
Efficient JavaScript Mutation Testing

Shabnam Mirshokraie Ali Mesbah Karthik Pattabiraman
University of British Columbia

Vancouver, BC, Canada
{shabnamm, amesbah, karthikp}@ece.ubc.ca

Abstract—Mutation testing is an effective test adequacy
assessment technique. However, it suffers from two main issues.
First, there is a high computational cost in executing the test
suite against a potentially large pool of generated mutants.
Second, there is much effort involved in filtering out equivalent
mutants, which are syntactically different but semantically
identical to the original program. Prior work has mainly
focused on detecting equivalent mutants after the mutation
generation phase, which is computationally expensive and has
limited efficiency. In this paper, we propose a technique that
leverages static and dynamic program analysis to guide the
mutation generation process a-priori towards parts of the
code that are error-prone or likely to influence the program’s
output. Further, we focus on the JavaScript language, and
propose a set of mutation operators that are specific to web
applications. We implement our approach in a tool called
MUTANDIS. We empirically evaluate MUTANDIS on a number
of web applications to assess the efficacy of the approach.

Keywords-mutation testing; JavaScript; equivalent mutant;

I. INTRODUCTION

Mutation testing is a fault-based technique to assess and
improve the quality of a test suite. The main idea is to create
mutants (i.e., modified versions of the program) and check
if the test suite is effective at detecting the mutants. The
number of mutants detected (or ‘killed’) by a test suite is
a measure of its effectiveness, which is also known as the
adequacy score of the test suite.

Despite being an effective test adequacy assessment
method [1], [2], mutation testing suffers from two main
issues. First, there is a high computational cost in executing
the test suite against a potentially large set of generated
mutants. Second, there is a significant amount of effort
involved in distinguishing equivalent mutants, which are
syntactically different but semantically identical to the orig-
inal program [3]. Equivalent mutants have no observable
effect on the application’s behaviour, and as a result, cannot
be killed by test cases. Empirical studies indicate that
between 10-40 percent of mutants are equivalent [4], [5]. Es-
tablishing mutant equivalence is an undecidable problem [3],
and hence, the detection of equivalent mutants involves a
considerable amount of manual effort.

Various attempts have been made to reduce the cost of
detecting equivalent mutants, for instance through program
slicing [6], [7], compiler optimization [4], constraint test
data generation [5], [8], or evolutionary techniques [9],
[10]. More recently, equivalent mutant detection has been
investigated by assessing the impact of generated mutants

on the application’s expected behaviour in terms of program
invariant violations [11] and code coverage [12]. While these
approaches are effective in detecting equivalent mutants,
they take the approach of first generating mutants and then
examining the mutants for equivalence, which is computa-
tionally expensive and inefficient.

In this paper, we propose a generic mutation testing ap-
proach that guides the mutation generation process towards
(1) effective mutations that affect error-prone sections of
the program, (2) mutations that have a clear impact on
the program’s behaviour and as such are potentially non-
equivalent. Our technique leverages static as well as dynamic
program data to rank, select, and mutate critical behaviour-
affecting portions of the program code.

Our generic mutation testing approach can be applied to
any programming language. In this paper, we implement our
technique for JavaScript, a loosely-typed dynamic language
that is known to be error-prone [13], [14] and difficult to
test [15], [16]. In particular, we propose a set of JavaScript
specific mutation operators, capturing common JavaScript
programmer mistakes. JavaScript is widely used in modern
web applications, which often consist of thousands of lines
of JavaScript code, and is critical to their functionality.

To the best of our knowledge, our work in this paper is
the first to provide an automated mutation testing technique,
which is capable of guiding the mutation generation towards
behaviour-affecting mutants in error-prone portions of the
code. In addition, we present the first JavaScript mutation
testing tool.

The key contributions of this work are:
• A new metric, called FunctionRank, for ranking

functions in terms of their relative importance based
on the application’s dynamic behaviour;

• A method combining dynamic and static analysis to
mutate branches that are within highly ranked functions
and exhibit high structural complexity;

• A process that favours behaviour-affecting variables
for mutation, to reduce the likelihood of equivalent
mutants;

• A set of JavaScript-specific mutation operators, based
on common mistakes made by programmers;

• An implementation of our mutation testing approach in
a tool called MUTANDIS, which is freely available;

• An empirical evaluation to assess the efficacy of the
proposed technique using five web applications and two
JavaScript libraries;

1 function startPlay(){
2 ...
3 for(i=0; i<$(".allCells").get().length; i++){
4 setup($(".allCells").get(i).prop('tagName'));
5 }
6 endGame();
7 }

9 function setup(cellTag){
10 if($(cellTag).get().length == 0)
11 endGame();
12 for(i=0; i<$(cellTag).get().length; i++){
13 dimension= getDim($(cellTag).get(i).width(), $(←↩

cellTag).get(i).height());
14 $(cellTag).get(i).css('height', dimension+'px');
15 }
16 }

18 function getDim(width, height){
19 var w = width*2, h = height*4;
20 var v = w/h;
21 if(v > 1)
22 return (v);
23 else
24 return (1/v);
25 }

27 function endGame(){
28 ...
29 $(#end).css('height', getDim($('body').width(), $('←↩

body').height())+'px');
30 ...
31 }

Figure 1. JavaScript code of the running example.

Our results show that, on average, 93% of the mutants
generated by MUTANDIS are non-equivalent. Further, the
mutations have a high bug severity rank, and are capable of
identifying shortcomings in existing JavaScript test suites.

II. RUNNING EXAMPLE AND MOTIVATION

Equivalent mutants are syntactically different but se-
mantically equivalent to the original application. Manually
analyzing the program code for detecting equivalent mutants
is a daunting task especially in programming languages
such as JavaScript, which are known to be challenging to
use, analyze and test. This is because of (1) the dynamic,
loosely typed, and asynchronous nature of JavaScript, and
(2) its complex interaction with the Document Object Model
(DOM) at runtime for user interface state updates.

