
Intermittent Hardware Errors Recovery: Modeling
and Evaluation

Layali Rashid, Karthik Pattabiraman and Sathish Gopalakrishnan
The University of British Columbia, Canada

{lrashid, karthikp, sathish}@ece.ubc.ca

Abstract—The frequency of hardware errors is increasing
due to shrinking feature sizes, higher levels of integration, and
increasing design complexity. Intermittent errors are those that
occur non-deterministically at the same location. It has been
shown that intermittent hardware errors contribute to about
39% of the total hardware failures. Intermittent faults have
characteristics that are different than transient and permanent
errors, which makes it challenging to devise efficient recovery
techniques for them.

In this paper, we evaluate the impact of different intermittent
error recovery scenarios on the processor performance. To
achieve this, we model a system that consists of a fault-tolerant
multicore processor subject to intermittent faults. Our fault
models are based on insights from related work at the physical
level. We find that the frequency of the intermittent error and the
relative importance of the error location play an important role
in choosing the recovery action that maximizes the processor’s
performance.

Index Terms—Intermittent hardware faults, recovery, stochas-
tic activity network, fault model, transistor wearout.

I. INTRODUCTION

Intermittent hardware errors occur sporadically at the same
hardware location, and persist for one or more (but finite
number of) clock cycles. Recent work has shown that inter-
mittent hardware failures are prevalent in commodity proces-
sors [1], [2]. Such faults result from combinations of extremely
small transistor dimensions, process variations and abnormal
operating conditions such as high temperature and/or high
voltage, and they are likely to increase in frequency in future
processors [3], [4].

In this work, we focus on intermittent error recovery, i.e., the
action that should be taken after detecting an intermittent error
to remedy the effects of the error and prevent its occurrence
in the future. Since repairing (or fixing) the defective circuit
in commodity processors is prohibitively expensive, recovery
from hardware errors primarily consists of error mitigation.

Recovery from transient errors consists of rolling back to
the last checkpoint and re-executing the program because the
error is unlikely to recur. On the other hand, recovery from
permanent errors consists of disabling the defective part of
the processor since the error persists in that part forever.
Intermittent errors exhibit characteristics between these two
extremes (appear non-deterministically at the same location).
However, recovery from intermittent errors cannot simply be
similar to transient errors (for low intermittent fault rates) or
permanent errors (for high intermittent fault rates), as we show
later in this paper.

The research question we address is: What is the recovery
action that maximizes the performance of an intermittent-error
prone processor? Towards answering this question, we make
the following contributions:

(1) Build a model of a chip multiprocessor running a parallel
application. The model is built using Stochastic Activity Net-
works [5], and includes error detection, discrimination (from
other types of hardware errors), diagnosis and recovery. We
model the entire system because we find that configuration
parameters in data checkpointing, for example, can affect the
choice of the recovery option.

(2) Propose intermittent fault models that abstract real
intermittent faults at the system level. Intermittent faults are
fundamentally different from permanent and transient faults,
and therefore cannot be accurately modeled using permanent
or transient fault models. Further, due to the lack of infor-
mation about intermittent faults’ exact characteristics, it is
challenging to model such faults at a high level. Based on
insights from related work [6]–[8], we build multiple fault
models that abstract physical fault models and at the same
time we prune down the space of system configurations to a
manageable set of parameters that we can simulate.

(3) Simulate the system (which consists of the two models
described above) to evaluate the performance of a processor
after applying different recovery options that include perma-
nent/temporary shutdown of cores/microarchitectural units of
a processor. Moreover, we study the sensitivity of our results
to the models’ parameters.

Our salient findings are as follows:
• The frequency of an intermittent error and the relative

importance of the defective part in the processor play
an important role in finding the recovery action that
maximizes the processor’s performance. Therefore, inter-
mittent faults cannot simply be treated as transient faults
or permanent faults without regard to their parameters.

• Unlike permanent errors, we find that if a core is ex-
hibiting high intermittent failure rates, then the best
recovery action depends on the relative importance of the
defective part of the processor. Further, we find that low
intermittent failure rates can be tolerated by a program
rollback to the last checkpoint.

• Contrary to what other researchers have suggested [9],
we find that a permanent shutdown of the intermittent
error-prone part of the processor results in a slight im-
provement of the processor’s performance compared to



the temporary shutdown of the same part.

II. INTERMITTENT FAULTS

A. Definition

We define an intermittent fault as one that appears sporadi-
cally at the same hardware location, and lasts for one or more
(but finite number of) clock cycles. This is consistent with
definitions in prior work [2], [9]. The main characteristic of
intermittent faults that distinguishes them from transient faults
is that they occur repeatedly at the same location, and are
caused by an underlying hardware defect rather than a one-
time event such as a particle strike. However, unlike permanent
faults, intermittent faults appear non-deterministically, and
only under certain operating conditions.

B. Causes

The major cause of intermittent faults is device wearout,
or the tendency of solid-state devices to degrade with time
and stress. Wearout can be accelerated by aggressive tran-
sistor scaling which makes processors more susceptible to
extreme operating condition such as voltage and temperature
fluctuations [3], [4]. Many well studied mechanisms such as
gate-oxide breakdown, negative bias temperature instability
(NBTI), hot-carrier injection (HCI) and electromigration [4]
occur due to wearout.

Studies have shown that errors generated by NBTI are
intermittent because up to 40% of the NBTI damages are
reversible after stress removal (typically, high temperatures).
The remaining 60% of the damages are permanent (similar
behavior has been observed for HCI) [10]. Time-dependent
dielectric breakdown (TDDB) results in intermittent errors
because it appears as Soft Dielectric Breakdown (SDB) at
nominal operating conditions, which is less damaging, then
progresses to Hard Dielectric Breakdown (HDB) if the stress
conditions persist [6], [8]. In the long term, such faults may
eventually lead to permanent defects.

