
Towards Building Error Resilient GPGPU
Applications

Bo Fang, Jiesheng Wei, Karthik Pattabiraman, Matei Ripeanu
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada

Email: {bof, jwei, karthikp, matei}@ece.ubc.ca

Abstract—GPUs (Graphics Processing Units) have gained wide
adoption as accelerators for general purpose computing. They are
widely used in error-sensitive applications, i.e. General Purpose
GPU (GPGPU) applications However, the reliability implications
of using GPUs are unclear. This paper presents a fault injection
study to investigate the end-to-end reliability characteristics of
GPGPU applications. The investigation showed that 8% to 40%
of the faults result in Silent Data Corruption (SDC). To reduce the
percentage of SDCs, we propose heuristics to selectively protect
specific elements of the application and design fault detectors
based on heuristics. We evaluate the efficacy of the detectors
in reducing SDCs and measure performance overheads of the
detectors. Our results show that the heuristics are able to reduce
the SDC causing faults by 60% on average, while incurring
reasonable performance overheads (35% to 95%).

I. INTRODUCTION

GPUs (Graphics Processing Units) have gained wide adop-
tion as accelerators for general purpose computing. However,
the reliability implications of using GPUs are unclear. GPUs
were originally designed for applications that are intrinsically
fault-tolerant: for example image rendering applications where
a few wrong pixels are not noticeable by human eyes. As
GPUs are used to accelerate a wider class of applications (i.e.,
General Purpose GPU applications) such as DNA sequencing
and linear algebra, it becomes critical to understand the
behaviour of these applications in the presence of hardware
faults. This is especially important as hardware faults become
more and more common in commodity systems due to the
effects of technology scaling and manufacturing variations [1].
For example, Haque et al. [2] show that two third out of
over 50,000 GPUs exhibit a detectable, pattern of memory
soft errors. This rate can be as high as four failures per week
for some GPUs.

GPU manufacturers have invested significant effort on im-
proving GPU reliability. For instance, starting with Fermi
models, NVIDIA GPUs use Error Correcting Code (ECC) to
protect register files, DRAM, cache and on-chip memory space
from transient faults. However, hardware faults can occur in
the computational or control data paths, and can propagate to
registers and/or memory. Such faults would not be detected
by ECC in registers and/or memory, as they would cause the
correct ECC to be calculated on faulty data. Therefore, GPU
applications can still be affected by hardware faults in spite
of these mechanisms.

The long-term goal of our work is to develop low-overhead
software-based fault-tolerance mechanisms that are tuned to
the characteristics of GPGPU applications. As a first step
towards this goal, we investigate the end-to-end reliability
characteristics of GPGPU applications through fault injection
experiments. Our investigation shows that 8% to 40% of the
faults result in Silent Data Corruptions (SDCs), or incorrect
outputs. This is higher than the fractions of SDCs reported for
CPU applications, thus suggesting that GPGPU applications
may be more sensitive to errors.

We further design error detectors to selectively protect
specific elements of the application, with the goal of reducing
the percentages of SDCs. Our results show that the error
detectors we designed are able to reduce the number of SDCs
by 60% on average, while incurring performance overheads
of 55% on average, thus pointing to the potential of using
software-based techniques for protecting GPGPU applications.

Other work has proposed the use of hardware redundancy
to protect the GPU’s computational units [3]. However, hard-
ware approaches have significant performance and energy
overheads. An alternative to hardware redundancy is software
redundancy, which has the advantage that it can be selectively
applied depending on the needs of the application. Software
approaches have been extensively explored in the context of
CPU-based applications [4]–[6]. However, due to fundamental
differences between the CPU and GPU programming models,
and the strict performance requirements of GPU applications,
these approaches cannot be extended to GPUs in a straight-
forward manner. The work closest to ours is by Yim et al. [7],
who also derive detectors for GPGPU applications with the
aim of reducing the SDCs in such applications. Our work
differs from theirs in two aspects. First, they perform fault
injections at the source code level, while we do so at the
executable code level. Because many hardware faults cannot
be modelled at the source code level, our injections are more
representative of hardware faults. Secondly, Yim et al. focus
on ”virtual variables” in the GPGPU applications and place
the detectors based on a coarse-granularity abstraction (loop
and non-loop). In contrast, our detectors are based on generic
properties of the GPGPU program’s structure. We came up
with heuristics that are specific to GPGPU applications and
we place error detectors accordingly in the program code.

