Towards Building Error Resilient
GPGPU Applications

Bo Fang, Jiesheng Wei, Karthik Pattabiraman, Matei Ripeanu
Department of Electrical and Computer Engineering
University of British Columbia

Motivation

e GPUs have been used for error-resilient workload

% 4]

" E.g. Image Rendering

‘A
¥ /

* Today, GPUs are used in error-sensitive
applications, i.e. GPGPU applications

= Scientific Computing: E.g. DNA Processing, Physics
Simulation, etc.

ATATTTTTTCTTGTT ATATTTTTTCTTGT
TTTTATATCCACAAA Error > TTTTATATCCACA
CTCTTTTCGTACTTT CTCTTTTCGTACTTT
TACACAGTATATCGT TACACAGTATATCGT

GT GT

Motivation

* 2/3 of 50,000 GPUs exhibit transient faults in
memory or logic [Haque-CCGRID10]’

* Since Fermi, NVIDIA introduces ECC protected
GPU models.

* |s ECC a panacea?
 ECCis usually not enabled for HPC systems

 Computation units are not covered by ECC.

e Portion of area going to Computation unit: GPU > CPU

Research Question:

How to tolerate hardware faults in GPU?

— Focus on software based techniques

* First step: two tasks

Task 1: Understand the reliability characteristics of
GPGPU applications

Task 2: Detect hardware faults at software level

Contributions

e Study the behaviour of GPGPU applications
— Build a fault-injection tool
— Discover the reliability “hotspots” of the programs

* Develop heuristics to protect GPGPU
applications based on the “hotspots”

— Focus on silent data corruptions (SDCs)

* Evaluate the efficacy and cost of the detectors

Task 1: Study on Reliability
Characteristics of GPGPU Applications

 Method: fault injection techniques

e Built a breakpoint-based fault injection tool (cuda-
gdb)

e Onreal GPU hardware

Ch Sets a conditional
Profiles one SRS breakpoint

|:: > |:: > Collects
application Lunime and injects a fault i

failure results
1nstruct10n randomly at run-time

u@ ‘ Single bit-flip

Dest registers or memory
address for Id/st

* One fault per run

Evaluation Setup

e NVIDIA Telsa C2075
e CUDA Toolkit 4.1
e Benchmarks

Benchmark ______| Domain _| Computation/I0

AES Cryptography Cryptography Computation
Breadth First Search Graph processing 10
MUMmerGPU Bio-information 10

LIBOR Monte Carlo Finance Regular

Matrix Multiplication Linear Algebra Computation

Characteristic Study Results

Outcome percentage

EHI Ihl HI I

100%
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -

i Crash

Hang

i Silent Data Corruption

£ Benign

0% -

FIIFIFII

MAT MUM LIB

Benchmark program

* SDCs rate is upto 40%

Root causes of SDCs:
— Branches with thread id, etc.

Task 2: Heuristic-Based Fault
Detection

What we learn from characteristic study?

— faults in GPGPU applications lead to a high rate of
SDCs

Focus on protecting programs from SDC

— There are several root causes in the program

Develop heuristics to detect faults — selectively
error detection

Heuristic Categories

 (Category |: Loop conditions.

* Category Il: Branches with block
or thread identifier

* Category Ill: Computation
statements that pertain to:

a. Computations involving block/thread id or
loop iterators

b. Data movement between global memory
and other memory regions

Example

// Category |
for
// Category Il (a)
unsigned int tid =blockldx.x*MAX_THREADS_PER_BLOCK + threadldx.x;

// Category Il (b)
// Cis an array allocated in global memory
Clc + wB * ty + tx] = Csub;

// Category Il
if (tid<no_of nodes && g _graph_mask[tid]{

Evaluation Setup

* We manually insert error detectors in the programs
based on heuristics
— The process can be automated via data-flow analysis

LOC of kernel Number of detectors for each category

LOOP BRANCH COMP Total
BFS 44 2 7 9 17
MAT 91 3 0 11 14
LIB 392 36 0 47 83

 We rerun the fault injection experiment with
instrumented applications

12

Error Detection Results

100.0% 100%

90.0% B SDC rate
80.0%
70.0% SDC rate with.detectors 90% BES
60.0% 80%
50.0% o MAT
o
20.0% o 60% LIB
10.0% .] I ?Bb
0.0% B 50%
BFS MAT LIB Average 3
40.0% 2 40%
30.0% 30%
20.0% 20%
10.0% 10% .- . S
0.0% 0% - —
LOOP BRANCH COMP ALL

* On average the fault detectors succeeded in reducing
SDC rate from 14.5% to 5.8%

e COMP is the most effective category across all
benchmarks (85%, 47% and 80%)

 LOOP is ineffective in providing any protection

Performance Overhead

2.2
2
1.8

1.6
1.4 LIB

BFS

MAT

Slowdown
=
= N

© o
o ©

o o
N D

LOOP BRANCH COMP ALL

* On average the instrumented application is
running 1.5x slower

* BRANCH is the most cost-efficient category
with incurring 3% overhead but catching 70%
of SDCs for MAT

o

Conclusions

e Characteristic study shows transient faults in
GPU lead to high Silent Data Corruption

* Heuristic-based error detection mechanism
reduces SDCs for GPGPU applications, with a
reasonable performance overhead

Contact: bof@ece.ubc.ca

Thank You

Networked System Lab http://netsyslab.ece.ubc.ca/
Radical Lab http://radical.ece.ubc.ca/

Contact: bof@ece.ubc.ca

Future Work

* Expand to more GPGPU applications

* Optimize the heuristics
— E.g. Develop more efficient error detectors

* |nvestigate automated techniques to
instrument programs with error detectors

aplace of mind

References

[Haque-CCGRID10] Haque et al,Hard Data on Soft Errors: A Large-Scale
Assessment of Real-World Error Rates in GPGPU, CCGRID 10

