
LLFI: An Intermediate Code Level Fault Injector
For Soft Computing Applications

Anna Thomas and Karthik Pattabiraman
Department of Electrical and Computer Engineering, University of British Columbia

{annat, karthikp}@ece.ubc.ca

Abstract—Hardware errors are on the rise with reducing chip
sizes. However, a certain class of applications called soft com-
puting applications, (e.g., multimedia applications) can tolerate
most hardware errors, except those that result in outcomes that
deviate significantly from the error-free outcomes. We term such
outcomes as Egregious Data Corruptions (EDCs).

To identify source code level characteristics of EDC causing
faults, we built an LLVM based fault injector tool called LLFI.
LLFI performs fault injection at the intermediate code level
of the application. We quantitatively validate LLFI accuracy
with respect to assembly level fault injection. Using LLFI, we
performed a study to identify the correlation between faults in
specific data types, and EDC outcomes. This data categorization
will help us identify detector placement locations with high
coverage for EDC causing faults.

I. INTRODUCTION

With the reduction of chip sizes and the concomitant in-
crease in the number of transistors on a chip, the frequency of
hardware faults is on the rise. Traditionally, hardware errors
have been tolerated through hardware redundancy or guard
banding. Unfortunately, hardware-only solutions have high en-
ergy overheads, and become untenable as power consumption
becomes a dominant concern in processor design [1].

Recently, there have been several proposals to selectively
expose hardware faults to the software layer and tolerate
them [2], [3], [4], [5], [6]. These proposals leverage the ability
of certain software applications to tolerate faults in their data,
and still produce acceptable outputs. Such applications are
called soft computing applications [7].

Examples of soft computing applications are multimedia
decoding applications, which can tolerate blurry decoded
images, and machine learning applications, which can tolerate
noise. These applications have an associated fidelity metric,
which is a quantitative measure of the output quality. For
example, in the case of image and video decoders, the fidelity
metric is peak signal-to-noise ratio (PSNR). As long as the
produced output quality does not deviate significantly from
the fidelity metric, it is deemed acceptable. We use the
term Egregious Data Corruptions (EDCs) to denote outcomes
whose quality deviates significantly from the fidelity metric,
i.e., unacceptable outcomes.

Our goal is to identify source level heuristics that help
identify optimal locations for high coverage detectors for
EDC causing faults. We address this goal by performing
fault injection experiments, to identify data categories that
contribute to causing an EDC. Although fault injections have

been usually performed at the assembly level, it is difficult to
map the fault behaviour and propagation back to the source
level. This mapping problem can be avoided by injecting the
fault at the source code level, but doing so does not accurately
model hardware faults. This is because many hardware faults
at the lower layers of the system stack get masked and are not
visible at the application layer. Also, faults that affect certain
control flow instructions and special purpose registers cannot
be simulated at the source code level.

In this work, we build a fault injection tool LLFI, that
injects faults into the Low Level Virtual Machine (LLVM) [8]
framework’s intermediate code of the application. LLVM is
a collection of reusable compiler tools and components, and
allows analysis and optimization of code written in multiple
languages, including C/C++. The intermediate code of LLVM
is at a higher level than assembly code and has support for
types. However, it encodes more information than source code,
such as address computations of loads and stores, and hence
injection is more accurate than at the source level.

We make the following contributions in this work:

1) We build LLFI, a fault injection mechanism at the LLVM
framework’s intermediate code level. LLFI allows fault-
injections to be performed at specific program points and
into specific data types, and compare the results.

2) We quantitatively compare the fault injection results at
the LLVM intermediate code level versus those performed
directly at the machine code level using a PIN-tool based
fault injector [9].

3) Using LLFI, we perform fault injection into soft comput-
ing applications, and distinguish EDCs from Silent Data
Corruptions (SDCs). We identify certain data categories,
i.e., control and pointer data, and extract the correlation
between these data categories and EDC causing faults.
We study this correlation by monitoring these data cate-
gories, using our tracing mechanism in LLFI.

