DIEBA: Diagnosing Intermittent Errors by
Backtracing Application Failures

Layali Rashid, Karthik Pattabiraman and Sathish Gopalakrishnan
The University of British Columbia, Canada
{Irashid, karthikp, sathish} @ece.ubc.ca

Abstract—Intermittent hardware faults have emerged as a
leading cause of system failures in the real world. Unlike transient
faults, intermittent faults recur at the same location, and need to
be diagnosed in order to mitigate their effects. However, unlike
permanent faults, intermittent faults are non-deterministic, which
makes them challenging to diagnose through traditional methods.
We propose a software-based technique to Diagnose Intermittent
hardware Errors in microprocessors by Backtracing Application
state at the time of a failure (DIEBA). We focus on faults that
occur in the micro-architectural units in a core, and either result
in program failure or have been detected by software/hardware
detectors. We have evaluated DIEBA through fault-injection
experiments, and show that it can successfully diagnose 70%
of the errors that result in failures or detections.

I. INTRODUCTION

Hardware faults are increasing in microprocessors due to
technology scaling and diminishing design margins [[L1], [3].
Hardware faults can be masked through the use of guard-
banding or Dual Modular Redundancy (DMR). Unfortunately,
these solutions have significant power overheads, and are
untenable as power considerations dominate processor design.

Hardware faults may be broadly classified into transient,
intermittent and permanent. Transient faults are typically one-
time events that do not recur, while permanent faults persist at
the same location indefinitely. Intermittent faults lie between
these two extremes, in that they recur at the same location,
but do so non-deterministically based on external factors (e.g.,
temperature) [6]. A recent study has found that about 40% of
real-world failures in a processor are caused by intermittent
faults [12]].

Fault diagnosis is often a precursor to fault recovery. For
transient faults, recovery consists of rolling back to a check-
point and restarting the program’s execution. No diagnosis is
required for such faults as the fault is unlikely to be encoun-
tered again. For permanent faults, the faulty component may
need to be disabled during system reconfiguration. Permanent
faults can be diagnosed by running additional tests, as the fault
is always present at that location.

Intermittent faults, on the other hand, present unique chal-
lenges for diagnosis. Unlike permanent faults, they are not
deterministic and hence may not appear during testing. Further,
they need diagnosis, unlike transient faults, as they are likely
to recur at the same location and cause the system to fail.
Finally, the diagnosis should incur minimum power and area
overheads during fault-free operation. Existing diagnosis tech-
niques either incur considerable energy overheads and design

complexity [7] or require that the fault appears deterministi-
cally [10] (which does not hold for intermittent faults). Further,
many of the techniques require hardware support [13].

Recent studies have proposed to mitigate the effect of
permanent faults by fine-grained core reconfiguration around
the error-prone microarchitectural unit or pipeline stage [L16].
The goal is to keep using other functional parts of the core
instead of shutting down the entire core. These studies assume
that there exist some techniques to isolate such defective
units. Although diagnosis of permanent faults is well explored,
intermittent fault diagnosis remains a challenge.

The central question we explore is: “Can one develop low-
overhead, software-based diagnosis methods for intermittent
errors to identify faulty functional units in a processor?”
Towards answering this question, our contributions are:

o Introduce a software-based diagnosis technique, DIEBA,
that starts from the failure dump of a program (due to
an intermittent error) and identifies the faulty micro-
architectural unit. DIEBA requires no hardware support,
and can be executed on a different core than the one that
experienced the error (thus diagnosis does not pause the
core’s execution after the failure) (Section [II).

o Evaluate the accuracy of DIEBA through the use of
a cycle-accurate simulator, and through fault-injection
experiments based on a micro-architectural model of
intermittent faults. We find that DIEBA accurately di-
agnoses 70% of errors in three functional units of the
processor. These units comprise 57.1% of the total area
of OpenSPARC-T1 core [15] and 51.4% of POWER4-
like processor [9] excluding caches (Section [V).

DIEBA uses information about the application’s binary code
to reconstruct its execution prior to the failure, and attempts
to isolate the faulty unit based on error propagation paths
in the application. Because DIEBA requires neither online
monitoring of the applicatiorﬂ nor additional testing on the
faulty core, it incurs low power and performance overheads
during fault-free operation. 7o our knowledge, DIEBA is the
first approach to diagnose intermittent faults without running
additional tests or requiring any hardware support.

