECOS [22] and CFCSS [23]
check the conformance of the program’s control-flow to its
static control flow graph. However, CFC techniques cannot
detect errors that propagate to the control data and lead to
a valid but incorrect branch outcome, i.e., control-data errors
that result in the branch going the other way than its error-
free behaviour. This is the class of errors that BLOCKWATCH
detects.

Statistical techniques: AutomaDeD [10] uses Semi-
Markov Models (SMMs) to find parallel tasks that devi-
ate from other tasks’ behavior. AutomaDeD is similar to
BLOCKWATCH in that both techniques consider deviations as
detections. However, AutomaDeD differs from BLOCKWATCH
in three ways. First, AutomaDeD requires the programmer to
annotate their code with region identifiers which are used as
the building blocks of the SMMs. Second, AutomaDeD is
targeted towards software bugs during debugging, and not at
runtime hardware errors. Finally, AutomaDeD learns SMMs
at runtime, and can incur false-positives.

Mirgorodskiy et al. [11] use statistical techniques based on
function execution times in parallel programs’ tasks to detect
outliers. However, this approach does not detect errors that
do not cause a noticeable difference in the execution times
of functions. Their approach also incurs false-positives as the
execution times are learned at runtime.

Invariant based Checks: DMTracker [24] leverages invari-
ants on data movement to find bugs in MPI-based parallel
programs. They leverage the observation that MPI programs

have regular communication patterns, which gives rise to
invariants on the transfer of data among the different tasks.
DMTracker differs from BLOCKWATCH in three ways. First,
the invariants are specific to MPI-based programs, and do
not apply for shared memory parallel programs. Second, the
invariants derived by DMTracker pertain to the messages sent
by the program, and not necessarily to the control-data. Finally,
DMTracker attempts to learn the pattern of data transfer at
runtime and may hence incur false-positives.

FlowChecker [25] also finds errors by tracking invari-
ants on communication operations in MPI parallel programs.
FlowChecker extracts message intentions, which are matching
pairs of sends and receive MPI calls, and checks whether
the message flows in the underlying MPI library match the
extracted intentions. The goal of FlowChecker is to find bugs
in MPI libraries that cause data loss or lead to mismatched
messages, rather than runtime hardware errors.

Static and Dynamic Analysis: Static analysis has been
extensively used for verifying in parallel programs [26], [27].
In these cases, the goal is to find bugs in the program, rather
than detect runtime errors arising in hardware. Pattabiraman et
al. [28] use static analysis to derive runtime error detectors for
sequential programs. Their technique differs from ours in three
ways. First, they confine themselves to critical variables that
have high fanout in the program. Second, they duplicate the
backward slice of the critical variable, and compare the value
computed by the slice with that in the program. This approach
will not work for non-deterministic parallel programs. Finally,
they use support from the hardware to track control-flow
within the program, and hence require hardware modifications.

Dynamic analysis techniques detect errors by learning in-
variants over one or more executions [29], [30], [31]. These
techniques target only sequential programs, and hence do
not consider similarity across threads . In recent work, Yim
et. al. [32] propose a technique to learn invariants for GPU
programs, and use the invariants for detecting errors. However,

their focus is on errors that can cause large deviations in
the output as GPU programs are inherently error-tolerant. A
generic problem with all dynamic techniques is that of false-
positives, which can trigger unwanted detection and recovery.

Algorithmic techniques: Algorithm-based Fault Tolerance
(ABFT) is an error detection technique for specialized par-
allel computations such as matrix manipulation and signal
processing [33], [34]. In recent work, Sloan et al. [35] de-
velop error-resilient gradient descent algorithms for stochastic
processors, or processors that allow variation-induced errors
to occur by drastically shaving off design margins in order
to save power. While these techniques are efficient, they only
protect programs of the specific type they target. In contrast,
BLOCKWATCH targets general-purpose parallel programs.

VIII. CONCLUSION

This paper presented BLOCKWATCH to detect control-data
errors in SPMD parallel programs. BLOCKWATCH statically
infers the similarity of the program’s control-data across
threads, and checks their conformance to the inferred sim-
ilarity at runtime. Upon detecting a violation, it raises an
exception and reports the error. Experimental results show that
BLOCKWATCH increases the average SDC coverage across
seven programs from 83% (90%) to 97% for branch-flip faults
(branch-condition faults), while incurring only 16% overhead
in the 32 thread case (on a 32 core machine). BLOCKWATCH
is automated, incurs zero false-positives and can run on
unmodified hardware and on existing programs.

REFERENCES

[1] S. Borkar and A. Chien, “The future of microprocessors,” Communica-
tions of the ACM, vol. 54, no. 5, pp. 67–77, 2011.

[2] D. J. Sorin, Fault Tolerant Computer Architecture. Morgan & Claypool
Publishers, 2009.

[3] S. Borkar, “Thousand core chips: a technology perspective,” in Proc. of
the 44th Annual Design Automation Conference, 2007, pp. 746–749.

[4] H. Sutter and J. Larus, “Software and the concurrency revolution,”
Queue, vol. 3, no. 7, pp. 54–62, 2005.

[5] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, pp. 375–408, 2002.

[6] F. Darema, “The SPMD model: Past, present and future,” in Proc. of
the 8th Euro. PVM/MPI Users’ Group Meeting, 2001, p. 1.

[7] D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart, T. Metodi,
and F. Chong, “Characterization of error-tolerant applications when
protecting control data,” in IEEE Int’l Symposium on Workload Char-
acterization, 2006, pp. 142–149.