Another cause of intermittent faults is manufacturing defects
that escape VLSI testing [2]. Often, deterministic defects are
flushed out during such testing and the ones that escape are
non-deterministic defects, which emerge as intermittent faults.

Finally, design defects can also lead to intermittent faults,
especially if the defect is triggered under rare scenarios or
conditions [11].

C. Statistics of fault occurrence

Few field studies have been conducted on intermittent error
rates. Constantinescu [2] found that 6.2% of the hardware
errors in memory subsystems are intermittent. However, he
does not present any data for processor faults. A recent study
by Nightingale et al. [1] analyzed error logs sent by the
Microsoft Windows Error Reporting (WER) program from
950,000 personal computers. They found that, of the hardware
errors reported about microprocessors, approximately 39%
are intermittent. However, they only consider a small class

of processor errors, and only those that cause operating-
system crashes. As a result, they under-estimate the number
of intermittent errors that occur in the field.

Fault distribution: Studies that focus on wearout failures
found that the distribution of aging failures follow either log-
normal [12]–[14] or Weibull distributions [15]. These studies
focus on the phase in which the aging errors persist for long
periods and eventually lead to permanent errors. In contrast,
the focus of our work is on intermittent faults that have not
progressed to permanent faults yet.

D. Fault models

Due to the lack of intermittent faults’ field studies in com-
modity processors, there are no definite answers as to when
exactly they occur, how frequently they occur and the length
of their occurrence. In this section, we rely on prior work
to build approximate intermittent fault models. Moreover, we
study the sensitivity of our results to fault models and failure
rates (Section V-A).

We make the following assumptions in our fault models:
• At any time, a microarchitectural unit may be affected by

at most a single intermittent fault.
• At any time, at most a single microarchitectural unit may

be affected by an intermittent fault.
The intermittent faults considered in this paper are caused

by temperature/voltage fluctuations and wear out. We do not
consider intermittent errors caused by manufacturing defects
or design defects due to lack of information about their
distribution. Moreover, since the focus of this paper is on
processor faults, we do not consider errors that occur in the
memory and I/O hierarchy. Such errors are usually tolerated
by Error Correcting Codes and Cyclic Redundancy Checks.

We consider three fault models to characterize intermittent
faults as follows:

• Base fault model: In this model, we assume that each
core experiences faults that are distributed exponentially
with an MTTF of 6.56 years. This MTTF is found
by Nightingale et al. [1] using a large-scale study on
data obtained from the Windows Error Reporting Sys-
tem. Therefore, intermittent faults in this model occur
rarely. The machine in this model is hardened against
temperature and voltage fluctuations, infant mortality and
wearing out. Such processors can be fabricated using
large transistors, for example.

• Exponential fault model: Similar to the base fault
model, each core starts its lifecycle with a base MTTF of
6.56 years. However, at some point during its life time
the core experiences high temperature and voltage fluc-
tuations, but these fluctuations do not permanently affect
transistor performance. In other words, the transistors in
this model are sensitive to temperature/voltage swings but
there is no wearing out. Fault arrivals are modeled as
a Poisson process. The duration of a fault burst is also
assumed to follow an exponential distribution.

• Weibull fault model: This model is similar to the expo-
nential fault model in that each core starts its lifecycle



with a base MTTF of 6.56 years and during its life time
it experiences extreme temperature/voltage instabilities.
However, in this model such hikes in temperatures and
voltages will lead to transistor wearouts [6]–[8], [10].
Hence, we model the occurrence of fault bursts using
Weibull distribution with a shape parameter of 1.4 [16]
and a variable scale parameter depending on the MTTF.
Similar to the previous model, during each error burst,
the fault is modeled using exponential distribution.

III. SYSTEM DESCRIPTION

Our target system is an error-tolerant chip multiprocessor,
where two to thirty-two cores reside on the same chip. A study
of the efficiency of a recovery technique of such a system
should not only include a model of the recovery technique,
but also a model of all other fault-tolerance techniques at
different levels of granularity. This is because these tolerance
techniques include design parameters that may affect the
choice of the appropriate recovery action. Our model consists
of fault detection, discrimination, diagnosis and recovery.

We start this section by listing our definitions and assump-
tions (Section III-A). Then we present an overview of the fault-
tolerance techniques that are common to all recovery scenarios
(Section III-B). After that we detail the different recovery
models that we consider: (1) rollback-only recovery: where
no reconfiguration action is conducted. A simple rollback
to the last checkpoint is applied upon each error detection.
(2) Core-level reconfiguration: where the defective core is
disabled upon error detection and discrimination. (3) Unit-
level reconfiguration: where a fine-grained reconfiguration at
the level of the defective microarchitectural unit is conducted
upon error detection, discrimination and diagnosis.

Finally, we describe our Stochastic Activity Network (SAN)
models in Section III-D (we use SANs to build the model of
the system).

A. Definitions and assumptions

We follow the standard definitions of the fault tolerance
terms, a summary of the terms we use is available in Table I.

To evaluate the performance of a processor under different
recovery scenarios, we use the term useful work [17]. Useful
work is the fraction of effective work a processor accom-
plishes in a certain time duration. It does not include work
repeated because of a failure that occurs before saving work
to a checkpoint, nor does it include the work done while
saving checkpoints, recovering from errors and diagnosing
and reconfiguring the processor. More details about how we
measure the useful work are available in Section IV.

We make the following assumptions in the model:
• Errors covered are due to intermittent hardware faults

only. However, we model a fault discrimination technique
to distinguish such failures.