"However, it does require a small amount of logging to be performed by
the application in software - this is explained later (Section @)

Defective core Reliable core

Program Binary,
inputs, signature.
Crash Dump File 5

Failure/
Error Detection

2 H 4

Intermittent Errm; z

Defective Unit
5

Fig. 1. Overview of our diagnosis technique.

II. APPROACH

This section presents DIEBA, our approach for diagnosing
intermittent hardware errors based on application failures. We
start with an overview of DIEBA (Section [[I-A)), describe the
construction of the Dynamic Dependence Graph (DDG) [1],
which is an essential structure used by DIEBA, then we discuss
the design choices and assumptions made in DIEBA’s design

(Section [II-B).

A. Overview

DIEBA is triggered by an intermittent-error detection or
program failure; the technique uses program information at the
time of error detection or failure, along with some additional
information, to identify faulty functional units (Figure [I)).

DIEBA’s Inputs (Figure [I} Box 3) are: (1) program bi-
nary, (2) inputs that were provided to the program including
any sources of non-determinism introduced by the operating
system, (3) the crash dump file of the program consisting
of the register file contents, memory dump and the program
and instruction countersE] (these are available in standard core-
dump files), and (4) program signature (see Section [[II-A2)).

DIEBA’s Output (Figure [} Box 5) is the functional unit
where the intermittent error occurred. In the current version of
DIEBA we support arithmetic and logical units (both integer
and floating-point), in addition to the load-store unit. For
most fine-grained repair and reconfiguration techniques (e.g.,
Stagenet [8]], Core Cannibalization [16]]) it is sufficient to
resolve the fault to the granularity of functional units/pipeline
stages.

Technique At a high level, DIEBA attempts to reconstruct
the execution of the program prior to the error detection
or failure. Because we have found experimentally that most
intermittent errors lead to program crashes within a few
thousands of instructions from the start of an error (Section [V},
it suffices to reconstruct the last few thousands of instructions
of the program prior to the failure (the number of instructions
is a configurable parameter of the technique). Based on the
reconstruction of the program execution, DIEBA can infer
the portions of a program’s state that were corrupted by
the error (by computing a diff of the two states). DIEBA

2The instruction counter keeps track of the number of dynamic instructions
executed in the program, and is available as a performance counter in x86
architectures.

then backtraces the corrupted data by following the program’s
dynamic dependence graph (DDG), which is a representation
of the dependencies among the program’s dynamic instructions
to identify the error-propagation paths in the program.

To build a DDG of a program, DIEBA needs two aspects of
a program’s execution to be recorded. First, DIEBA needs a
log of all sources of non-determinism in the program (includ-
ing its inputs) in order to faithfully reproduce its behaviour.
Second, DIEBA needs to log the control flow of the program
prior to its failure, because an intermittent error can modify
the program’s control flow. This is achieved by maintaining
a program signature. Based on these two elements, DIEBA
reconstructs the program’s execution on a different (reliable)
core to generate what we call a fault-free run (the means of
obtaining a reliable core are explained in Section [[I-B).

Finally, DIEBA attempts to identify the faulty functional
unit based on data propagation paths that were affected by the
error. This is based on mapping instructions to the correspond-
ing functional units in the processor.

B. Design Choices and Assumptions

a) Design choices: DIEBA is executed on a different
core than the one that experienced failure. This is because
we do not want the diagnosis process to be affected by the
intermittent fault that could potentially recur. Further, because
the fault is intermittent, the fault-prone core can continue to
be used while the diagnosis is taking place on another core.
Therefore, DIEBA does not perturb the fault-prone core.

We assume the availability of a non-faulty core to run
DIEBA. One way to achieve this is to run two cores (dual
modular redundancy, DMR), so that an error in one core will
be caught by the other, as long as both cores do not experience
the same error. This does not incur additional performance
and power overheads in the fault-free case. We assume, as Li
et al. [10] have done, that only in the infrequent event of a
crash or error detection is the DMR mode invoked

b) Assumptions: In addition to assuming the availability
of non-faulty cores, the main assumptions in DIEBA are:

No simultaneous faults We also assume that at most one
functional unit of the processor is fault-prone during
a given execution of the program. This assumption is
justified because intermittent faults are relatively infre-
quent compared to the typical execution time of many
applications, and hence are unlikely to affect multiple
functional units.