Figure 1 presents a snippet of a JavaScript-based game
that we will use as a running example throughout this paper.
The application contains four main functions as follows:

1) startPlay function calls setup to set the dimen-
sion of all DOM elements with a class name of
allCells;

2) setup function is responsible for setting the height
value of the css property of all the DOM elements
with the given tag. The actual dimension computation
is performed by calling the getDim function;

3) getDim receives two parameters width and height
based on which it returns the calculated dimension;

4) Finally, endGame sets the height value of the css
property of a DOM element with id end, to indicate a
game termination.

Even in this small example, one can observe that the
number of possible mutants to generate is quite large, i.e.,
they span from a changed relational operator in either of
the branching statements or a mutated variable name, to
completely removing a conditional statement or variable
initialization. However, not all possible mutants necessarily
affect the behaviour of the application. For example, chang-
ing the “==” sign in the if statement of line 10 to “<”,
will not affect the application. This is because the number of
DOM elements can never become less than zero and hence
endGame will not be called in line 11. However, endGame
will eventually be called in line 6 in startPlay, and
hence the injected fault does not semantically change the
application’s behaviour. Therefore, it results in an equivalent
mutant.

In this paper, we propose to guide the mutation genera-
tion towards behaviour-affecting, non-equivalent mutants as
described in the next section.

III. OUR APPROACH

An overall overview of our mutation testing technique is
depicted in Figure 2. Our main goal is to narrow the scope
of the mutation process to parts of the code that affect the
application’s behaviour, and/or are more likely to be error-
prone and difficult to test. We describe our approach below.
The numbers below in parentheses correspond to those in
the boxes of Figure 2.

In the first part of our approach, we (1) intercept the
JavaScript code of a given web application, by setting up
a proxy between the server and the browser, and instrument
the code, (2) execute the instrumented program by either
crawling the application automatically, or by running the
existing test suite (or a combination of the two), and (3)
gather detailed execution traces of the application under test.

We then extract the following pieces of information from
the execution traces, namely (5) variable usage frequency,
(6) dynamic invariants, and (7) the dynamic call graph of
the application.

Using the dynamic call graph, we (9) rank the program’s
functions in terms of their relative importance from the
application’s behaviour point of view. Further, within the
highly ranked functions, our technique (10) identifies the
variables that have a significant impact on the function’s
outcome based on the usage frequency and dynamic invari-
ants extracted from the execution traces, and (11) selectively
mutates only those to reduce the likelihood of equivalent
mutants.

In addition to variables, our technique mutates branch
statements, including loops and conditional statements.
Functions with high cyclomatic complexity are known to
be more error-prone and challenging to test [17], [18], as
the tester needs to detect and exercise all the different
paths of the function. We therefore (4) statically analyze
the JavaScript code of the web application and (8) measure
its cyclomatic complexity. To perform branch mutation (12),
we target the highly ranked functions (in 9) that also exhibit
high cyclomatic complexity.

(1)
Intercept &
Instrument
JS code

(2)
Run

(3)
Exec.
Trace

Server Browser
(5)

Variable
Usage Freq.

(6)
Dynamic
Invariants

(7)
Function Call

Graph

(8)
Cyclomatic
Complexity

(10)
Variable
Selection

(11)
Variable
Mutation

(9)
Function

Rank (12)
Branch

Mutation(4)
Static

JS
Code (13)

JS Specific
Mutation

Figure 2. Overview of our mutation testing approach.

In addition to the generic mutation operators, our tech-
nique (13) considers a number of JavaScript specific mu-
tation operators, based on common errors introduced by
programmers. These operators are applied to the JavaScript
source code, without any ranking or selection process.

In the rest of this section, we describe in detail our
methodology for ranking functions (boxes 8 and 9), ranking
(boxes 5 and 6) and selecting (box 10) variables, and
performing the actual mutations themselves (boxes 11, 12
and 13).

A. Ranking Functions for Selective Mutation
To rank functions for selective variable mutation, we

define a new metric called FunctionRank based on a
function call graph inferred from the execution traces. To
rank functions for branch mutation, we take the cyclomatic
complexity of the functions into account in addition to the
FunctionRank.
Ranking Functions for Variable Mutation. In order to rank
and select functions for generating variable mutations, we
propose a specialized version of the PageRank metric [19],
called FunctionRank that takes dynamic function calls into
account. This metric measures the relative importance of
each function at runtime.

The original PageRank algorithm assumes that for a
given vertex, the probability of following all outgoing edges
is identical, and hence all edges have the same weight.
For FunctionRank, we instead set edge weights based on
dynamic information calls obtained from execution traces.
However, the PageRank formula requires that the weights
on the outgoing edges sum to 1. Therefore, we need to
normalize the edge weights from each function in our
formula.

Let l(fi, fj) be the weight assigned to edge (fi, fj), in
which function j is called by function i. We compute l by
measuring the number of times that function i calls j during
the execution. FunctionRank is calculated as:

FR(fi) =

n∑
j∈M(fi)

FR(fj)× l(fj , fi) (1)

setup

0.9 0.1

0.1
endGame

startPlay

getDim
0.9

Figure 3. Call graph of the running example.

where, FR(fi) is the FunctionRank value of function i,
l(fj , fi) is the the frequency of calls from function j to i,
M(fi) is the set of functions that call function i, and n is
the total number of functions. To solve equation 1, l(fi, fj)
is normalized such that for each i,

∑n
j=1 l(fi, fj) = 1.

Since PageRank requires that the weights on the outgo-
ing edges to sum to 1, we add outgoing edges from functions
with no calls to all other functions in the program. Therefore,
their FunctionRank values are divided uniformly among
all the functions. The calculation of FunctionRank is
performed iteratively, until the values converge. Thus, the
FunctionRank of a function i depends on:

1) Number of functions that call i;
2) FunctionRank value of the functions that call i (in-

coming edges);
3) Number of run-time calls to i;
Intuitively, a function that is called by several functions

with high FunctionRank and high call frequency receives
a high FunctionRank itself.

Our approach assigns each function a FunctionRank
value between 0 and 1. These values are used to rank
and select functions for variable mutation. The higher the
FunctionRank value of a given function, the more likely
it is to be selected for mutation.