In summary, our paper makes the following contributions:

1) Evaluates the end to end behaviour of GPGPU appli-
cations through fault-injection experiments done at the
assembly code level,

2) Develops heuristics for selectively protecting GPGPU
applications from SDC(Silent Data Corruption)-causing
faults by placing error-detectors in the program,

3) Evaluates the efficacy of the detectors in reducing SDCs
and measures performance overheads of the detectors.

II. RELIABILITY CHARACTERISTIC STUDY

This section describes the empirical study for evaluating the
error resilience of GPU applications. We start by introducing
our fault model and then outline the design of the fault injector.

A. Fault model

We consider transient faults in the functional units of the
processor. Examples are faults in the ALU and the load-store
unit. We do not consider faults in cache, memory and register
files, as we assume that these are protected by Error Correcting
Code (ECC). We use the single bit flip model to simulate
transient faults as done in prior work [8]. We inject faults into
the destination register of instructions to simulate an error in
the ALU or load-store unit (depending on the instruction). For
vector instructions that have multiple destination registers, we
randomly choose a destination register to inject.

B. Fault Injector

We have designed a fault injector with the following goals
(Figure 1 shows a schematic overview):

1) The injector should have visibility to runtime informa-
tion of executed instruction stream, to make sure that the
injected fault correctly simulates the hardware faults.

2) The injector should interfere minimally with the exe-
cuted applications. This guarantees that the fault injec-
tor itself does not affect the way hardware faults are
propagated.

3) The injector should inject faults uniformly in dynamic
instructions of applications. This reflects the uniformity
of the actual hardware faults on the program’s execution.

We achieve these goals by building a fault injector (1) based
on the CUDA GPU debugging tool, namely cuda-gdb 1. The
fault injector comprises two main phases. First, we profile
applications to get the run-time information of different threads
(goal 1). Second, we randomly choose one of the executed
instructions for fault-injection. The injection is done uniformly
over the space of executed instructions; thus, we simulate
the occurrence of transient errors that occur uniformly over
time. The fault injector only injects faults when the chosen
instruction is executed (goal 3). This is realized by setting a
conditional breakpoint before running the application. When
the application hits this breakpoint, a fault is injected into the
application (goal 2). Only one fault is injected in each run,
as hardware faults are relatively rare events. Our approach

1https://developer.nvidia.com/cuda-gdb

3URILOHV�RQH�
DSSOLFDWLRQ

&KRRVHV�RQH�
UXQ�WLPH�
LQVWUXFWLRQ�
UDQGRPO\

6HWV�D�
FRQGLWLRQDO�

EUHDNSRLQW�DQG�
LQMHFWV�D�IDXOW�DW�

UXQ�WLPH

&ROOHFWV�UHVXOWV

*RDO��

*RDO��

*RDO��

Fig. 1. Design of Fault Injector

is similar to that taken by CPU-based fault injectors such as
NFTAPE [9] except that we target GPUs.

Once a fault is injected, we check to make sure that the
faulty location is used in the system (i.e., activated). Only
activated faults are considered in the evaluation. We then
monitor the application to see if it throws an exception
(crashes), times out by going into an infinite loop (hangs),
or prints incorrect outputs (SDCs). Note that not all activated
faults will have an effect on the applications’ output - such
faults are called benign faults.

We defer the results of the fault-injection to section IV.
An interesting result of the evaluation is that silent data
corruption (SDC) constitutes 8% to 40% of total outcome
across benchmarks. This is consistent with what Yim et al.
[7] found, namely that 18 to 45% of faults lead to SDCs,
although the injection methodology in our work is different 2.
Such high SDC rates indicate the necessity of reducing SDCs
for GPGPU applications, which we consider next.