[8] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, “SWIFT:
Software implemented fault tolerance,” in Proc. of the Int’l Symposium
on Code Generation and Optimization, 2005, pp. 243–254.

[9] Y. Zhang, J. Lee, N. Johnson, and D. August, “DAFT: decoupled
acyclic fault tolerance,” in Proc. of the 19th Int’l Conference on Parallel
Architectures and Compilation Techniques, 2010, pp. 87–98.

[10] G. Bronevetsky, I. Laguna, S. Bagchi, B. de Supinski, D. Ahn, and
M. Schulz, “AutomaDeD: Automata-based debugging for dissimilar
parallel tasks,” in DSN, 2010, pp. 231–240.

[11] A. Mirgorodskiy, N. Maruyama, and B. Miller, “Problem diagnosis in
large-scale computing environments,” in Proc. of ACM/IEEE Conference
on Supercomputing, 2006, pp. 88–100.

[12] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2
programs: Characterization and methodological considerations,” in ACM
SIGARCH Computer Architecture News, vol. 23, no. 2, 1995, pp. 24–36.

[13] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck, “Effi-
ciently computing static single assignment form and the control depen-
dence graph,” ACM Trans. on Programming Languages and Systems
(TOPLAS), vol. 13, no. 4, pp. 451–490, 1991.

[14] J. Archibald and J.-L. Baer, “Cache coherence protocols: evaluation
using a multiprocessor simulation model,” ACM Trans. Comput. Syst.,
vol. 4, pp. 273–298, 1986.

[15] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO, 2004, pp. 75–86.

[16] B. Karlsson, Beyond the C++ standard library. Addison-Wesley
Professional, 2005.

[17] V. Reddi, A. Settle, D. Connors, and R. Cohn, “PIN: a binary instrumen-
tation tool for computer architecture research and education,” in Proc.
of Workshop on Computer Architecture Education, 2004, p. 22.

[18] R. Alexandersson and J. Karlsson, “Fault injection-based assessment of
aspect-oriented implementation of fault tolerance,” in DSN, 2011, pp.
303–314.

[19] C. Basile, K. Whisnant, Z. Kalbarczyk, and R. Iyer, “Loose synchro-
nization of multithreaded replicas,” in Proc. of 21st IEEE Symposium
on Reliable Distributed Systems, 2002, pp. 250–255.

[20] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: efficient deter-
ministic multithreading in software,” in ACM SIGPLAN Notices, vol. 44,
no. 3, 2009, pp. 97–108.

[21] Z. Alkhalifa, V. Nair, N. Krishnamurthy, and J. Abraham, “Design
and evaluation of system-level checks for on-line control flow error
detection,” IEEE Trans. on Parallel and Distributed Systems, vol. 10,
no. 6, pp. 627–641, 1999.

[22] S. Bagchi, Z. Kalbarczyk, R. Iyer, and Y. Levendel, “Design and
evaluation of preemptive control signature (PECOS) checking,” IEEE
Trans. on Computers, 2003.

[23] N. Oh, P. Shirvani, and E. McCluskey, “Control-flow checking by
software signatures,” IEEE Trans. on Reliability, vol. 51, no. 1, pp.
111–122, 2002.

[24] Q. Gao, F. Qin, and D. Panda, “Dmtracker: finding bugs in large-scale
parallel programs by detecting anomaly in data movements,” in Proc. of
ACM/IEEE Conference on Supercomputing, 2007, p. 15.

[25] Z. Chen, Q. Gao, W. Zhang, and F. Qin, “Flowchecker: Detecting bugs
in MPI libraries via message flow checking,” in SC, 2010, pp. 1–11.

[26] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for
Java,” ACM PLDI, vol. 41, no. 6, pp. 308–319, 2006.

[27] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. Supinski, M. Schulz,
and G. Bronevetsky, “A scalable and distributed dynamic formal verifier
for MPI programs,” in SC, 2010, pp. 1–10.

[28] K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Automated derivation of
application-aware error detectors using static analysis,” in IEEE On-Line
Testing Symposium, IOLTS 07., 2007, pp. 211–216.

[29] M. Hiller, A. Jhumka, and N. Suri, “On the placement of software
mechanisms for detection of data errors,” in DSN, 2002, pp. 135–144.

[30] S. Hangal and M. Lam, “Tracking down software bugs using automatic
anomaly detection,” in Proc. of the 24th Int’l Conference on Software
Engineering, 2002, pp. 291–301.

[31] S. Sahoo, M. Li, P. Ramachandran, S. Adve, V. Adve, and Y. Zhou,
“Using likely program invariants to detect hardware errors,” in DSN,
2008, pp. 70–79.

[32] K. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer, “Hauberk:
Lightweight silent data corruption error detector for GPGPU,” in IPDPS,
2011, pp. 287–300.

[33] K. Huang and J. Abraham, “Algorithm-based fault tolerance for matrix
operations,” IEEE Trans. on Computers, pp. 518–528, 1984.

[34] J. Plank, Y. Kim, and J. Dongarra, “Algorithm-based diskless check-
pointing for fault tolerant matrix operations,” in Fault-Tolerant Comput-
ing (FTCS), 1995, pp. 351–360.

[35] J. Sloan, D. Kesler, R. Kumar, and A. Rahimi, “A numerical
optimization-based methodology for application robustification: Trans-
forming applications for error tolerance,” in DSN, 2010, pp. 161–170.