Figure 3 shows the function call graph obtained from
our running example. The labels on the edges are edge
weights calculated according to the function call frequency.
Assuming that the number of DOM elements with class
name allCells is 9 (line 3 in Figure 1), the call fre-
quencies of functions setup and endGame become 0.9
and 0.1 respectively when they are called by startPlay

Table I
FunctionRank VERSUS PageRank (RUNNING EXAMPLE).

Function Name FunctionRank (%) PageRank (%)
startPlay 14.5 15.4
setup 27.5 23
endGame 18.7 34.6
getDim 39.3 27

in lines 4 and 6. Assume that the number of DOM ele-
ments with the tag name specified as the input to function
setup is also 9.1 Then, the call frequencies of getDim
and endGame become 0.9 and 0.1 respectively when they
are called by setup. Using equation 1, we are able to
calculate FunctionRank values associated with each of
the functions in the graph. Table I shows the obtained
FunctionRank values for each function as percentages.
getDim achieves the largest FunctionRank because of
the relatively high values of both the incoming edge weight
(where getDim is called by setup in line 13 in Fig-
ure 1), and FunctionRank of its caller node (setup). The
assigned ranking values are later used as a probability of
choosing a function for mutation.

To illustrate the advantage of FunctionRank, we show
the same calculation using PageRank (without considering
dynamic edge weights) in Table I. As shown in the table,
endGame obtains the highest ranking using PageRank,
and is likely to be chosen for mutation. However, it has not
been significantly used during the application execution. In
contrast, by using FunctionRank, endGame falls to the
third place, and is hence unlikely to be chosen for mutation.

Ranking Functions for Branch Mutation. As mentioned
before, we use the cyclomatic complexity of a function in
addition to its FunctionRank to select functions for branch
mutation. The cyclomatic complexity measures the number
of linearly independent paths through a program’s source
code [20]. By using this metric, we aim to concentrate the
branch mutation testing effort on the modules that are error-
prone and hard to test in the program.

We measure the cyclomatic complexity frequency of each
function through static analysis of the code. Let fcc(fi) be
the cyclomatic complexity frequency measured for function
fi, then: fcc(fi) =

cc(fi)∑n
j=1 cc(fj)

, where cc(fi) is the cyclo-
matic complexity of function fi, given that the total number
of functions in the application is equal to n.

We compute the probability of choosing a function
fi for branch mutation using the previously measured
FunctionRank (FR(fi)) as well as the cyclomatic com-
plexity frequency (fcc(fi)). Let p(fi) be the probability of
selecting a function fi for branch mutation, then:

p(fi) =
fcc(fi)× FR(fi)∑n
j=1 fcc(fi)× FR(fi)

, (2)

1 The number of such elements can vary each time setup is called. However for
the sake of simplicity, we assume a fixed number of DOM elements in this example.

Table II
RANKING FUNCTIONS FOR BRANCH MUTATION (RUNNING EXAMPLE).

Function Name cc fcc Selection Probability (p)
startPlay 2 0.2 0.1
setup 3 0.3 0.29
endGame 1 0.1 0.06
getDim 4 0.4 0.55

where fcc(fi) is the cyclomatic complexity frequency mea-
sured for function fi, and n is the total number of functions.

Table II shows the cyclomatic complexity, the frequency,
and the function selection probability measured for each
function in our example (Figure 1). The probabilities
are obtained using equation 2. As shown in the table,
getDim achieves the highest selection probability as both
its FunctionRank and cyclomatic complexity are high.

B. Ranking Variables
Applying mutations on arbitrarily chosen variables may

have no effect on the semantics of the program and hence
lead to equivalent mutants. Thus, in addition to functions,
we also measure the importance of variables in terms of their
impact on the behaviour of the function. We target local and
global variables, as well as function parameters for mutation.

In order to avoid generating equivalent variable mutants,
we need to mutate variables within the highly ranked
functions that are more likely to change the expected be-
haviour of the application. We divide such variables into
two categories: (1) those that are part of the program’s
dynamic invariants; and (2) those with high usage frequency
throughout the application’s execution.
Variables Involved in Invariants. A recent study by Schuler
et al. [11] finds that if a mutation violates dynamic invari-
ants, it is very likely to be non-equivalent. This suggests that
mutating variables that are involved in forming invariants
affects the expected behaviour of the application with a
high probability. Inspired by this finding, we infer JavaScript
invariants from the execution traces as shown in Figure 2.
We log variable value changes during run-time, and analyze
the collected traces to infer stable dynamic invariants. The
details of our JavaScript invariant generation technique can
be found in [21]. From each obtained invariant, we identify
all the variables that are involved in the invariant and mark
them as potential variables for mutation.

In our running example (Figure 1), an inferred invariant
in getDim yields information about the inequality relation
between function parameters width and height, e.g.,
(width > height). Based on this invariant, we choose
width and height as potential variables for mutation.
Variables with High Usage Frequency. In addition to
the invariants, we also consider the impact of variables
on the expected behaviour based on their dynamic usage
(See Figure 2). We define the usage frequency of a variable
as the number of times that the variable’s value has been
dynamically read in the scope of a given function. Let u(vi)
be the usage frequency of variable vi: u(vi) =

r(vi)∑n
j=1 r(vj)

,

where r(vi) is the number of times that the value of variable
vi is read, given that the total number of variables in the
scope of the function is n.

We identify the usage of a variable by identifying and
measuring the frequency of a given variable being read in
the following scenarios: (1) variable initialization, (2) math-
ematical computation, (3) condition checking in conditional
statements, (4) function arguments, and (5) returned value
of the function. In our current approach, we give the same
importance to all five scenarios.

From the degree of a variable usage frequency in the scope
of a given function, we infer to what extent the behaviour of
the function relies on that variable. Leveraging the collected
execution traces, we compute the usage frequencies in
the scope of a function. We choose variables with usage
frequencies above a threshold α as potential candidates for
the mutation process. α is automatically computed for each
function as 1

ReadV ariablesf(i)
, where ReadV ariablesf(i) is

the total number of variables that have been read within
function f(i).