Fault locations We only consider faults in the processor’s
load-store unit, the integer arithmetic and logic unit
(ALU) and the floating point unit (FPU) and not in the
units comprising the processor’s front-end such as the
fetch and decode units. As a software-based technique,
DIEBA does not have enough observability to diagnose
errors in such units. Moreover, we assume that all the
memory is protected using parity or ECC, and hence does
not experience software-visible errors.

31t is also possible to run DIEBA at a completely different location by
sending the system state at failure over a network connection.

III. DIEBA IMPLEMENTATION

We start this section by explaining how we reconstruct the
program’s execution prior to the failure. This is a crucial step
for the DIEBA technique. Next, we discuss the details of
DIEBA’s implementation (Section [[II-B). Then we show an
example to illustrate DIEBA’s operation (Section [[II-C).

A. Reconstruction of Program’s Execution

As mentioned earlier, reconstructing the execution of the
program prior to its failure imposes two monitoring require-
ments: first, we need to identify and reproduce faithfully all
sources of non-determinism (e.g., user inputs and interrupts).
Second, we need to capture the control flow prior to the failure.
We address these two aspects below.

1) Non-determinism: To enable an execution replay of a
program, all sources of non-determinism in the program should
be recorded by logging the associated events during the origi-
nal execution (i.e., record phase). These events include inputs,
interrupts, messages exchanged with other processors and
inter-leavings among threads (for multi-threaded programs).

There has been significant work in performing deterministic
replay in multi-processor and multi-core systems to support
software debugging and fault-tolerance. Hardware-based re-
play systems such as Flight Data Recorder [17], for example,
has low performance overheads (less than 2%). Our technique
is orthogonal to the specific type of replay system used.

2) Control flow: Intermittent faults can affect branch or
jump instructions in a program, in which case the control
flow of the affected program will deviate from the correct one.
However, we need to capture the control flow of the program
prior to its failure in order to reconstruct its execution after the
failure. We therefore instrument the program’s binary to record
a log of the last n basic blocks (BBs). This instrumentation
is added to the program’s executable, and does not require its
source code.

The idea of program signatures is not new. For example,
signatures have been extensively used to detect control-flow
errors [2]. We use signatures not to detect errors, but rather to
replay a program’s control-flow.

We partition a program into a set of BBs, and add a store
instruction at the end of each BB to save the BB identifier in
a buffer. The BB identifier is a unique identifier for each BB
in the program.

BB identifiers are stored in a ring buffer in memory. In case
of a failure, this buffer will be written to the crash dump file.
This buffer is circular since only the most recent identifiers
are needed for the diagnosis technique. This is because most
intermittent faults cause programs to crash soon after they
occur, so only the last few thousands of instructions and hence,
the last few thousands of Control-Flow Instructions (CFIs) will
be analyzed.

B. The DIEBA Algorithm

We now describe the details of the DIEBA algorithm. The
algorithm attempts to reconstruct the execution of the program
based on the information gathered in Section We call

this the fault-free run of the program, as it is executed on a
non-faulty core (see Section [[I-B). DIEBA then compares the
state of the fault-free run at the failing instruction with the state
in the failing run. All differences in state are marked as strong
clues; we know for certain that these elements were corrupted
by the error. The algorithm then attempts to trace back from
the strong clues using the program’s data dependencies to
identify the set of all program elements that may have been
corrupted by the error. We call these weak clues, as these are
based on heuristics, and so we cannot be certain that they
were corrupted by the error. Finally, the algorithm maps the
corrupted propagation paths to the functional units they used
in their execution in order to identify the unit that was likely
responsible for the corruption. The detailed algorithm is as
follows:

(1) Create a fault-free run of the failed program: In this
step, we replay the execution of the failed program on a non-
faulty core using the information gathered in Section
as follows: (1) When a non-deterministic data item is read by
the program, this data is substituted with the value recorded by
the replay tool, and (2) when the program executes a control-
flow instruction (CFI), the target address of this instruction is
compared with the value recorded in the program’s signature
(if an entry exists for the CFI). If the addresses do not match,
then the CFI’s target in the fault-free run is substituted with
the address stored in the signature. This makes the fault-free
run mimic the control flow of the failing run. In addition, the
mismatched CFI is added to the set of strong clues considered
by the technique (as it was corrupted by the fault). The fault-
free run is terminated when the instruction address and the
dynamic count of instructions match that of the failing run,
i.e., at the dynamic instruction that crashed the program.