• Intermittent failures can occur during checkpoint record-
ing and during processor reconfiguration.

• Intermittent failures cannot occur during program roll-
back to the last checkpoint. They also cannot occur during

TABLE I: Terms and definitions.

Term Definition
Detect to find that an error affected a program such

that the program’s state has been changed
erroneously.

Diagnose to isolate the physical location of an error,
a core or a microarchitectural component in
this work.

Discriminate to distinguish between transient, intermittent
and permanent hardware error.

Recover to remedy the effects of an error on program
state by restoring the program’s state to the
last saved checkpoint and possibly disabling
the defective physical part of the processor.

error diagnosis process. This assumption is reasonable
because most diagnosis techniques can be performed
using other healthy cores or specialized hardware [12],
[18].

A discussion of the impact of these assumptions on the
applicability of our model to real processors is available in
Section VI.

B. Overview of an error-tolerant core

We use state transition diagrams to describe system evolu-
tion (Figure 1 describes the lifecycle of a core). Note that this
diagram is shown for exposition only, and the actual model
is built using SANs. This part of the model is common to all
three recovery scenarios.

In this system, a multithreaded program runs in an on-
chip-multiprocessor with two to thirty-two cores (Box 1).
A coordinated checkpoint is recorded periodically (Box 2).
All cores use coordinated checkpointing, i.e., a checkpoint
is taken for all cores at the same time [17]. The details
of the coordinated checkpointing implementation are out of
this paper’s scope. Coordinated checkpointing implies that all
cores on a chip are running one parallel program. If a core
fails, the program will be restored to the previous checkpoint
(hence, all cores perform recovery) and any work that has
not been checkpointed is lost. This model is a representative
of modern workloads where massively parallel programs are
running across all cores simultaneously. While the system is
running (either executing a program or storing a checkpoint),
an intermittent fault can occur in any unit of the processor in
any of the cores.

If the intermittent fault is activated, i.e., if this fault
manifests itself to the program, it can cause the following
outcomes [19] [20]: (1) benign, which means that the program
affected by this error will continue running and generating
correct results, (2) silent-data corruption, which means that
the program will continue running but its state is corrupted
by the error. At a later stage this error might be detected by
software/hardware detector (Box 3), or (3) the fault activates a
hardware trap and the program crashes (e.g., program accesses
memory using invalid address) (Box 3). In our model, if an
error is activated, is not a benign error and is detected then
this behavior is represented by a transition from Box 1 or
2 to Box 3, otherwise, the program can continue running as



Fig. 1: An overview of an error-tolerant core with rollback-
only recovery.

usual. When an error is detected or a program crashes then
the program rolls back to the last checkpoint to recover from
the effects of the error (Box 4).

C. Recovery scenarios

We now describe different scenarios for intermittent-error
recovery. As mentioned in the previous section, all the models
below share the same mechanisms for error detection and
checkpointing.

Rollback-only recovery: In this basic model (Figure 1), no
recovery technique is applied other than rolling the program to
a checkpoint. Therefore, no error discrimination technique is
required. Upon error detection, recovery using the last stored
checkpoint is conducted (Box 4) and then the system continues
running as usual (Box 1).

Core-level reconfiguration: In this model (Figure 2), upon
error detection a fault-discrimination technique is applied. We
use the Alpha count-and-threshold error discrimination mecha-
nism proposed by Bondavalli et al. [16] for fault discrimination
(Box 5). The recovery action for this particular scenario is to
disable the core (Box 6). A diagnosis technique is not required
in this model since each core has its own error-distinguishing
technique which identifies the intermittent-error prone core.
The duration of the core shutdown is either permanent [21],
represented by an infinite loop between Boxes 7 and 8, or
temporary [9] where a core enters the same loop for a short
period of time.

Unit-level reconfiguration: In this model (Figure 3), upon
error detection, an error-discrimination technique similar to
the previous scenario is applied. When an error is identified
as intermittent, a fine-grained diagnosis technique is used to
isolate the error-prone microarchitectural unit (Box 6). Once
the defective unit is identified, a decision is made as to
whether the unit must be shut down. If a core can operate
without this unit (e.g., there exists a replica of this unit, or
the program can be detoured to avoid using it [22]) then the
unit is disabled and the core will continue running programs
possibly with degraded throughput. In this case, the error
discrimination variable for this core is reset. Similar to core-
level reconfiguration, the duration of the unit shutdown is
either permanent, represented by an infinite loop between

Fig. 2: An overview of an error-tolerant core with core
shutdown.

Fig. 3: An overview of an error-tolerant core with fine-grained
reconfiguration.

Boxes 8 and 9, or temporary where a unit enters the same
loop for a short period of time. Otherwise, the unit is not
disabled and the core continues running the program despite
the defective unit.

D. SAN models

We build the models discussed in the previous section using
Stochastic Activity Networks (SAN). SAN’s are a convenient,
high-level, graphic abstraction for modelling stochastic sys-
tems. We use a single SAN in all our experiments. Different
fault models and recovery scenarios are represented by chang-
ing parameters in this model. A prior knowledge of SANs is
not required to understand our models.

Chip multiprocessor with unit-level reconfiguration and
base fault model

Our model of a chip multiprocessor is depicted in Figure 4.
When an application starts execution, it enters the Run place.



Fig. 4: Our SAN model for a fault-tolerant processor.

As the execution progresses, a checkpoint is taken periodically
whenever ChkptFreq timed activity fires and then the program
is transferred to the Checkpoint place where it stays there for a
ChkptDuration duration. At every checkpoint the useful work
is incremented at OG8 output gate. The increment depends
on how many cores and units are functioning in the processor
at the checkpoint time.