Going back to the getDim function in our running
example of Figure 1, the values of function parameters
width and height, as well as the local variables w and
h are read just once in lines 19 and 20, when they are
involved in a number of simple computations. The result
of the calculation is assigned to the local variable v, which
then is checked as a condition for the if-else statement.
v is returned from the function in either line 22 or 24,
depending on the outcome of the if statement. In this
example, variable v has the highest usage frequency since
it has been used as a condition in a conditional statement as
well as the returned value of the getDim function.

Thus, we gather a list of potential variables for mutation,
which are obtained based on the inferred dynamic invariants
and their usage frequency. Therefore, in our running exam-
ple, in addition to function parameters width and height
(which are part of the invariants inferred from getDim), the
local variable v is also among the potential variables for the
mutation process because of its high usage frequency. Note
however, that the local variables w and h are not present in
the list of candidates for variable mutation.

C. Mutation Process
We target variables, branch statements, and JavaScript

specific operators to perform the actual mutation step. Our
mutant generation technique is based on a single mutation
at a time. Thus, we need to choose an appropriate candi-
date among all the potential candidates obtained from the
previous ranking steps of our approach.

Our mutation process includes (1) mutating a random
variable selected from the list of potential candidates that
we obtain from the variable ranking phase, (2) mutating
a random branch statement, and (3) applying a number
of JavaScript specific operators. Note that the first two
generic mutation operator types are applied using the ranking
techniques, while the third type is applied regardless of the
ranking, as these JavaScript specific operators are known to

Table III
MUTATION OPERATORS FOR VARIABLES AND FUNCTION PARAMETERS.

Type Mutation Operator

Local/Global

Change the value assigned to the variable.

Variable

Remove variable declaration/initialization.
Change the variable type by converting x = number to x
= string.
Replace arithmetic operators (+,−, ++,−−, + =,− =,
/, ∗) used for calculating and assigning a value to the
selected variable.

Function
Parameter

Swap parameters/arguments.

Remove parameters/arguments.

Table IV
MUTATION OPERATORS FOR BRANCH STATEMENTS.

Type Mutation Operator
Change literal values in the condition (including lower/upper
bound).

Loop
Statement

Replace relational operators (<, >, <=, >=, ==, ! =, ===,
! ==).
Replace logical operators (‖, &&).
Swap consecutive nested for/while.
Replace arithmetic operators (+, −, ++, −−, + =, − =, /,
∗).
Replace x++/x-- with ++x/--x (and vice versa).
Remove break/continue.
Change literal values in the condition.

Conditional
Statement

Replace relational operators (<, >, <=, >=, ==, ! =, ===,
! ==).
Replace logical operators (‖, &&).
Remove else if or else from the if statement.
Change the condition value of switch-case statement.
Remove break from switch-case.
Replace 0/1 with false/true (and vice versa) in the condition.

Return
Statement

Remove return statement.

Replace true with false (and vice versa) in return
(true/false).

be error-prone. Hence, we believe that they are important
enough to be checked on their own.

Table III shows the mutation operators for mutating global
variables, local variables as well as function parameters/ar-
guments. Table IV shows the operators for changing for
loops, while loops, if and switch-case statements,
as well as return statements. In the rest of this section
we discuss the JavaScript-specific mutation operators.

JavaScript-Specific Mutation Operators. We propose the
following JavaScript-specific mutation operators, based on
a study of common mistakes that JavaScript programmers
make, collected from various resources (see below). To our
knowledge, ours is the first attempt to collect and analyze
these resources to formulate JavaScript mutation operators.

Adding/Removing the var keyword Using var inside a
function declares the variable in local scope, thus
preventing overwriting of global variables ([22], [23],
[13]). A common mistake is to forget to add var, or
to add a redundant var, both of which we consider.

Removing the global search flag from replace A
common mistake is assuming that the string replace
method affects all possible matches. The replace
method only changes the first occurrence. To replace

Table V
DOM, JQUERY, AND XMLHTTPREQUEST (XHR) OPERATORS.

Type Mutation Operator

DOM

Change the order of arguments in insertBefore/replaceChild
methods.
Change the name of the id/tag used in getElementById and
getElementByTagName methods.
Change the attribute name in setAttribute, getAttribute,
and removeAttribute methods.
Swap innerHTML and innerText properties.

JQUERY
Swap {#} and {.} sign used in selectors.
Remove {$} sign that returns a JQUERY object.
Change the name of the property/class/element in the following
methods: addClass, removeClass, removeAttr, remove,
detach, attr, prop, css.

XHR Modify request type (Get/Post), URL, and the value of the boolean
asynch argument in the request.open method.
Change the integer number against which the
request.readyState/request.status is compared with;
{0, 1, 2, 3, 4} for readyState and {200, 404} for status.

all occurrences, the global modifier needs to be set
([24], [25], [26]).

Removing the integer base argument from parseInt
One of the common errors with parsing integers in
JavaScript is to assume that parseInt returns the
integer value to base 10, however the second argument,
which is the base, varies from 2 to 36 ([24], [27]).

Changing setTimeout function The first parameter of
the setTimeout should be a function. Consider f
in setTimeout(f, 3000) to be the function that
should be executed after 3000 milliseconds. The ad-
dition of parentheses “()” to the right of the function
name, i.e., setTimeout(f(), 3000) invokes the
function immediately, which is likely not the intention
of the programmer. Furthermore, in the setTimeout
calls, when the function is invoked without pass-
ing the expected parameters, the parameter is set to
undefined when the function is executed (same
changes are applicable to setInterval) ([28], [23],
[29]).

Replacing undefined with null A common mistake is
to check whether an object is null, when it is not
defined. To be null, the object has to be defined first
([24], [26], [13]). Otherwise, an error will result.

Removing this keyword JavaScript requires the pro-
grammer to explicitly state which object is being ac-
cessed, even if it is the current one. Forgetting to use
this, may cause binding complications ([24], [30],
[13]), and result in errors.

Replacing (function()!==false) by (function())
If the default value should be true, use of
(function()) should be avoided. If a function
in some cases does not return a value, while the
programmer expects a boolean outcome, then the
returned value is undefined. Since undefined
is coerced to false, the condition statement will
not be satisfied. A similar issue arises when
replacing (function() === false) with
(!function()) ([26]).