III. HEURISTIC-BASED FAULT DETECTION

Faults in GPGPU applications lead to high rate of SDCs
[7], [8]. One way to reduce the SDCs is to duplicate the
entire program. However, this approach leads to considerable
power and performance overheads. In contrast, we attempt
to selectively protect “important” portions of the application,
from the perspective of reducing SDCs. While it is possible
that all sections of a program are equally likely to lead to
SDCs, in practice we have found that most SDCs are caused
by a select few code sections. We call these code sections as
reliability hotspots.

2Our injectors are at the assembly code level (NVIDIA SASS), while Yim
et al. [7] injects faults at the source code level

More formally, a reliability hotspot is a code section in
which a fault is highly likely to lead to an SDC. Our goal is to
discover the characteristics of reliability hotspots in terms of
the program’s structure, so that we can identify such hotspots
without relying on fault injection. While fault injection is
useful, it is a time consuming process and ideally, one would
want to come up with a priori heuristics of what portions
of the program to protect based only on code structure. We
introduce three heuristic categories to identify the reliability
hotspots based on program structure (later we show the error
detectors corresponding to these categories).

• Category I: Loop conditions.
• Category II: Branches with block or thread identifier
• Category III: Computation statements that pertain to any

of the following:
1) Initialization of block and thread identifier
2) Computation involving block or thread id
3) Computation involving loop iterator variables
4) Data movement between global memory and other

memory regions
Figure 2 illustrates the hotspots that belong to categories

I, II and III with CUDA C code 3. We came up with
these categories by analyzing the results of the fault-injection
experiment in Section II. We will use LOOP, BRANCH and
COMP to denote the three categories respectively. Note that
all three categories are based on program structure only and do
not need any dynamic information for identifying the hot-spot.

1 // Category I

2 for (int a = aBegin, b= bBegin;
3 a <= aEnd; a+= aStep, b += bStep){
4 //Do something

5 }
6 // Category II

7 // tid is the thread identifier

8 if (tid<no_of_nodes && g_graph_mask[tid]) {
9 //Do something

10 }
11 // Category III-(1)

12 unsigned int tid =
13 blockIdx.x*MAX_THREADS_PER_BLOCK + threadIdx.x;
14 // Category III-(2)

15 int aBegin = wA * BLOCK_SIZE * by;
16 // Category III-(3)

17 for (int k = 0; k < BLOCK_SIZE; ++k) {
18 Csub + = AS(ty,k)*BS(k,tx);
19 }
20 // Category III-(4)

21 // C is an array allocated in global memory

22 C[c + wB * ty + tx] = Csub;

Fig. 2. Illustration of code example of hotspots

For each category, we designed the corresponding fault de-
tection mechanism based on the characteristics of the program
structure corresponding to the category. Table I provides an
overview of the error detectors we add to the program for each
category. Figure 3 illustrates the error detectors we added to

3Our current implementation works on CUDA, but it is straightforward to
extend to OpenCL

TABLE I
FAULT DETECTION MECHANISM

Category Description Mechanism
LOOP Loop condition Check if the loop iterator is always

inbound in the loop body and the
loop condition invariants remain the
same at the end of the loop

BRANCH Branch with block
or thread identifier

Check if the ID is inbound of the
branch condition

COMP Computation state-
ments

Duplicate the computation and check
for a match

the example of Figure 2; we represent the detectors through
cudaAssert macros. Note that although we add fault injectors
manually, it is feasible to automate the instrumenting process.
This is a topic for future work.

1 // Category I

2 for (int a = aBegin, b= bBegin;
3 a <= aEnd; a+= aStep, b += bStep) {
4 //Do something

//Detector: cudaAssert(a <= aEnd);

5 }
//Detector: cudaAssert(aEnd_check == aEnd)

6 // Category II

7 // tid is the thread identifier

8 if (tid<no_of_nodes && g_graph_mask[tid]) {
9 //Do something

//Detector:

cudaAssert(tid < no_of_nodes);
cudaAssert(g_graph_mask[tid] == true);

10 }
11 // Category III-(1)

12 unsigned int tid =
13 blockIdx.x*MAX_THREADS_PER_BLOCK + threadIdx.x;

//Detector:

cudaAssert(tid ==
blockIdx.x*MAX_THREADS_PER_BLOCK+thredIdx.x);

14 // Category III-(2)