At the same time, a token in the Error place models the
errors that might occur because of the base fault model which
follows exponential fault distribution with nominal MTTF.
When the ErrorFreq timed activity fires, one of two possible
outcomes (or cases) can take place. The top case models
the probability of activated errors that either cause crashes
(hardware trap or OS exception) or are detected through
a software/hardware detector. The bottom case models: (1)
inactivated faults, (2) activated faults that do not change the
state of the program (benign faults) or (3) activated faults
that change the state of the program but are not detected.
When the top case executes, a token is moved from the
Error place to the Recovery place. Both input gates IG and
IG2 ensure that whether the application (represented by a
token) is in the Run or in the Checkpoint place, it will be
transferred immediately to the Recovery place when ErrorFreq
fires. Therefore, there are two tokens in the Recovery place at
this point, one token from the Error place and another from
either Run or Checkpoint place.

The alpha extended place is an array of alpha variables such
that each core in the processor has its own alpha variable.
A core’s alpha is updated both on every checkpoint and on
every crash/error detection to model the intermittent error
discrimination mechanism in that core. One of the two tokens
in the Recovery place can take one of the following directions:

(1) If the error is not identified as intermittent, then input
gate IG4 ensures that a token from the Recovery place is
forwarded to RecDuration1 timed activity which represents
the time needed for an application to rollback to a checkpoint.
The second token in Recovery place is not needed and will

therefore be deleted. Then the output gate OG2 places a token
in the Run place which resembles the application resuming
execution from the last checkpoint and losing all the work
that has not been checkpointed.

(2) If the error is identified as intermittent, then a rollback to
the last checkpoint is conducted through input gate IG3 which
ensures that a token from the Recovery place is forwarded
to RecDuration2 timed activity and then forwarded to the
Diagnosis place. The second token in Recovery place is not
needed and will therefore be deleted. The timed activity
RecDuration2 represents the time needed for an application
to rollback to a checkpoint. The DiagDuration timed activity
represents the time overhead of a diagnosis technique. Once
this activity fires it can have one of two possible outcomes:

(1) Top case: the defective unit is diagnosed accurately.
If the unit shutdown is temporary, then the disabled unit is
removed from the set of available resources. In addition, a
token is created in TemporaryRemoval place. This token stays
there until RemovalDuration timed activity fires, this activity
represents the duration of the shutdown (either temporary
shutdown or permanent one, in which case the duration will
be infinite). Once the timed activity RemovalDuration fires,
the unit is put back into the pool of available resources. In
addition, a token is put back in Error1 place (Error1 usage is
explained in exponential and Weibull fault models) indicating
that an error can happen in the future depending on the error
distribution. The time required by the fine-reconfiguration
technique is not modeled since this recovery action is invoked
infrequently. Last, the alpha variable that corresponds to the
reconfigured core is cleared upon diagnosis.

(2) Bottom case: the diagnosis process identifies a healthy
unit as defective (inaccurate diagnosis). Therefore, a healthy
unit is disabled, however, the intermittent error will still be
active. In this case, the disabled unit is removed from the set of
available resources until another diagnosis action is conducted.
In addition, a token is created in RemovalDuration similar to
the top case, but a token is put in the Error1 place immediately.



In both cases, once the DiagDuration timed activity fires,
a token is created in the Run place (by input gates OG and
OG1), which resembles an application that resumes execution
after a diagnosis and a potential reconfiguration. Further, a
token is put back in Error which models the base fault model.

Rollback-only model: To build this model, input gate
IG3 is always disabled. Therefore, no fault discrimination,
diagnosis or reconfiguration action is performed in this model.

Core-level reconfiguration model: To build this model,
we do not need a diagnosis action since the array of alpha
variables serves as a fault discrimination and diagnosis tech-
nique (remember that each core has its own alpha entry in the
array). Therefore, the timed activity DiagDuration has a zero
duration. Moreover, the bottom case in the same activity is
always disabled.

Exponential and Weibull fault models: Exponential and
Weibull fault models are built on the top of the model
described earlier in this section.

Exponential fault model has fault arrivals that follow Pois-
son process (Figure 4 (b)). When the fault is inactive, a token
is stored in place ErrorExpInactive, the input gate IG1 ensures
that the fault will not be activated if the defective core/unit is
disabled. The timed activity ErrorExpFreq fires based on the
corresponding MTTF, after which the output gate OG4 creates
a token in Error1 place which represents the existence of a
defective core/unit. In addition, a token is transferred from
place ErrorExpInactive to place ErrorExpActive. Such token
remains in the ErrorExpActive for the activity duration of the
fault which is enforced by timed activity ErrorExpDuration.
Once this duration has passed, the output gate OG5 deletes
the token in Error1 place and the token from ErrorExpActive
place is transferred back to place ErrorExpInactive.

Weibull fault model is very similar to exponential fault
model (Figure 4 (c)). The main difference between the two
models is that the activation times of intermittent faults in
Weibull fault model are distributed according to Weibull
distribution in timed activity ErrorWeibFreq.

IV. EXPERIMENT SETUP

We use the Mobius modeling framework to construct and
simulate our SAN models [5]. We evaluate the useful work of
the model described in the previous section after 48 hours from
the intermittent fault occurrence using Mobius simulations
with a confidence level of 95%. The parameters we use are
shown in Table II.

In our experiments, we focus on finding answers to the
following research questions:

(1) When should we recover from an intermittent fault
by a simple program rollback to a checkpoint and when
should we shutdown the defective component?

Typically, to recover from a hardware fault, the first step
is to identify the type of the fault (permanent, transient or
intermittent). In our work, we show that to recover from an
intermittent fault we also need to identify the error rate and
importance of the defective part. A fault that occurs frequently
in a critical processor component, for example, might be

TABLE II: Model parameters.