In addition, we consider a number of DOM specific mu-
tation operators within the JavaScript code. Table V shows
a list of DOM operators that match DOM modification
patterns in either pure JavaScript language or the JQUERY
library. We further include two mutation operators that target
the XmlHttpRequest type and state as shown in Table V.

IV. TOOL IMPLEMENTATION

We have implemented our JavaScript mutation testing
approach in a tool called MUTANDIS. MUTANDIS is written
in Java and is publicly available for download.2

To infer JavaScript dynamic invariants, we use our re-
cently developed tool, JSART [21]. For JavaScript code
interception, we employ an enhanced version of Web-Scarab
proxy. This enables us to automatically analyze the content
of HTTP responses before they reach the browser. To instru-
ment or mutate the intercepted code, Mozilla Rhino3 is used
to parse JavaScript code to an AST, and back to the source
code after the instrumentation or mutation is performed.
The execution trace profiler is able to collect trace data
from the instrumented application code by exercising the
web application under test through one of the following
methods: (1) exhaustive automatic navigation using our
dynamic AJAX crawler CRAWLJAX [31], (2) the execution
of existing test cases, or (3) a combination of crawling and
test suite execution.

V. EMPIRICAL EVALUATION

To quantitatively assess the efficacy of our mutation
testing approach, we have conducted a case study in which
we address the following research questions.
RQ1 How efficient is MUTANDIS in generating non-

equivalent mutants?
RQ2 How effective is MUTANDIS in injecting critical

behaviour-affecting faults?
RQ3 How useful is MUTANDIS in assessing existing test

cases of a given application?
The experimental data produced by MUTANDIS is avail-

able for download.2

A. Experimental Objects

Our study includes seven JavaScript-based objects in total.
Four are game applications, namely, SameGame, Tunnel,
GhostBusters, and Symbol. One is TuduList, which is a
web-based task management application. The other two,
SimpleCart and JQUERY, are JavaScript libraries. All the
experimental objects are open-source applications.

Table VI presents each application’s ID, name, and re-
source, as well as the static characteristics of the JavaScript
code, such as JavaScript lines of code excluding libraries
(LOC), number of functions, number of local and global
variables, and the cyclomatic complexity (CC) across all
JavaScript functions in each application.

2 https://github.com/saltlab/mutandis/
3 http://www.mozilla.org/rhino/

Table VI
CHARACTERISTICS OF THE EXPERIMENTAL OBJECTS.

App ID Name JS LOC # Functions # Local Vars # Global Vars CC Resource
1 SameGame 206 9 32 5 37 http://crawljax.com/same-game
2 Tunnel 334 32 18 13 39 http://arcade.christianmontoya.com/tunnel
3 GhostBusters 277 27 75 4 52 http://10k.aneventapart.com/2/Uploads/657
4 Symbol 204 20 28 16 32 http://10k.aneventapart.com/2/Uploads/652
5 TuduList 2767 229 199 31 28 http://tudu.ess.ch/tudu
6 SimpleCart (library) 1702 23 15 10 168 http://simplecartjs.org
7 JQUERY (library) 8371 45 261 27 37 https://github.com/jquery/jquery

Table VII
BUG SEVERITY DESCRIPTION.

Bug Severity Description Rank
Critical Crashes, data loss 5
Major Major loss of functionality 4
Normal Some loss of functionality, regular issues 3
Minor Minor loss of functionality 2
Trivial Cosmetic issue 1

B. Experimental Setup

To run the analysis, we provide the URL of each experi-
mental object to MUTANDIS. Note that because SimpleCart
and JQUERY are both JavaScript libraries, we are not able
to use them in response to RQ1 and RQ2, as they are not
independently executable. As a result, we use only the first
five applications for answering RQ1 and RQ2.

We evaluate the efficiency of MUTANDIS in generating
non-equivalent mutants (RQ1) for the first five applications
in Table VI. We collect execution traces by instrumenting
the custom JavaScript code of each application and executing
the instrumented code through automated dynamic crawling.
We navigate each application several times with different
crawling settings. Crawling settings differ in the number of
visited states, depth of crawling, and clickable element types.
We inject a single fault at a time in each of these five ap-
plications using MUTANDIS. The number of injected faults
for each application is 40 – in total, we inject 200 faults for
the five objects. We automatically generate these mutants
from the following mutation categories: (1) variables, (2)
branch statements, and (3) JavaScript-specific operators. We
then examine each application’s output to determine whether
the generated mutants are equivalent. The determination of
whether the mutant is equivalent is automated for observable
changes, as we automatically execute the mutated version of
the application in the browser. However, it requires manual
analysis for non-observable changes.

To address RQ2, we use the bug severity ranks used by
the Bugzilla bug tracking system, which have also been
used by other researchers [32]. The description and the
rank associated with each type of bug severity is shown
in Table VII. We choose non-equivalent mutants from our
previously generated mutants (for RQ1). We then analyze the
output of the mutated version of the application and assign
a bug score according to the ranks in Table VII.

To address RQ3, we run our tool on the SimpleCart and
JQUERY libraries. These two libraries come with Qunit4
test cases. Unfortunately, test suites for the first five ex-
perimental objects are currently not available, and hence
we exclude them for this study. We gather the required
execution traces of the SimpleCart library by running its test
cases, as this library has not been deployed on a publicly
available application. However, to collect dynamic traces of
the JQUERY library, we use one of our experimental objects
(SameGame), which uses JQUERY as one of its JavaScript
libraries. Unlike the earlier case, we include the JQUERY
library in the instrumentation step. We then analyze how
the application uses different functionalities of the JQUERY
library using our approach. We generate 120 mutants for
each library. After injecting a fault using MUTANDIS, we
run the test cases on the mutated version of each application.
We determine the usefulness of our approach based on (1)
the number of non-equivalent generated mutants, and (2)
the number of non-equivalent surviving mutants. A non-
equivalent surviving mutant is one that is neither killed nor
equivalent, and is an indication of the incompleteness of the
test cases. The presence of such mutants can help testers to
improve the quality of their test suite. For mature test suites,
we expect the number of non-equivalent surviving mutants
to be small.