(2) Capture the trace of the fault-free run and construct
the DDG: The PC, instruction type (e.g., branch, add) and
operands are logged to a trace file for each instruction. Note
that this recording is done during diagnosis time only, and
does not affect the running program in any way. The Dynamic
Dependence Graph (DDG) is constructed from the trace file.

(3) Find the erroneous registers and memory data in the
program: Compare the final register file and the memory state
of the fault-free run with the corresponding register file and
memory state of the failure run to find the set of mismatched
registers and memory locations. These locations are also added
to the set of strong clues. For convenience, we use the term
strong clue to refer to both the members of the set and to the
last dynamic instructions (or nodes) that modify them in the
program.

(4) Compute backward propagations sets: Use the DDG
constructed in step 2 to find all error propagation paths E]
that result in changes to strong clues. This can be done by
traversing the predecessors of the instructions that directly
affect the erroneous registers, memory locations and CFIs.
Such precise backtracing is possible because we use the

4A propagation path is a set of instructions that have data dependencies
among them.

dynamic trace (step 3) to construct the DDG, and hence have
complete information about the execution.

(5) Prune the propagations paths: In the previous step,
some of the weak clues found in propagation paths are marked
as erroneous just because they have been used as operands
in instructions that generated incorrect results, although these
operands were not affected by the fault. DIEBA attempts to
find these correct operands by checking if they have con-
tributed to some other correct computation(s) in the program,
and if so, eliminates them from the corresponding propagation
path. This is a heuristic as it is possible that the error is
masked by the other computation, and hence we may miss
some erroneous data. Nonetheless, we find that this heuristic
works well in practice.

(6) Identify the defective unit: In this step, we identify
the functional unit that likely experienced the defect as being
faulty, by analyzing the error propagation paths and identifying
the functional units used by the instructions in the paths. We
consider arithmetic/logic instructions (both integer and floating
point) and load-store instructions. We then count the number
of paths in which a particular unit is used, by associating a
counter with the unit. The unit with the highest usage count
across all propagation paths is then labeled as defective. The
idea of using a counter to infer the defective unit is similar to
that of Bower et al. [4].

C. Example

We illustrate the operation of the DIEBA algorithm in
the previous section with the example introduced earlier.
Table [I] shows the assembly code fragment corresponding to
the exampld]

Consider an intermittent fault that affects the Integer ALU,
such that three instructions that use the ALU are erroneous;
0x40d628, 0x40d638 and 0x40d648 (nodes 5, 7 and 9). This
error causes the jump instruction at 0x40d678 to branch to an
invalid code address, which leads to a crash. For this example,
we assume that the program is loop-free, and hence there
is a one-to-one correspondence between node numbers and
addresses in the DDG. Figure 2| shows the DDG corresponding
to the code fragment. For simplicity, we have numbered the
nodes starting from 1. Also, the DDG only includes the
instructions that appear in this example.

We illustrate the algorithm step-by-step on the example.

In step 1, the failed program is re-executed on a fault-free
processor, and the fault-free run is constructed. The fault-free
run is terminated at PC 0x40d678 as the program crashes at
this instruction. For simplicity, we assume that there are no
faulty branches or jumps in the replay.

During the re-execution, a trace file is gathered and its
DDG is constructed (step 2). The registers contents and the
memory state of the fault-free run is compared with that of
the failing run (step 3). The technique finds that register #18
is erroneous, because it is updated at PC 0x40d628, which
is directly affected by the error. Moreover, register #6 is

5The example is in MIPS-like assembly language.

TABLE I
AN EXAMPLE SET OF DYNAMIC INSTRUCTIONS USED TO DEMONSTRATE
THE DIAGNOSIS ALGORITHM.