Parameter Value/Range1 Comments

Base fault rate Exponentially
distributed
with MTTF
of 6.56 years

Found by Nightingale et
al. [1].

Exponential fault model Exponentially
distributed
with MTTF
of 2 hours

-

Weibull fault model Weibull
distribution
with MTTF
of 1-40
hours

We study the sensitivity of
our results to this parame-
ter.

Fault rate during bursts Exponentially
distributed
with MTTF
of 5 seconds

-

Diagnosis duration 2 sec Conservative duration
since DIEBA reported
millisecons overhead [18].

Recovery duration 0-60 sec Conservative number
since Wang et al.
reported 10 minutes
for the coordinated
checkpoints [17].

Component rank 0%-35%
of the
processor’s
throughput

We study the sensitivity of
our results to this parame-
ter

Meant time to checkpoint
(MTTC)

5-60 min Found experimentally us-
ing user-level checkpoint
in Linux [23]

Checkpoint duration 30 sec Found experimentally us-
ing user-level checkpoint
in Linux [23]

Probability that an inter-
mittent fault is activated

0.75 Found using microarchi-
tecture simulator [19].

Probability that an error is
detected

0.7 Conservative number for
detection coverage [24]

Probability of crash due to
an intermittent fault

0.53 Found using microarchi-
tecture simulator [19].

Probability of benign in-
termittent faults

0.34 Found using microarchi-
tecture simulator [19].

Probability of silent-data
corruption due to an inter-
mittent fault

0.13 Found using microarchi-
tecture simulator [19].

Number of on-chip cores 2 to 32 cores -

tolerated by a simple program rollback. An error that occurs
frequently in a part that has a replica, on the other hand, should
be tolerated by disabling that faulty part.

(2) For the errors that are tolerated by shutting down the
defective component, should the shutdown be permanent
or temporary?

An alternative fault mitigation approach that targets
intermittent-fault prone processors is to temporarily shutdown
the defective parts of the processor, to relieve such parts
from the stressful operating conditions [9]. For example, if
the processor is experiencing NBTI-related failure, pausing
or migrating any workload that is currently running on the
processor might reduce the processor’s temperature and hence
the processor can “partially” self-recover from the failure
(Section II-B). However, it is unclear which error rates can be



tolerated by temporary shutdown of the defective components.
(3) What is the granularity of the disabled component

that maximizes the processor’s performance?
Traditionally, a processor that is diagnosed with a hardware

error would be replaced with another hot or cold processor
(hot/cold swapping) [9], [21]. Another recovery approach is
to reconfigure the defective processor and facilitate “graceful
degradation” where only the defective core or microarchi-
tectural structure is shutdown [12], [22], [25]–[27]. In the
latter approach, the remaining operating parts of the processor
can be used after the shutdown of the defective part, hence,
a processor would function with degraded performance. We
show that the granularity of the error location (in addition to
the error severity) is an important factor in choosing the right
recovery action.

To evaluate the relative importance of the disabled part
of the processor, we propose a new metric that we call
component rank. We use the term component to refer to a
microarchitectural unit or a core in a processor. Component
rank is the maximum percentage of processor useful work that
is lost when the corresponding component is disabled upon
error recovery. For every component in the processor, we can
calculate its rank as follows:

1) Components are assigned a rank of 0% if they (a) have
a replication component which is rarely used or (b) can
be replaced or repaired using low-cost techniques.

2) Components are assigned a rank of 100% if they are
critical for the workload executed by the processor
such that the workload cannot be executed without such
component.

3) The rest of the components are assigned ranks that
depend on how much useful work will be lost if such
component is disabled. To estimate such loss, one can
use Amdahl’s law2, which states that the speedup (or
slowdown, in our case) of a program depends on how
much of this program is improved (or downgraded, in
our case).

To evaluate the useful work, we divide the work that can
be done by the reconfigured processor (the work lost in a
reconfigured processor depends on the rank of the disabled
component) by the work that can be done by a healthy
processor with no disabled parts.

V. RESULTS

In our first set of experiments, we run two recovery
scenarios (rollback-only, unit-level reconfiguration with both
temporary permanent shutdown) for the three fault models
described in Section II. In this experiment, we set the MTTC
to 20 minutes, recovery duration to 30 seconds, MTTF for
exponential fault model and Weibull fault model to 2 hours
and component rank to 5%. The diagnosis accuracy is 100%
and diagnosis duration is 2 seconds. We assume that the
recovery technique can shutdown the defective component
upon successful diagnosis.

2Quantitatively, Amdahl’s law states that if a part p of a program is sped
up by s then the program overall speed up is 1/((1− p) + p/s).

Fig. 5: Useful work for the different recovery scenarios using
three fault models.

We plot the useful work in Figure 5. In the following
discussion, we explain the results obtained from this figure in
form of answers to the first two research questions described
in Section IV.

(1) When should we recover from an intermittent fault
by a simple program roll back to a checkpoint and when
should we shutdown the defective component?

The rollback-only recovery performs well for the base fault
model in which there are no bursts of extreme failure rates. The
only lost useful work (about 4%) is due to time spent to save
checkpoints. However, the rollback-only recovery performs
poorly for exponential fault model and Weibull fault model
in which there are bursts of extreme failure rates. The useful
work drops to about 63% for both fault models, on average.
On the other hand, temporary or permanent reconfiguration
of the defective component produces more useful work than
rollback-only recovery by 25% for exponential fault model
and 30% for Weibull fault model.

(2) For errors that are tolerated by shutting down the
defective component, should the shutdown be permanent
or temporary?