C. Results
1) Generated Non-Equivalent Mutants (RQ1): Table VIII

presents our results for the number of non-equivalent mu-
tants and the severity of the injected faults using MUTANDIS.
For each web application, the table shows the number of
mutants, number of equivalent mutants, the number of non-
equivalent mutants, the percentage of equivalent mutants,
and the average bug severity as well as the percentage of
the severity in terms of the maximum severity level.

As shown in the table, the number of equivalent mutants
varies between 2 and 4. On average, the percentage of
equivalent mutants generated by MUTANDIS is 7%, which
points to its efficiency in generating non-equivalent mutants.

We observe that more than 70% of the equivalent mutants
originate from the branch mutation category. The reason
is that in our current approach, we do not rank branches
for mutation within the ranked/selected functions. This can
result in mutating a branch that does not affect the appli-
cation’s behaviour. For instance, in Tunnel, we observed

4 http://docs.jquery.com/QUnit

Table VIII
RESULTS OF THE MUTANTS GENERATED BY MUTANDIS.

App ID # Mutants # Equiv Mutants # Non-Equiv Mutants Equiv Mutants (%) Bug Severity Rank (avg) Bug Severity (%)
1 40 2 38 5 3.6 72
2 40 4 36 10 3.7 74
3 40 3 37 7.5 3.2 64
4 40 3 37 7.5 3.7 74
5 40 2 38 5 3.8 76

Avg. 40 2.8 37.2 7 3.6 72

a couple of return true/false statements within the
functions that have high FunctionRank and cyclomatic
complexity value. However, the returned value is not used by
the caller function and hence, mutating the return boolean
value as part of branch mutation generates an equivalent
mutant. This is the main reason that we observe 10% of
equivalent mutants (the highest in Table VIII) for the Tunnel
application.

2) Fault Severity of the Generated Mutants (RQ2): The
fault severity of the injected faults is also presented in
Table VIII. We computed the percentage of the bug severity
as the ratio of the average severity rank to the maximum
severity rank (which is 5). As shown in the table, the average
bug severity rank across all applications is 3.6 (bug severity
percentage is 72% on average).

Based on Table VII, we see that the injected faults cause
normal to major loss of functionality. We observed only a
few faults with minor severity. We also noticed a few critical
faults (3.8% on average), which caused the web application
to terminate prematurely or unexpectedly. It is worth noting
that full crashes are not that common for web applications,
since web browsers typically do not stop executing the entire
web application when an error occurs. The other executable
parts of the application continue to run in the browser in
response to user events [14].

Further, for all applications, more than 70% of the faults
that cause major loss of functionality are in the top 20%
percent of important functions in terms of the computed
FunctionRank, thus showing the importance of this metric
in the fault seeding process. Moreover, we noticed that
the careful choice of a variable for mutation is also as
important as the function selection. For example, in the
SameGame application, the updateBoard function is re-
sponsible for redrawing the game board each time a cell is
clicked. Although updateBoard is ranked as an important
function according to its FunctionRank, there are two
variables within this function that have high usage frequency
compared to other variables. While mutating either of these
variables causes major loss of functionality, selecting the
remaining ones for mutation either has no effect or only
marginally impacts the application’s behaviour. Furthermore,
we observed that the impact of mutating variables that are
part of the invariants as well as the variables with high usage
frequency can severely affect the application’s behaviour.
This indicates that both invariants and usage frequency play
a prominent role in generating faults that cause major loss

Table IX
MUTATION SCORE COMPUTED FOR THE SIMPLECART AND JQUERY

LIBRARIES.

A
pp

ID

#
Te

st
s

#
M

ut
an

ts

#
E

qu
iv

.

#
N

on
-E

qu
iv

.

#
K

ill
ed

N
on

-E
qu

iv
.(

%
)

E
qu

iv
.(

%
)

N
on

-E
qu

iv
.S

ur
vi

vi
ng

(%
)

M
ut

at
io

n
Sc

or
e

(%
)

6 83 120 2 118 80 98.3 1.7 32.2 67.8
7 644 120 3 117 106 97.5 2.5 9 90.6

of functionality, thereby justifying our choice of these two
metrics for variable selection (Section III-B).

As far as RQ2 is concerned, our results indicate that
MUTANDIS is effective in generating mutants that cause non-
trivial errors in JavaScript applications.

3) Assessing Existing Test Cases (RQ3): The results ob-
tained from analyzing the mutants generated by MUTANDIS
on the test cases of SimpleCart and JQUERY library are
presented in Table IX. The table shows the number of test
cases, number of mutants, number of equivalent mutants,
number of non-equivalent mutants, number of mutants de-
tected by the test suite (killed mutants), the percentage
of non-equivalent mutants and the equivalent mutants, the
percentage of non-equivalent surviving mutants, and the
mutation score. The percentage of non-equivalent surviving
mutants is: #NonEquivSurvivingMutants

#TotalNonEquivMuatnts .
Mutation score is used to measure the effectiveness of

a test suite in terms of its ability to detect faults [33].
The mutation score is computed according to the following
formula:

(
k

M−E

)
× 100, where K is the number of killed

mutants, M is the number of mutants, and E is the number
of equivalent mutants.

As shown in the table, less than 3% of the mutants gener-
ated by MUTANDIS are equivalents. SimpleCart achieves a
mutation score of 67.8, which means there is much room for
test case improvement in this application. For SimpleCart,
we noticed that the number of non-equivalent, surviving
mutants in the branch mutation category is more than twice
the number in the variable mutation category. This shows
that the test suite was not able to adequately cover several
different branches in SimpleCart library, possibly because it
has a high cyclomatic complexity (Table VI). On the other
hand, the QUnit test suite of the JQUERY library achieves a

high mutation score of over 90%, which indicates the high
quality of the designed test cases. However, even in this
case, 9% of the non-equivalent mutants are not detected by
this test suite. We further observed that all the non-equivalent
injected faults in SimpleCart and JQUERY that are not killed
by the test suites, are in the top 30% of the important
functions in terms of FunctionRank. This again points to
the importance of FunctionRank in test case generation.