15 int aBegin = wA * BLOCK_SIZE * by;
//Detector:

cudaAssert(aBegin == wA*BLOCK_SIZE*by);
16 // Category III-(3)

17 for (int k = 0; k < BLOCK_SIZE; ++k) {
//Detector:

temp = Csub;
18 Csub + = AS(ty,k)*BS(k,tx);

//Detctor:

cudaAssert(Csub == temp+AS(ty,k)*BS(k,tx));
19 }
20 // Category III-(4)

21 // C is an array allocated in global memory

22 C[c + wB * ty + tx] = Csub;
//Detector: cudaAssert(C[c+WB

*

ty+tx] == Csub);

Fig. 3. Illustration of the error detectors on the code example of Figure 2.
The detectors we inserted are indicated as cudaAssert().

IV. EXPERIMENTAL EVALUATION

We use an NVIDIA Telsa C2075 graphic card with CUDA
toolkit 4.1 for our experiments. We choose five benchmarks,
namely AES encryption (AES) [10], matrix multiplication
(MAT) [11], MUMmerGPU (MUM) [12], Breadth First Search
(BFS) [13] and LIBOR Monte Carlo (LIB) [14].

We describe the benchmarks and their corresponding con-
figurations.

AES encryption (AES): This application supports both
encryption and decryption. We encrypt a 256 KB file with
a 256-bit key.

Matrix Multiplication (MAT): MAT is taken from
NVIDIAs CUDA SDK 4.1. As a common building block,
MAT is widely used in many linear algebra algorithms. We
modify the code so that MAT launches the CUDA kernel code
only once, to ensure that subsequent runs do not overwrite the
results. We multiply two 192*128 floating-point matrices.

MUMmerGPU (MUM): MUM is a parallel sequence
alignment program used for processing DNA queries. We
use the Bacillus anthracis str. Ames complete genome as the
reference and 1000 25-character queries.

Breadth First Search (BFS): BFS performs a breadth-
first search on a graph using CUDA programming model. We
perform BFS on a graph with 4096 nodes.

LIBOR Monte Carlo (LIB): LIB performs Monte Carlo
simulation based on London Interbank Offered Rate Market
Model that calculates interest rate for financial business be-
tween banks. We simulate 4096 paths for 15 options.

We inject faults into each benchmark 2500 times on average
with the same input to ensure that we have a sufficient number
of activated faults. Only one fault is injected per run. Overall
we have approximately 1500 runs that have activated faults
for each benchmark, i.e., the faulty values are used in the
program, for each benchmark. The activation rates vary from
30% to 60% among benchmarks. Only activated faults are
considered in our results. We categorize the fault based on
the application’s behaviour as Benign or correct output, Silent
Data Corruption (SDC) or incorrect output, Crash, and Hang.

Characteristic study results. The results in Figure 4
show the overall results of the reliability characteristic study.
Across the five benchmarks, crashes constitute between 18%
and 50% of the outcomes and are the dominant outcomes.
Silent data corruptions (SDC) are the second most frequent
failure outcomes, observed from 8% to 40% depending on
benchmark. The reason for the high number of SDCs could
be that a high degree of parallelism of GPGPU applications
lowers the complexity of a single thread, which decreases the
probability that a fault is masked by the application behaviour.

!

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#
80%#
90%#

100%#

AES# MAT# MUM# BFS# LIB#

O
ut
co
m
e(
pe

rc
en

ta
ge
(

Benchmark(programs(

Crash#

Hang#

SDC#

Benign#

Fig. 4. Overview of fault injection results

Overall detection results The result of the characteristic
study shows that SDCs are a serious problem for GPGPU
applications. In order to reduce the SDC frequency, as we
describe in section III, we embed error detectors in three
benchmarks including BFS, MAT and LIB using our heuris-
tics. We select these benchmarks because MAT has the highest
SDC rate while BFS has the lowest SDC rate and LIB is in
the middle across five benchmarks based on the results of
characteristic study. Table II show the number of detectors we
inserted for each category.