Related Work: Schiffel et al. [10] developed an LLVM
based fault injector tool. They consider different kinds of
faults such as perturbing the instruction, its operands, and
its result. However, the tool is not built for soft computing
applications, and it is not clear what user input is required
to choose the location for fault injection. Further, they do not
validate their results. Other work has investigated the resilience
of applications at the assembly code level [11]. However, this
makes it difficult to formulate source-level heuristics, which

Fig. 1: The EDC causing fault decoded image (left) versus Non-EDC
causing fault decoded image (right) from the JPEG decoder

is our goal.

II. BACKGROUND

Egregious Data Corruptions (EDCs) are application out-
comes that deviate significantly from the fault free outcome,
i.e., they affect outputs egregiously. This deviation is quan-
tified by a fidelity metric that is well defined for most soft
computing applications [12]. Silent Data Corruptions (SDCs),
or outcomes that result in any deviation in the output from
the fault free outcome, are a superset of EDCs. An SDC
is classified as EDC or Non-EDC, depending on the fidelity
threshold value of the outcome. Non-EDCs are the SDCs with
small deviation in output, relative to the threshold.

EDC is a relative term as it depends on how the user sets
the fidelity threshold. In this paper, we focus on detecting
errors under the assumption that the user tolerates most
small deviations in outputs, i.e., the application is used under
relaxed conditions. For example, in image and video decoding
applications, we set the fidelity threshold based on whether the
frames are corrupted to the point of being unrecognizable by
a human, or are of very poor image quality.

The example in figure 1 shows the faulty decoded images
of the JPEG decoder (part of Mediabench [13]), when a
fault is injected into the program. The fidelity threshold is
the PSNR between the fault-free decoded image, and the
faulty decoded image. As the PSNR value becomes lower,
the output corruption becomes more egregious. Assuming a
fidelity threshold value of PSNR 30, the faulty image on the
left with a PSNR of 11.37 is classified as an EDC, while
the faulty image on the right with a PSNR value of 44.79 is
classified as a Non-EDC. The comparison is performed with
respect to the base image, which we do not show.

III. FAULT INJECTION

In this section, we present our fault injection tool which
operates at the LLVM Intermediate Representation (IR) level.
We first present the fault model, followed by the design of
our tool. We finally discuss the accuracy of our tool versus
assembly level fault injection.

A. Fault Model

We consider transient hardware faults that occur in the
processor. These are usually caused by cosmic ray or alpha
particle strikes affecting flip flops and logic elements. We
consider faults that occur in the functional units, i.e., the ALU
and the address computation for loads and stores. However,
faults in the memory components such as caches are not

considered, since these components are usually protected at
the architectural level using ECC or parity. We do not consider
faults in the control logic of the processor as this is a small
portion of the processor area, nor do we consider faults in
the instructions, as these can be handled through control-flow
checking techniques [14].

B. LLVM Fault Injector: LLFI

We developed LLFI, a program level fault-injection tool for
performing the fault injection experiments. LLFI works at the
LLVM compiler’s intermediate level, and enables tracing the
propagation of the fault in the program by instrumenting the
program at selected points. LLFI is closely integrated with
the LLVM compiler, and can hence support a wide variety of
programs and programming languages [8].

LLVM uses the Static Single Assignment (SSA) form [15].
SSA requires a variable be assigned exactly once in the
program i.e., every variable in the program has a unique
instruction that assigns to it. We chose LLVM because:

1) Its intermediate code is a typed language, in which
source-level constructs can be easily represented. In
particular, it preserves the variable and function names,
making source mapping feasible.

2) It has support for program analysis and transformations
which makes it easier to study the effect of fault injection
at a higher level than the assembly language, while still
accounting for details not visible in the source code, such
as address computation.

3) The lowering of the intermediate code to specific archi-
tectures is robust [16] - the analysis done at the IR level
can be used at assembly level deterministically and with
reasonable accuracy.