As far as RQ3 is concerned, our approach is able to guide
testers towards designing test cases for important portions of
the code from the application’s behaviour point of view.

D. Threats to Validity
An external threat to the validity of our results is the

limited number of web applications we use to evaluate the
usefulness of our approach in assessing existing test cases
(RQ3). Unfortunately, few JavaScript applications with up-
to-date test suites are publicly available. Another external
threat to validity is that we do not perform a quantitative
comparison of our technique with other mutation techniques.
However, to the best of our knowledge, there is no mutation
testing tool available for JavaScript, which limits our ability
to perform such comparisons. In terms of internal threat to
validity, we had to manually inspect the application’s code
to detect equivalent mutants. This is a time intensive task,
which may be error-prone and biased towards our judgment.
However, this threat is shared by other studies that attempt
to detect equivalent mutants. As for the replicability of our
study, MUTANDIS and all the experimental objects used are
publicly available, making our results fully reproducible.

VI. RELATED WORK

The problem of detecting equivalent mutants has been
tackled by many researchers. Offutt and Pan [5], [8] propose
an approach using constraint solving. Baldwin and Sayward
[34] propose a compiler optimization technique to detect
equivalent mutants. The idea is that the optimization of
program code produces an equivalent program, and hence
a mutant can be identified as equivalent through either an
optimization or deoptimization procedure. However, these
approaches are able to detect only 10% of equivalent mu-
tants [4]. Program slicing has also been used in equivalent
mutants detection [6]. The goal there is to guide a tester in
detecting the locations that are affected by a mutant. Such
equivalent mutant detection techniques are orthogonal to our
approach. If a mutation has been statically proven to be
equivalent, we do not need to measure its impact on the
application’s expected behaviour and we focus only on those
that cannot be handled using static techniques. Moreover,
static techniques are not able to fully address unpredictable
and highly dynamic aspects of programming languages such
as JavaScript.

Adamopoulos et al. [9] present a co-evolutionary approach
by designing a fitness function to detect possible equivalent
mutants. Domı́nguez-Jiménez et al. [10] propose an evolu-
tionary mutation testing technique based on a genetic algo-
rithm to cope with the high computational cost of mutation

testing by reducing the number of mutants. Their system
generates a strong subset of mutants, which is composed
of surviving and difficult to kill mutants. Their technique,
however, cannot distinguish equivalent mutants from sur-
viving non-equivalent mutants. Langdon et al. have applied
multi-object genetic programming to generate higher order
mutants [35]. An important limitation of these approaches
is that the generated mutant needs to be executed against
the test suite to compute its fitness function. In contrast, our
approach avoids generating equivalent mutants in the first
place, thereby achieving greater efficiency.

Schuler et al. [11] detect possible equivalent mutants
by checking invariant violations. They generate multiple
mutated versions and then classify the versions based on
the number of violated invariants. The system recommends
testers to focus on those mutations that violate the most
invariants. In a follow-up paper [12], they extend their work
to assess the role of code coverage changes in detecting
equivalent mutants. While the variable selection step in our
approach also makes use of program invariants, our work
is again different in the sense that instead of classifying
mutants, we avoid generating equivalent mutants a priori by
detecting behaviour-affecting portions of the code.

Bottaci [36] presents a mutation analysis technique based
on the available type information at run-time to avoid gener-
ating incompetent mutants. This approach is applicable for
dynamically typed programs such as JavaScript. However,
the efficiency of the technique is unclear as they do not
provide any empirical evaluation of their approach.

In recent work, Bhattacharya et al. [32] proposed
NodeRank to spot parts of code that are prone to bugs
of high severity. NodeRank uses the PageRank algorithm
to assign a value to each node in a graph, indicating the
relative importance of that node in the whole program
according to the program’s static call graph. In our approach
we propose a new metric, FunctionRank, which takes
advantage of dynamic information collected at execution
time for measuring the importance of a function in terms of
the program’s behaviour. Weighting the ranking metric with
call frequencies as we do makes it more practical in web
application testing, as the likelihood of exercising different
parts of the application can be different. Further, to the best
our knowledge, we are the first to apply such a metric to
mutation testing.

VII. CONCLUSIONS AND FUTURE WORK

Mutation testing systematically evaluates the quality of
existing tests suites. However, mutation testing suffers from
equivalent mutants, as well as a high computational cost
associated with a large pool of generated mutants. In this
paper, we proposed a mutation testing technique that lever-
ages dynamic and static characteristics of the system under
test to selectively mutate portions of the code that exhibit a
high probability of (1) being error-prone, or (2) affecting
the observable behaviour of the system, and thus being
non-equivalent. Thus, our technique is able to minimize the
number of generated mutants while increasing their effect on

the semantics of the system. We implemented our approach
in a mutation testing tool for JavaScript, called MUTANDIS.
The evaluation of MUTANDIS points to the efficacy of the
approach in generating non-equivalent mutants.

Our future work will include comparing different heuris-
tics for ranking the importance of functions and variables as
well as exploring ways to rank branches for mutation testing,
in addition to ranking functions and variables.

Acknowledgment: This work was supported by the Na-
tional Science and Engineering Research Council of Canada
(NSERC) through its Discovery Grants and Strategic Project
Grants programmes. We also thank the Canada Foundation
of Innovation (CFI) for equipment support.

REFERENCES

[1] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appro-
priate tool for testing experiments?” in Proc. Intl. Conference
on Software Engineering (ICSE). ACM, 2005, pp. 402–411.

[2] Y. Jia and M. Harman, “An analysis and survey of the devel-
opment of mutation testing,” IEEE Transactions on Software
Engineering (TSE), vol. 37, no. 5, pp. 649–678, 2010.

[3] T. Budd and D. Angluin, “Two notions of correctness and
their relation to testing,” Acta Informatica, vol. 18, no. 1, pp.
31–45, 1982.

[4] A. Offutt and W. Craft, “Using compiler optimization tech-
niques to detect equivalent mutants,” Software Testing, Veri-
fication, and Reliability, vol. 4, no. 3, pp. 131–154, 1994.