TABLE II
NUMBER OF DETECTORS INSERTED IN EACH BENCHMARK

Benchmark LOC of kernel Number of detectors for each category
LOOP BRANCH COMP Total

BFS 44 2 7 9 17
MAT 91 3 0 11 14
LIB 392 36 0 47 83

We run the fault injection experiment again with instru-
mented benchmarks and evaluate the effectiveness and perfor-
mance overhead of the fault detectors. To ensure repeatability,
we do not stop the program’s execution when a detector detects
an error, but rather log the heuristic category that this detector
belongs to. We then run the program to completion and classify
the efficacy of the detector based on the type of failure it
would have averted had it stopped the program. Note that we
inject faults uniformly in the applications’ execution, not just
confined to the detectors.

Figure 5 shows the effectiveness of fault detectors on the
SDC rates of the three benchmarks 4. As we can see, the
detectors manage to significantly reduce the SDC rates. For
BFS, the SDC rate drops from 11.1% to less than 1%; for
MAT, the SDC rate drops from 24.7% to 11.6%; and for LIB,
the SDC rate drops from 9.1% to 2.7%. On average the fault
detectors succeeded in reducing SDC rate from 14.5% to 5.8%,
which corresponds to an average coverage of 60% (percentage
of SDCs detected). These results demonstrate that the error
detectors are able to achieve significant coverage.

0.0%$

5.0%$

10.0%$

15.0%$

20.0%$

25.0%$

30.0%$

BFS$ MAT$ LIB$ Average$

SDC$rate$

SDC$rate$with$detectors$

Fig. 5. Fault detection experimental results for instrumented benchmarks.

4The baseline SDC rates vary from those in the characteristic study due to
the insertion of extra code for the detectors

Breakdown of the coverage and performance overhead
To better understand the effectiveness of our fault detectors,
we present for each combination of heuristics, the break down
the coverage in Figure 6 and the performance overhead in
Figure 7. We measure the coverage as the percentage of SDCs
caught by each combination of categories. We measure the
performance overhead by timing the execution of the GPU
kernel ten times and compute the average.

Overall, our detectors achieved the coverages of 94% for
BFS, 48% for MAT and 80% for LIB. In particular, for
BFS, the most effective category of detectors is COMP, which
covers 85% of SDCs, followed by BRANCH, which covers
70% of SDCs. For MAT and LIB, we only present results of
two categories since there is no detector of category BRANCH
in the code. COMP is also the most effective category for both
MAT and LIB as it achieves 47% coverage and 80% coverage
respectively. LOOP is ineffective in providing any coverage
for all the three programs.

The performance overhead is about 55% on average for
all three benchmarks, with BFS and MAT incurring about
35% performance overhead and LIB incurring 95% overhead
(the ‘ALL’ category’). BRANCH incurs only 3% performance
overhead, but is able to detect 70% of SDCs for BFS. On
the other hand, LOOP is more expensive than BRANCH in
terms of performance overhead. However, it is not effective on
detecting errors across three benchmarks. COMP is the most
expensive type of detectors as shown in the Figure 7 and on
average incurs 43% performance overhead, with a wide range
from 18% for MAT to 85% for LIB.

As mentioned above, the performance overhead of instru-
mented LIB is around 95%, primarily due to the COMP
category, which contributes to 85% of the overhead. We
believe that this is related to a large number of detectors we
inserted in this category. In particular, most of the error detec-
tors in COMP category are computation statements involving
loop iterators. However, this is not common for GPGPU
applications as they do not typically have expensive loops
within a single thread, which is how the LIB is implemented.
We therefore believe that LIB is an anomalous case and that
the overheads are likely to be similar to those of MAT and
BFS. Nonetheless, we will investigate other ways to reduce
the performance overheads of benchmarks such as LIB. This
is a direction for future work.

V. RELATED WORK

Several studies have attempted to characterize the vulner-
ability of different micro architectural structures in GPUs
through AVF analysis [15], [16]. These studies identify micro
architectural structures that must be protected from faults in
order to achieve high coverage. However, these approaches do
not consider the end-to-end impact of faults in applications,
nor do they attempt to understand the reliability characteristics
of GPGPU applications. AVF analysis has been shown to have
significant inaccuracies compared to fault injection [17].