Node | Address Instruction

1 0x40d608 | addiu $gp[28],$gp[28],-23296

2 0x40d610 | Iw $s0[16],0($sp[29])

3 0x40d618 | addiu $s1[17],$gp[28],42

4 0x40d620 | addiu $sp[29],$sp[29],-40

5 0x40d628 | addu $s2[18],$zero[0],$v1[3]

6 0x40d630 | sw $s2[18],-32396($gp[28])

7 0x40d638 | addiu $al[5],$t4[12],-24

8 0x40d640 | sw $a0[4],-32362($gp[28])

9 0x40d648 | addu $a2[6],%al[5],$v1[3]
0x40d650 | jal 401900

10 0x40d658 | addu $al[5],$s1[17],8s0[16]

11 0x40d660 | sw $al[5],-32400($gp[28])

12 0x40d668 | addu $a2[6],%$a2[6],$s2[18]

13 0x40d670 | addiu $sp[29],$sp[29],-40
0x40d678 | jr $a2[6]

Fig. 2. The DDG constructed using code fragment in Table E] Light grey
nodes represent weak clues, while dark grey nodes represent strong clues.

erroneous because it is also affected directly by the error
at PC 0x40d648. Therefore, the set of erroneous registers
for this example are #18 and #6. Also, by comparing the
memory states of the failure run and the fault-free run, the
technique finds that the data that has been stored in memory
address -32396($gp[28]) is erroneous (the error propagates
to -32396($gp[28]) through register #18 which was affected
directly by the error at PC 0x40d628). Thus, the strong clues
identified in this example constitute registers #18 and #6 and
memory address -32396($gp[28]). These correspond to the
DDG nodes: 5, 12 and 6, in dark grey Figure [2]

In step 4, the technique traverses the predecessors of the
strong clues (i.e., nodes 5, 12 and 6) and backtraces them
until the start of the code fragment (the backtracing window
is limited by a few thousands of instructions before the failure
location or the start of the program, whichever comes first).
The data produced by these instructions are the weak clues.
The traversed nodes appear in light grey colour in Figure
Table |lI| shows the erroneous propagation paths identified by
the technique. For example, nodes 5 and 9 are used to compute
node 12. There are two propagation paths corresponding to this
node (rows 2 and 3 of the table). Note that immediate values
are not represented by nodes in DDG, and hence do not appear
in the table. Due to the simplicity of the example, we cannot
show the pruning of the propagation paths (step 5).

The final step in the diagnosis (step 6) is to identify the
defective unit. We map each propagation path that appears in

TABLE I
BACKTRACKING PATHS FOR THE EXAMPLE CODE.

Propagation Path in Nodes | Units Used
5 Integer ALU

land 5 — 6 Integer ALU and LSU
Sand 9 — 12 Integer ALU
7—9 Integer ALU

Table [[I to the functional units used by the path’s instructions.
DIEBA maintains a counter for each unit based on the number
of paths in which it is used. The Integer ALU’s counter will be
4 (used in 4 paths) and the Load-Store Unit’s (LSU’s) counter
will be 1 (used in one path). Therefore, DIEBA concludes that
Integer ALU is the defective unit in this example (which is
the correct diagnosis).

IV. EXPERIMENTAL SETUP

We use fault-injection to evaluate the accuracy of DIEBA.
We built our fault-injection tool based on the cycle-accurate
microarchitectural-level SimpleScalar simulator (Alpha sim-
outorder) [3]]. In our experiment, we assume a simple core with
almost no redundancy among functional units. Our modified
simulator injects faults into specific microarchitectural units,
collects crash dump files and performs program replays.

We use 5 integer and 2 FP benchmarks from the SPEC2006
suite for our evaluation. After the injection, we monitor
the benchmark for the following events, (1) the benchmark
terminates with a hardware trap, thus leading to a crash, or (2)
the number of data values corrupted by the fault crosses a pre-
determined threshold (500 in our experiments). The first event
signifies a program failure, while the second event signifies a
likely detection of the error by a software-based error detection
mechanism. This is based on prior work that has shown that
errors that have a high fanout in a program often lead to
application crashes [14].

The experiment consists of the following two phases.

Injection phase Each fault-injection experiment involves the
following parameters: (1) fault location, (2) fault start, (3)
fault duration and (4) fault model. We show the possible
values/ranges we used in our experiment in Table [[II} The fault
models are chosen to represent common causes of intermittent
faults such as wearout and temperature hot-spots. For the
integer ALU, multiplier, divider and the floating point (FP)
units, we injected the destination register, while for the Load-
Store Unit (LSU) we injected the data stored/ loaded and the
memory address (each of these locations represents a different
injection).