Temporary and permanent reconfiguration have close gains
in terms of useful work. However, permanent shutdown of
the defective component achieves 2% more useful work
than temporary shutdown. This difference in performance
of the permanent and temporary shutdown is the result of
the overhead of the fault distinguishing and restore-to-last-
checkpoint mechanisms that are continuously encountered for
each error burst. Such overhead is encountered only once by
the permanent shutdown scenario.

In the next experiment, we evaluate the impact of the
relative importance of the disabled component on recovery by
varying the rank of the defective component (see Section IV
for more details about component rank). A low component
rank may represent a microarchitectural unit, while a high
component rank may represent a core in a processor or a
critical microarchitectural unit.

We use the permanent shutdown recovery scenario since it



Fig. 6: Useful work for different ranks when permanently
reconfiguring a defective component.

generates the highest percentage of useful work in the previous
experiment. The rest of the experimental setup is similar to the
previous experiment.

By analyzing the useful work generated by a processor
after permanently shutting down a defective component with
different ranks, we answer the following research question:

(3) What is the granularity of the disabled component
that maximizes the processor’s performance?

The smaller the granularity of the disabled component, the
more useful work that is achieved after processor reconfigura-
tion. This can be done by disabling the defective microarchi-
tectural unit rather than disabling the entire defective core. For
this particular experiment, we find that disabling a component
with a rank of 35% or more in the permanent reconfigura-
tion recovery scenario has similar effects on useful work to
the rollback-only recovery technique in which the defective
component is used together with functioning components. We
illustrate this result with some real-world examples.

Example 1: A 4-core processor is used to run floating point-
intensive application. This processor has one floating point
unit (FPU). Assume that an intermittent fault (that follows
Weibull fault model) affects the FPU. The FPU has a rank
of 100% as the processor is deemed unusable upon FPU
shutdown. Therefore, a rollback-only recovery scenario is the
most beneficial recovery in this case.

Example 2: A 4-core processor in which each core has two
load-store units (LSUs) is running a highly parallel memory-
intensive program that is using all the 8 LSUs for 60% of the
time. An intermittent error that follows Weibull fault model
with an MTTF of 2 hours affects one of the LSUs. According
to Amdahl’s law, the useful work will be degraded by 19%
or 1/(0.4 + (0.6/0.125)) upon the defective LSU shutdown.
Hence, the component rank in this case is 19%. Based on
Figure 6, since 19% is less than the threshold of 35% for
such intermittent fault rate, the best recovery option for this
case is a permanent reconfiguration.

Example 3: Assume that the same processor described
in the previous example is used to run a memory-intensive

Fig. 7: Useful work for the rollback-only recovery using
Weibull fault model with variable MTTF.

application that uses 4 LSUs for 60% of the time. Moreover,
suppose that the processor experiences an intermittent error
that affects one of its LSUs. It is highly unlikely that shutting
down such unit will cause any loss of the useful work.
Therefore, the component rank in this case is 0% and a
permanent reconfiguration recovery scenario is recommended.

A. Sensitivity analysis

In this section, we study the sensitivity of our results to
MTTF, MTTC and recovery duration for the rollback-only
recovery.

Unless otherwise mentioned, the experimental settings are
as follows: Weibull fault model is used with MTTF of 2 hours.
MTTC is 20 minutes, the recovery duration is 30 seconds and
the diagnosis accuracy is 100%.

Mean Time To Failure: In this analysis, we evaluate
the useful work for the rollback-only recovery. MTTF in
this experiment is varied between 1 to 40 hours (Figure 7).
Intuitively, the more frequent the error becomes, the less
useful work that is accomplished. This is due to the time
needed by the recovery and the loss of computations that
are not checkpointed. As a general rule, if the intermittent
error is frequent enough such that its effect on the useful
work outweighs the rank of the defective component, then
such component should be disabled. Otherwise, the system can
continue exploiting the stored checkpoints to recover from the
infrequent failures.

Mean Time To Checkpoint: We now plot the useful work
for the rollback-only recovery with variable mean time to
checkpoint (Figure 8). Although storing a checkpoint every
one hour reduces the overhead of checkpointing, it degrades
the accomplished useful work. This is because more work
is lost when a failure occurs. Moreover, although reducing
the MTTC decreases the overhead for each checkpoint due to
less amount of data being stored, there is a fixed overhead of
each checkpoint that results from the context switches between
the running program and the checkpoint mechanism. In our
experiments, we rely on previous work to choose an MTTC of



Fig. 8: Useful work for the rollback-only recovery using
Weibull fault model and variable MTTCheckpoint.

20 minutes, which serves as a balance between the checkpoint
frequency and the overhead associated with the mechanism.

Therefore, if a processor is encountering frequent bursts of
intermittent errors and reconfiguration is not possible, then
one can reduce the mean time to checkpoint to increase the
processor useful work.

Recovery duration: In this experiment, we evaluate
rollback-only model with variable mean time to recover. We
measure the useful work (figure not shown due to space
constraints) of the processor. We find that the useful work
is only marginally affected by the recovery duration.