Dimitrov et al. [18] proposes software redundancy ap-
proaches to increase the applications’ reliability on both NI-

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#
80%#
90%#

100%#

LO
OP
#

BR
AN
CH
#

CO
MP
#

LO
OP
+C
OM

P#

BR
AN
CH
+C
OM

P#

LO
OP
+B
RA
NC
H#

AL
L#

co
ve
ra
ge
�

BFS+

MAT+

LIB+

Fig. 6. The breakdown of fault detection coverage of combinations of
categories for three benchmarks

0%#

20%#

40%#

60%#

80%#

100%#

LO
OP
#

BR
AN
CH
#

CO
MP
#

LO
OP
+C
OM

P#

BR
AN
CH
+C
OM

P#

LO
OP
+B
RA
NC
H# AL

L#
Pe

rf
or
m
an

ce
*o
ve
rh
ea
d* BFS*

MAT*

LIB*

Fig. 7. The breakdown of fault detection performance overhead of combi-
nations of categories for three benchmarks

VIDIA and AMD GPUs. They propose three approaches for
GPGPU reliability that leverage both instruction-level paral-
lelism and thread-level parallelism to reduce the overheads.
Despite these optimizations, their approach incurs performance
overheads of 85 to 100%, and they conclude that under-
standing both the application characteristics and the hardware
platform is necessary for efficient protection.

SWIFT [4] is among the earliest techniques to provide
comprehensive error detection coverage at the software level.
It uses instruction-level duplication coupled with control-
flow checking to ensure high coverage from hardware errors.
However, it can incur substantial performance overheads due
to the amount of error detection code added, and as such, does
not attempt to selectively trade-off coverage for performance.
This is the main difference with our work. Further, it focuses
on CPU applications and not on GPU applications.

Shoestring [6] aims to reduce SDCs by selectively pro-
tecting program instructions that potentially lead to SDCs. It
identifies high value instructions that write to global memory
or produce function call arguments in the program and apply
vulnerability analysis heuristics to the program instruction
level for selective duplication. At a high-level, Shoestring
is similar to our work in terms of developing heuristics to
selectively protect parts of the program. However, it differs

from our work in that it focuses on CPU applications so that
the heuristics they develop are not well suited for GPGPU
applications.

Thaker et al. [19] observes that errors in control-data are
more likely to lead to egregious outputs and catastrophic
failures. Wei et al. [20] propose BlockWatch, a compiler-based
technique to add detectors to parallel programs with the focus
on control data of the program. BlockWatch statically infers
the similarity of the program’s control-data across threads,
and checks their conformance to the inferred similarity at
runtime. Our work also uses control-data checks on the thread
ID in a manner similar to BlockWatch. However, we consider
many other kinds of data in addition to control data, as GPU
applications have only a small fraction of control data.

Hari et al. [5] presents a low-cost, program-level fault
detection mechanism for reducing SDCs. They use their prior
work, Relyzer [21] to profile applications and select a small
portion of the program fault site to identify static instructions
that are responsible for SDCs. Then by placing program
level fault detectors on those SDC-causing sections, they can
achieve high SDC coverage at low cost. It is noteworthy
that application-specific behaviours are major contributors of
SDCs for half of their benchmarks, which makes it difficult
to extend their technique to other applications, especially
GPU applications which have different behaviours from CPU
applications.

As discussed in section I, Yim et al. [7] proposes a
technique to detect errors through data duplication at the
programming language level (loop code and non-loop code)
for GPGPU applications. Their main contribution is to develop
application-specific detectors for different code segments in
order to reduce performance overhead while achieving high
error detection coverage. However, they do not provide any
insight into how to choose the program locations at which to
place detectors that can achieve the highest coverage, which is
our focus. This is important in order to provide high coverage
under a performance overhead constraint.

VI. CONCLUSION

This paper presents a fault injection study to investigate the
end-to-end reliability characteristics of GPGPU applications.
The investigation showed that 8% to 40% of the faults result
in SDCs. To reduce the percentage of SDCs, we propose
heuristics to selectively protect specific elements of the ap-
plication. Our results show that the heuristics are able to
reduce the SDC causing faults by 60% on average, while
incurring reasonable performance overheads (35% to 95%).
These results demonstrate the potential of using software-
based techniques for protecting GPGPU applications.