For each benchmark program we injected 3500 faults. Only
one fault is injected in each execution to ensure controllability.
If the fault results in a program crash or an error is detected
(based on the threshold value), then the failure dump con-
sisting of the register file, memory footprint and the program
counter is captured at the time of the crash, as also the number
of instructions that were executed by the program.

Diagnosis phase We extracted the failure dumps of all
injected faults that result in a failure, and ran DIEBA on the

TABLE III
FAULT-INJECTION PARAMETERS.

Fault Param-
eter
Location-bit

Value/Range

A bit chosen randomly from 0 to 63 in a microar-
chitectural unit.

Integer ALU, multiplier, divider, LSU (data, read
address, write address), FPU

Location-unit

Start cycle A cycle chosen randomly from 1 to 1,000,000
Duration 5, 50, 100, 500, 10,000 or 20,000 cycle
Model Stuck-at-one/zero/last-value and Dominant-0/1

extracted dumps. We did not implement execution replay of
the program, relying instead on the simulator’s capabilities
to deterministically reconstruct the program’s execution. We
also log the control flow of the program internally within the
simulator to emulate the recording of program signatures. We
compare the output of DIEBA with the injected locations to
measure its accuracy.

V. RESULTS

We present the results of evaluating DIEBA in this section.
First, we present the overall results of the fault-injection
experiments performed. Next, we measure the accuracy of
DIEBA via fault-injections and for different fault locations.

A. Fault Injections

We inject faults into each benchmark program and monitor
it for the presence of either crashes or error detections. We
find that about 75% of the injected errors are activated (errors
manifest themselves to the program). Out of the activated
faults, 34% are benign (do not affect the program’s state)(on
average), 50% cause program crashes, and the remaining 16%
lead to Silent-Data Corruptions (SDC). Using our detectors,
we are able to detect 6% of the activated faults that cause
SDCs. Therefore, of the activated faults, we find that about
56% lead to crashes or detections (TabldIV).

TABLE IV
NUMBER/PERCENTAGE OF PROGRAM CRASHES OR ERROR DETECTIONS
AND CRASH DISTANCE IN DYNAMIC INSTRUCTIONS (CD) FOR EACH

BENCHMARK.
Bench. | mcf gce bzip2 | astar | perl. | dealll | soplex
No. 1274 1586 | 1570 | 1532 | 1696 | 1202 1475
Per. 48% 60% | 60% | 59% | 64% | 45% 56%
CD 10235 | 6365 | 879 492 | 371 | 4512 2319

In order to validate the assumption that programs crash
relatively quickly upon encountering an intermittent fault, we
measured their crash distance (CD), or the number of dynamic
instructions that execute from the injection of the fault to the
final crash, for those injections that lead to a crash. We find
that the maximum average CD is 10235 (for mcf), and the
average CD across all benchmarks is 3688. Thus, software
based diagnosis techniques are viable as they only need to log
a limited amount of information during program execution.

Fig. 3.
120%

DIEBA accuracy classified based on different defective units.

M Incorrect

60% -

40%

20% -

mcf gee bzip2

B. DIEBA’s accuracy

We run DIEBA when an injected fault causes program
crashes or error detections (as per the previous section).
DIEBA attempts to identify the functional unit into which
the fault was injected. We classify DIEBA’s output into three
categories: (1) “Correct* where DIEBA uniquely identifies the
injected unit, (2) “Correct with false positives* where DIEBA
identifies the injected unit along with some other units as
possibly defective (recall that we inject only one unit in each
run), and (3) “Incorrect“ where DIEBA identifies a different
unit(s) than the one that was injected.

Figure [3| shows the results of the diagnosis for Integer ALU
and LSU for the integer benchmarks, and for the Integer ALU,
LSU and FPU for FP benchmarks. The results are expressed as
a percentage of the total number of crashes/detections for each
benchmark. From Figure 3] we find that DIEBA successfully
diagnoses 85% of the crashes/ detected errors, on average
across all benchmarks - this includes the correct (70%)
outcome and correct with false-positives outcomes (15%).

Therefore, DIEBA can diagnose 85% of the intermittent
errors that affect three units of the processor. These units com-
prise nearly 57% of a processor’s die area, barring its caches
(based on data from the OpenSPARC TI1 processor [13]]).
However, there are portions of the processor that DIEBA does
not currently cover, namely the processor front-end and the
control-logic units. Extending DIEBA to such components is
a subject of future work.