VI. DISCUSSION

To shed some light on the applicability of our model to real
processors, we discuss the assumptions we made in our model
and the impact of these assumptions on the results we obtain
from our study. The assumptions are as follows:

(1) The model does not take into account correlated faults,
or faults that appear in units that form a “hot spot” in the
processor, for example. Note that hot spots that consist of
multiple close by microarchitectural units usually occur much
faster than chip-wide heating [28]. There are multiple factors
that result in an intermittent fault triggering diagnosis and re-
covery techniques: (a) the error has to occur despite the power
and temperature management techniques (e.g. HotSpot [28]),
(b) the error must manifest itself to the program and bypass
the architectural masking, such as two timing errors cancelling
each other, (c) the error must propagate to the program,
cause erroneous behavior and bypass the instruction-level
masking, (d) the error must happen frequently enough to be
distinguished as intermittent and (e) the error must happen
frequently enough that it triggers a reconfiguration technique.
In our analysis, we model factors c, d and e, but we do
not model factors a and b (as we assume that only one
microarchitectural unit is affected by an error). If multiple
units expose an intermittent error to the program, then this
means that more advanced error discrimination and diagnosis
techniques should be applied in our model. Such techniques
may impose more performance overhead and degrade the

useful work before reconfiguring the core. Moreover, disabling
two or more microarchitectural units may result in the core
being unable to function properly so core shutdown may be
more useful than unit shutdown in this case.

(2) We do not model errors that occur during program
rollback to the last checkpoint. Errors that occur during this
stage can be detected through error detectors; when an error
is detected the program rollback can start over (assuming that
the error will eventually stop and the program will not enter
into endless loop of error detection and restarting). The effect
of this process will be a longer rollover.

(3) We model the effects of inaccurate error diagno-
sis/reconfiguration by modeling the inaccuracies in diagno-
sis results (this can represent imperfect diagnosis technique
or errors that affect a diagnosis/reconfiguration technique).
In our model, we assume that after an incorrect diagno-
sis/reconfiguration the error will persist, therefore, the disabled
unit will be enabled and error tolerance techniques will be
applied again.

VII. RELATED WORK

The fault recovery scenarios we study are inspired by
recovery proposals in literature. For example, Schuchman
et al. [25] (Rescue) and Shivakumar et al. [29] proposed
to remedy permanent faults by exploiting redundancy at
the microarchitectural-level to compensate for the disabled-
defective units. They both targeted hard faults. Romanescu
et al. [12] proposed core cannibalization in which cores that
are identified to be permanent-fault-prone are cannibalized to
pipeline-stage parts. Then the functional parts of a defective
core serve as a “supply of replacements” by other fault-free
cores. They do not consider the impact of error detection,
diagnosis, recovery and reconfiguration on the performance
of the chip. Powell et al. [26] proposed core salvaging, in
which the defective units in a core are disabled. The defective
core falls into other healthy cores whenever the disabled
units are needed. Meixner el al. [22] proposed to disable the
defective units and to use application detouring. Detouring is
to convert instructions that use the defective units to equivalent
instructions that use healthy units only, where possible. This
conversion is done using binary translation layers. Both [26]
and [22] target permanent faults. Wells et al. [9] proposed
to recover from intermittent errors by disabling the core and
letting it cool down for sometime. Their rationale is that some
intermittent faults might be induced by fluctuating temperature
and voltage, and hence if a core is shutdown for a while then
its temperature and voltage would stabilize.

Intermittent faults, in particular, aging faults can be at-
tributed to gate-oxide breakdown, NBTI, hot-carrier injections
and electromigration. Srinivasan et al. [13] used RAMP [30] to
model two recovery scenarios for aging-related errors. The first
scenario consists of spare microarchitectural redundancy that
will only be used when other units fail. The second recovery
scenario involves using the existing (not spare) microarchi-
tectural redundancy within a core and degrading performance
gracefully as units fail. They also consider hybrid models of



both scenarios. Our work is different in that: (1) we build an
end-to-end model that includes error discrimination, detection,
diagnosis and recovery while they focused on error recovery
only and (2) we add a model that suspends the offending
part of the processor temporarily or permanently while they
focused on permanent shutdown of the processor units only.

Bondavalli et al. [16] propose a count-and-threshold-based
model to discriminate between intermittent and transient faults.
Their model assumed Weibull distributed intermittent faults
and bursty transient-fault intervals. Later, the authors extend
their fault-discrimination model by adding models for fault
diagnosis and recovery for nodes (a number of processors) in
distributed systems [15]. They assume one recovery scenario
for intermittent faults, which is to remove the defective node.
In this work, we build on [16] by exploiting their count-and-
threshold model, however, we consider different models for
diagnosis and recovery models at the processor level.

VIII. CONCLUSIONS

Since intermittent errors are emerging as one of the leading
causes of hardware failures, there is a critical need to design
optimal recovery actions for such errors. We modeled a fault-
tolerant chip multiprocessor that experiences intermittent hard-
ware faults during its lifetime. We also modeled intermittent
faults at a high level by relying on insights from related
work at the physical level. We evaluated the chip performance
for different recovery scenarios under different intermittent
fault models and rates. Although it suffices to know the error
type only to choose the right recovery action for transient or
permanent hardware faults, we find that the failure rate and
error location are also important factors in choosing the right
recovery action for intermittent errors.

ACKNOWLEDGEMENTS

This work was supported in part by Discovery and Engage
grants from the National Science and Research Council of
Canada (NSERC). We thank the anonymous reviewers of
QEST 2012 for suggestions that helped to improve this work.

REFERENCES

[1] E. Nightingale, J. Douceur, and V. Orgovan, “Cycles, cells and platters:
An empirical analysis of hardware failures on a million consumer pcs,”
European Conf. on Computer Systems, 2011.

[2] C. Constantinescu, “Intermittent faults and effects on reliability of
integrated circuits,” Reliability and Maintainability Symp., pp. 370–374,
2008.

[3] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, and A. Keshavarzi,
“Parameter variations and impact on circuits and microarchitecture,”
Design Automation Conf., pp. 338–342, 2003.

[4] J. McPherson, “Reliability challenges for 45nm and beyond,” Design
Automation Conf., pp. 176–181, 2006.