[5] A. Offutt and J. Pan, “Automatically detecting equivalent
mutants and infeasible paths,” Software Testing, Verification,
and Reliability, vol. 7, no. 3, pp. 165–192, 1997.

[6] M. Harman, R. Hierons, and S. Danicic, “The relationship
between program dependence and mutation analysis,” in Proc.
1st Workshop on Mutation Analysis, 2000, pp. 5–13.

[7] R. Hierons, M. Harman, and S. Danicic, “Using program
slicing to assist in the detection of equivalent mutants,”
Software Testing, Verification, and Reliability, vol. 9, no. 4,
pp. 233–262, 1999.

[8] A. Offutt and J. Pan, “Detecting equivalent mutants and
the feasible path problem,” in International Conference on
Computer Assurance (COMPASS), 1996, pp. 224–236.

[9] K. Adamopoulos, M. Harman, and R. Hierons, “How to
overcome the equivalent mutant problem and achieve tailored
selective mutation using co-evolution,” in Proc. Genetic and
Evol. Comp. Conf. (GECCO). ACM, 2004, pp. 1338–1349.

[10] J. Domı́nguez-Jiménez, A. Estero-Botaro, A. Garca-
Domnguez, and I. Medina-Bulo, “Evolutionary mutation
testing,” Information and Software Technology, vol. 53,
no. 10, pp. 1108–1123, 2011.

[11] D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation
testing by checking invariant violations,” in Proc. Intl. Symp.
Softw. Testing and Analysis (ISSTA). ACM, 2009, pp. 69–79.

[12] D. Schuler and A. Zeller, “(un-)covering equivalent mutants,”
in Proc. Intl. Conf. on Softw. Testing, Verification, and Vali-
dation (ICST). IEEE Computer Society, 2010, pp. 45–54.

[13] D. Crockford, JavaScript: The Good Parts. O’Reilly Media,
Inc., 2008.

[14] F. Ocariza, K. Pattabiraman, and B. Zorn, “JavaScript errors
in the wild: An empirical study,” in Proc. of the Intl. Symp. on
Software Reliability Engineering (ISSRE). IEEE Computer
Society, 2011, pp. 100–109.

[15] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-based
automatic testing of modern web applications,” IEEE Trans-
actions on Software Engineering (TSE), vol. 38, no. 1, pp.
35–53, 2012.

[16] S. Artzi, J. Dolby, S. Jensen, A. Møller, and F. Tip, “A frame-
work for automated testing of JavaScript web applications,”
in Proc. Intl. Conf. on Softw. Eng. (ICSE). ACM, 2011, pp.
571–580.

[17] V. Basili, L. Briand, and W. Melo, “A validation of object
orient design metrics as quality indicators,” IEEE Transaction
on Software Engineering (TSE), vol. 22, no. 10, pp. 751–761,
1996.

[18] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to
predict component failures,” in Proc. Intl. Conf. on Softw.
Eng. (ICSE). IEEE Computer Society, 2006, pp. 452–461.

[19] S. Brin and L. Page, “The anatomy of a large-scale hyper-
textual web search engine,” Computer Networks and ISDN
Systems, vol. 30, no. 1-7, pp. 107–117, 1998.

[20] T. McCabe, “A complexity measure,” IEEE Transaction on
Software Engineering (TSE), vol. SE-2, no. 4, pp. 308–320,
1976.

[21] S. Mirshokraie and A. Mesbah, “JSART: JavaScript assertion-
based regression testing,” in Proc. Intl. Conference on Web
Engineering (ICWE). Springer, 2012, pp. 238–252.

[22] J. Hsu, “JavaScript anti-patterns,” http://jaysoo.ca/2010/05/06/
javascript-anti-patterns/, 2010.

[23] A. Osmani, Learning JavaScript Design Patterns. O’Reilly
Media, 2012.

[24] E. Weyl, “16 common JavaScript gotchas,” http://www.
standardista.com/javascript/15-common-javascript-gotchas/,
2010.

[25] “String replace JavaScript bad design,”
http://www.thespanner.co.uk/2010/09/27/
string-replace-javascript-bad-design/, 2010.

[26] B. L. Roy, “Three common mistakes in JavaScript/Ec-
maScript,” http://weblogs.asp.net/bleroy/archive/2005/02/15/
Three-common-mistakes-in-JavaScript- 2F00 -EcmaScript.
aspx, 2005.

[27] A. Burgess, “The 11 JavaScript mistakes you are
making,” http://net.tutsplus.com/tutorials/javascript-ajax/
the-10-javascript-mistakes-youre-making/, 2011.

[28] T. Ho, “Premature invocation,” http://tobyho.com/2011/10/26/
js-premature-invocation/, 2011.

[29] P. Gurbani and S. Cinos, “Top 13 JavaScript mistakes,” http:
//blog.tuenti.com/dev/top-13-javascript-mistakes/, 2010.

[30] C. Porteneuve, “Getting out of binding situations
in JavaScript,” http://www.alistapart.com/articles/
getoutbindingsituations/, 2008.

[31] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawl-
ing Ajax-based web applications through dynamic analysis
of user interface state changes,” ACM Trans. on the Web
(TWEB), vol. 6, no. 1, pp. 3:1–3:30, 2012.

[32] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos,
“Graph-based analysis and prediction for software evolution,”
in Proc. Intl. Conf. on Softw. Eng. (ICSE). ACM, 2012, pp.
419–429.

[33] M. Woodward, “Mutation testing - its origin and evolution,”
Information and Software Technology, vol. 35, no. 3, pp. 163–
169, 1993.

[34] D. Baldwin and F. Sayward, “Heuristics for determining
equivalence of program mutations,” Yale University, Depart-
ment of Computer Science, Tech. Rep. 276, 1979.

[35] W. Langdon, M. Harman, and Y. Jia, “Efficient multi-
objective higher order mutation testing with genetic program-
ming,” Journal of Systems and Software, vol. 83, no. 12, pp.
2416–2430, 2010.

[36] L. Bottaci, “Type sensitive application of mutation operators
for dynamically typed programs,” in Proc. 5th Intl. Workshop
on Mutation Analysis, 2010, pp. 126–131.