VI. CONCLUSION

This paper presented DIEBA, a software-only technique
for diagnosing intermittent errors based on application failure
dumps. Starting from the failure dump, DIEBA is able to
isolate the faulty functional unit in the processor that was
likely responsible for the failure, and is able to do so without
any support from the processor or running any additional
tests on it. We show that DIEBA can diagnose 70% of the
intermittent errors that affect three units of the processor, with
low performance and space overheads.

astar

Correct with False Positives

IntALU LSU [ntALU| LSU (IntALU LSU (IntALU LSU |IntALU LSU ‘IntALU LSU | FPU [ntALU LSU

perlbench

[1]
[2

—

[3]

[4]

[5]
[6]

[7]

[8

—_

[9

—

(10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

B Correct

NIIEERNRRRRRENENN]

dealll soplex

REFERENCES

H. Agrawal and J.R. Horgan. Dynamic program slicing. ACM SIGPLAN
Notices, 25(6):246-256, 1990.

Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy, and J.A. Abraham. Design
and evaluation of system-level checks for on-line control flow error
detection. IEEE Transactions on Parallel and Distributed Systems,
10(6):627-641, 1999.

Sh. Borkar, T. Karnik, S. Narendra, J. Tschanz, and A. Keshavarzi.
Parameter variations and impact on circuits and microarchitecture.
Design Automation Conf., pages 338-342, 2003.

F.A. Bower, D. Sorin, and S. Ozev. Online diagnosis of hard faults
in microprocessors. ACM Transactions on Architecture and Code
Optimization, 4(2), 2007.

D. Burger and T.M. Austin. The SimpleScalar tool set, version 2.0.
Computer Architecture News, 25(3):13-25, 1997.

C. Constantinescu. Intermittent faults and effects on reliability of
integrated circuits. Reliability and Maintainability Symp., pages 370-
374, 2008.

K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco. Software-based
online detection of hardware defects: Mechanisms and architectural
support and evaluation. Proc. of the Intl. Symp. on Microarchitecture,
pages 97-108, 2007.

S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke. The stagenet
fabric for constructing resilient multicore systems. Intl. Symp. on
Microarchitecture, pages 141 — 151, 2008.

P. Bose J. Srinivasan, S.V. Adve and J.A. Rivers. Exploiting structural
duplication for lifetime reliability enhancement. Intl. Symp. on Computer
Architecture, 33, 2005.

M. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou.
Trace-based microarchitecture-level diagnosis of permanent hardware
faults. Intl. Conf. on Dependable Systems and Networks, 2008.

J.W. McPherson. Reliability challenges for 45nm and beyond. ACM
IEEE Design Automation Conf., pages 176-181, 2006.

E.B. Nightingale, J.R. Douceur, and V. Orgovan. Cycles, cells and plat-
ters: An empirical analysis of hardware failures on a million consumer
pcs. European Conf. on Computer Systems, 2011.

S. Park and S. Mitra. Ifra: Instruction footprint recording and analysis
for post-silicon bug localization in processors. Communications of the
ACM, 53(2), 2010.

K. Pattabiraman, Z. Kalbarczyk, and R.K. Iyer. Application-based
metrics for strategic placement of detectors. Pacific Rim Intl. Symposium
on Dependable Computing, pages 75-82, 2005.

A. Pellegrini and V. Bertacco. Application-aware diagnosis of runtime
hardware faults. Intl. Conf. on Computer-Aided Design, 2010.

B.F. Romanescu and D.J. Sorin. Core cannibalization architecture:
Improving lifetime chip performance for multicore processors in the
presence of hard faults. [ntl. Conf. on Parallel Architectures and
Compiliation, pages 43-51, 2008.

Min Xu, Rastislav Bodik, and Mark D. Hill. A flight data recorder for
enabling full-system multiprocessor deterministic replay. Int. symp. on
Computer architecture, pages 122—135, 2003.

	Introduction
	Approach
	Overview
	Design Choices and Assumptions

	DIEBA Implementation
	Reconstruction of Program's Execution
	Non-determinism
	Control flow

	The DIEBA Algorithm
	Example

	Experimental Setup
	Results
	Fault Injections
	DIEBA's accuracy

	Conclusion
	References