Future work will consist of validating the heuristics with
more GPGPU applications and developing more efficient error
detectors to further reduce the performance overhead. We
will also investigate automated techniques to instrument the
program with error detectors.

ACKNOWLEDGMENT

The authors would like to thank Wilson Fung for his
help with getting familiar with GPU architectures. We would
also like to thank Lauro Beltrao Costa, Elizeu Santos-Neto
and Abdullah Gharaibeh for their generous feedback and
suggestions on the different phases of this project.

REFERENCES

[1] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,” in
IEEE MICRO, 2003.

[2] I. S. Haque and V. S. Pande, “Hard data on soft errors: A large-scale
assessment of real-world error rates in gpgpu,” in Proceedings of the
2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, ser. CCGRID ’10, 2010.

[3] J. W. Sheaffer, “A hardware redundancy and recovery mechanism for
reliable scientific computation on graphics processors,” in Proceedings
of the GH, 2007.

[4] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, “SWIFT:
Software implemented fault tolerance,” in Intl Symposium on Code
Generation and Optimization, 2005, pp. 243–254.

[5] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-level de-
tectors for reducing silent data corruptions,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2012.

[6] S. Feng, “Shoestring: probabilistic soft error reliability on the cheap,”
in Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, 2010.

[7] K. S. Yim, “Hauberk: Lightweight silent data corruption error detector
for gpgpu,” in IEEE International Parallel and Distributed Processing
Symposium, 2011.

[8] B. Fang, J. Wei, K. Pattabiraman, and M. Ripeanu, “Evaluating the error
resiliency of gpgpu applications,” in To appear in the poster section of
2012 ACM/IEEE Conference on Supercomputing, 2012.

[9] D. T. Stott, P. H. Jones, M. Hamman, Z. Kalbarczyk, and R. K.
Iyer, “Nftape: Networked fault tolerance and performance evaluator,”
in Proceedings of the 2002 International Conference on Dependable
Systems and Networks, ser. DSN ’02, Washington, DC, USA, 2002.

[10] S. A. Manavski, “Cuda compatible gpu as an efcient hardware acceler-
ator for aes cryptography,” in IEEE Intl Conf. on Signal Processing and
Communication, 2007.

[11] [Online]. Available: http://developer.download.nvidia.com/compute/
DevZone/docs/html/C/doc/CUDA C Programming Guide.pdf

[12] M. Schatz, “High-throughput sequence alignment using graphics pro-
cessing units,” in BMC Bioinformatics, 2007.

[13] P. Harish, “Accelerating large graph algorithms on the gpu using cuda,”
in HiPC, 2007.

[14] M. Giles and S. Xiaoke, “Notes on using the nvidia 8800 gtx graphics
card.” [Online]. Available: http://people.maths.ox.ac.uk/œgilesm/hpc/

[15] J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulnerability
on gpgpu microarchitecture,” in IEEE International Symposium on
Workload Characterization (IISWC), 2011, pp. 226–235.

[16] D. K. N. Farazmand, R. Ubal, “Statistical fault injection-based avf
analysis of a gpu architecure,” in IEEE Workshop on Silicon Errors
in Logic, 2012.

[17] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ace analysis
reliability estimates using fault-injection,” in Proceedings of the 34th
annual international symposium on Computer architecture, ser. ISCA
’07, 2007.

[18] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software ap-
proaches for gpgpu reliability,” in Proceedings of 2nd Workshop on
General Purpose Processing on Graphics Processing Units, 2009, pp.
94–104.

[19] D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart, T. Metodi,
and F. Chong, “Characterization of error-tolerant applications when
protecting control data,” in Proc. IISWC, 2006.

[20] J. Wei and K. Pattabiraman, “BLOCKWATCH: Leveraging similarity
in parallel programs for error detection,” in Proceedings of the IEEE
International Conference on Dependable Systems and Networks (DSN),
2012.

[21] H. N. Siva Kumar Sastry Hari, Sarita V. Adve and P. Ramachandran,
“Relyzer: exploiting application-level fault equivalence to analyze ap-
plication resiliency to transient faults,” in ACM ASPLOS, 2012.