[5] T. Courtney, D. Daly, S. Derisavi, V. Lam, and W. Sanders, “The
mobius modeling environment,” Tools of the Intl Multiconference on
Measurement, Modelling and Evaluation of Computer Communication
Systems, no. 781, 2003.

[6] M. Depas, M. Heyns, and P. Mertens, “Soft breakdown of ultra-thin gate
oxide layers,” Proc. of the European Solid State Device Research Conf.,
vol. 25, pp. 235 – 238, 1995.

[7] V. Reddy, A. Krishnan, A. Marshall, J. Rodriguesz, S. Natarajan, T. Rost,
and S. Krishnan, “Impact of negative bias temperature instability on
digital circuit reliability,” Reliability Physics Symposium, pp. 248 – 254,
2002.

[8] Y. Huang, T. Yew, W. Wang, Y.-H. Lee, R. Ranjan, N. Jha, P. Liao,
J. Shih, and K. Wu, “Re-investigation of gate oxide breakdown on logic
circuit reliability,” Reliability Physics Symp., pp. 2A.4.1 – 2A.4.6, 2011.

[9] P. Wells, K. Chakraborty, and G. Sohi, “Adapting to intermittent faults
in multicore systems,” Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, pp. 255–264, 2008.

[10] H. K. S. W. S. M. e. a. M. Ershov, S. Saxena, “Dynamic recovery of
negative bias temperature instability in p-type metaloxidesemiconductor
field-effect transistors,” Appl. Phys. Lett, vol. 83, no. 8, 2003.

[11] C. Weaver and T. Austin, “A fault tolerant approach to microprocessor
design,” Int. Conf. on Dependable Systems and Networks, pp. 411 – 420,
2001.

[12] B. Romanescu and D. Sorin, “Core cannibalization architecture: Improv-
ing lifetime chip performance for multicore processors in the presence
of hard faults,” Intl. Conf. on Parallel Architectures and Compiliation,
pp. 43–51, 2008.

[13] P. B. J. Srinivasan, S.V. Adve and J. Rivers, “Exploiting structural du-
plication for lifetime reliability enhancement,” Intl. Symp. on Computer
Architecture, vol. 33, 2005.

[14] J. Blome, S. Feng, S. Gupta, and S. Mahlke, “Self-calibrating online
wearout detection,” Int. Symp. on Microarchitecture, 2007.

[15] M. Serafini, A. Bondavalli, and N. Suri, “Online diagnosis and recovery:
On the choice and impact of tuning parameters,” IEEE Transactions on
dependable and secure computing, vol. 4, no. 4, p. 2007, 2007.

[16] A. Bondavalli, S. Chiaradonna, F. Giandomenico, and F. Grandoni,
“Threshold-based mechanisms to discriminate transient from intermit-
tent faults,” IEEE TRANSACTIONS ON COMPUTERS, vol. 49, no. 3,
2000.

[17] L. Wang, K. Pattabiraman, Z. Kalbarczyk, R. Iyer., L. Votta, C. Vick,
and A. Wood, “Modeling coordinated checkpointing for large-scale
supercomputers,” Int. Conf. on Dependable Systems and Networks, pp.
812 – 821, 2005.

[18] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan, “Dieba: Diagnosing
intermittent errors by backtracing application failures,” Silicon Errors in
Logic - System Effects, 2012.

[19] L.Rashid, K.Pattabiraman, and S.Gopalakrishnan, “Characterizing the
impact of intermittent hardware faults on programs,” Technical Report,
UBC, 2012.

[20] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan, “Modeling the
propagation of intermittent hardware faults in programs,” Pacific Rim
Intl. Symposium on Dependable Computing, pp. 19–26, 2010.

[21] I. Parulkar, T. Ziaja, R. Pendurkar, A. D’Souza, and A. Majumdar, “A
scalable, low cost design-for-test architecture for ultrasparc chip multi-
processors,” Int. Test Conference, pp. 726 – 735, 2002.

[22] A. Meixner and D. Sorin, “Detouring: Translating software to circum-
vent hard faults in simple cores,” Proc. of the Intl. Conf. on Dependable
Systems and Networks, pp. 80–89, 2008.

[23] J. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
checkpointing under unix,” Usenix Winter Technical Conference, pp.
213–223, 1995.

[24] K. Pattabiraman, G. Saggese, D. Chen, Z. Kalbarczyk, and R. Iyer, “Au-
tomated derivation of application-specific error detectors using dynamic
analysis,” IEEE Transactions on Dependable and Secure Computing,
vol. 8, 2011.

[25] E. Schuchman and T. Vijaykumar, “Rescue: A microarchitecture for
testability and defect tolerance,” Intl. Symp. on Computer Architecture,
pp. 160–171, 2005.

[26] M. Powell, S. Gupta, and S. Mukherjee, “Architectural core salvaging in
a multi-core processor for hard-error tolerance,” Intl. Symp. on Computer
Architecture, vol. 37, 2009.

[27] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke, “The stagenet
fabric for constructing resilient multicore systems,” Intl. Symp. on
Microarchitecture, pp. 141 – 151, 2008.

[28] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and
D. Tarjan, “Temperature-aware microarchitecture: Modeling and imple-
mentation,” ACM Transactions on Architecture and Code Optimization,
vol. 1, no. 1, pp. 94–125, 2004.

[29] P. Shivakumar, S. W. Keckler, C. R. Moore, , and D. Burger, “Exploit-
ing microarchitectural redundancy for defect tolerance,” Intl.Conf. on
Computer Design, pp. 481 – 488, 2003.

[30] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The case for lifetime
reliability-aware microprocessors,” ACM SIGARCH Computer Architec-
ture News, vol. 32, no. 2, 2004.