LLFI injects a fault, i.e., a single bit flip into the destination
register of exactly one dynamic instance of an instruction
chosen at random (among all the executed instructions), and
classifies the outcome of the fault by comparing the final
outcome with the fault free outcome. The fault-free or baseline
outcome is obtained by running the original executable with
the same input, but without any injected faults. The faulty
outcomes are classified into Crash, Benign, EDCs and Non-
EDCs. The EDCs are separated from the Non-EDCs based on
the fidelity threshold value.

Example: We explain the fault injection process using the
factorial program in Figure 2 as an example. The original IR
for the corresponding C code is shown in Figure 3. The value
of n (the number whose factorial is calculated) is assigned
in line 7 of the C code. This corresponds to %2 in line 6
of Figure 3. The basic block bb1 in lines 15-18 in the IR
corresponds to the loop header at line 9 in the C code. The
phi

1 node at line 15 gets the value of the iterator variable i,
which is initialized to 1 (from basic block entry) or obtained
from the incremented value within the loop at basic block bb.
Similarly, fact is also assigned the phi node value where it

1Phi is a construct used in SSA form

2

is either 1 (the initial value), or the value of fact from within
the loop at line 10.

Figure 4 shows the original IR statically instrumented for
fault injection. Each instruction with a return value has a call to
the fault injection function injectFault. For example, lines
10 and 11 in Figure 3 have corresponding fault injection calls
at lines 17 and 19 in the instrumented IR in Figure 4. The
arguments of the injectFault function are the static fault ID,
the type of call (fault injection call type has value 0), and the
result of the instruction itself. This function flips a randomly
chosen bit in the instruction’s result, and returns this faulty
result. Next, all uses of the original instruction are replaced
by the fault injected instruction. For example, line 15 in the
original IR corresponds to line 23 in the instrumented IR, and
%4 is replaced by the corresponding fault injection call %fi7.
Since LLVM is a typed IR, we handle instructions of different
types by having separate fault injection calls for each type.

At runtime, we first obtain the total number of dynamic
instructions by running the original factorial IR. Second, for
each fault injection run, we choose a random instruction
instance from the set of all dynamic instructions for fault
injection. This is done by the function initInjections

inserted at the beginning of the program (at line 3 in Figure 4).
Third, for each instruction, the injectFault function checks
if the particular instance is the dynamic instance to be fault
injected, and if so, flips a single bit in the instruction result.
This fault-injected result is propagated to all the uses of this
instruction in LLVM.

C. Accuracy of LLFI

While the LLVM intermediate code is close to the assembly
code, it does not correspond one-to-one with the assembly
language. We qualitatively assess the correspondence between
the LLVM intermediate code and the assembly code for fault-
injection purposes. The differences are presented in table I.
We quantify the effect of these differences in Section VI-B.

IV. DATA TRACING

One of the main goals of this work is to identify data
variables in the program at which error detectors must be
placed to avoid EDCs. To determine these variables, we trace
the propagation of faults injected in the program using LLFI,
and monitor the values of certain variables in the program. Our
goal is to determine if the values of the data items exhibit
a deviation from their fault-free values. To achieve this, we
first run the program without injecting any faults and collect
the values of the data items (obtained by instrumenting the
program with the LLVM compiler as explained in Section V).
We then compare the value of the data items between the
fault-free and fault-injected runs.

We split the results according to the type of the monitored
data items, since we wanted to see if there was a correlation
between the fault outcome and the type of data that exhibits
a deviation from its fault-free value. Because we perform the
injection and analysis at the LLVM intermediate-code level,
we can track the detailed provenance of the data and its

Fig. 2: C code for factorial program

Fig. 3: LLVM IR for the factorial program

Fig. 4: LLVM IR of Figure 3 instrumented with fault injection calls

3

TABLE I: Difference between LLVM intermediate code and Assem-
bly Language, and the impact on fault injection

LLVM Instruction Assembly
Language
Instruction

Mapping (if possible)

The GetElementPtr
(GEP) instruction
does address
computation which
is supplied to the
load and store
instructions for
memory access.

A set of add
and multiply
instructions that
computes the
address

A fault in the GEP instruc-
tion translates to a fault in
one of the add or multiply
instructions

The PHINode
instruction is
inserted when the
stack allocation
and deallocation
is promoted to
registers, to choose
between values
merging from
different basic
blocks.

Stores to the
stack in place
of the PHINode
instruction, and
copy instructions in
place of the source
instructions in the
corresponding basic
blocks

A fault in the PHINode
instruction translates to a
fault in the store instruc-
tions, or the copy instruc-
tions corresponding to the
sources of the PHINode
instruction

Function call PUSH/POP
instructions for
Caller/Callee saved
registers before and
after a function
call, and Stack
pointer stores return
address

None since these instruc-
tions do not exist in the
LLVM intermediate code.

Conditional branch
instructions

Jump instructions
where the
Instruction Pointer
register is fault
injected

None since the branch in-
struction in LLFI is not
fault injected, as it does
not have a return value

subsequent use in the program. We chose the following data
type categories for splitting the results in order to study the
correlation with data types.

1) Pointer data: Prior work has found that there is a high
probability of SDCs when the fault affects the lower order
bits of the pointer variable [17].

2) Control data: Prior work has found that a fault in control
data may cause a control deviation, which might egre-
giously affect the computation [18], [19].

We separated the faults injected into those that affected
data items that were present in the backward slice of these
two types of data. The backward slice of a particular variable
consists of all instructions that affect the output of the variable
through a control or data dependency [20]. A fault occurring in
the backward slice of a variable would be likely to propagate
to the variable, and hence placing a detector at that variable
would likely detect the fault. This leads to four classification
categories as shown in Table II. Note that the faults are clas-
sified into these categories based on the dynamic execution,
and hence each category is mutually exclusive.

Example: We now explain the correlation between an EDC
and the data type, using a function conv422to444 from the
example code shown in Figure 5. This example is based on
the MPEG benchmark, from the Mediabench Benchmark. The
function conv422to444 converts from YUV 4:2:2 subsam-
pling (U and V components are sampled at half the rate of Y

TABLE II: Classification of faults according to the backward slices
of data categories (explained using example in Figure 5)

Data Cate-
gory

Explanation Eg.

Pointer and
Control

The fault (a) directly affects or propagates to a
pointer, before affecting control data (deviation or
backward slice) later in the execution OR (b) affects
backward slice of control data (without causing a
flip), and then propagates to pointer data

B1

Pointer and
No Control

The fault affects pointer data, but is not present in
the backward slice of control data.

P1

Control and
No Pointer

The fault either causes a branch flip without/before
affecting any pointer data, or affects control back-
ward slice without affecting any pointer data.

B2

Neither
Control nor
Pointer

The fault gets masked before being classified as
belonging to the backward slice of control or pointer
data.

-

component) to YUV 4:4:4 (all components sampled at same
rate). An EDC is caused by a fault in the loop termination
condition B2 and it belongs to the category of control data.
However, faults in B3 and P1 cause Non-EDCs, which are
also control and pointer data, respectively.

1 vo id conv422to444 (c h a r *src , c h a r * dst , i n t width , i n t
height , i n t offset) {

2 . . .
3 if(dst < src + offset) / / B1
4 r e t u r n ;
5 f o r (j=0; j < height ; j++) / / B2
6 f o r (i=0; i < width ; i++) {
7 i2 = i<<1;
8 im1 = (i < 1) ? 0 : i�1; / / B3
9 . . .

10 dst [i2] = Clip [(2 1 * src [im1]) >>8]; / / P1
11 }
12 . . .
13 }

Fig. 5: Example Code of EDC versus Non-EDC data

V. IMPLEMENTATION

In this section, we first explain the implementation of our
fault injector. We then present the tracing mechanism to iden-
tify correlation between fault outcomes and data categories.

LLFI: We implemented the fault injector LLFI 2, and the
tracing mechanism as custom passes in the LLVM compiler
version 2.9. First, the application source code is compiled
into LLVM IR along with the mem2reg optimization (i.e.,
promote loads/stores to registers). Second, the IR is statically
instrumented with calls to our custom fault injection function,
as explained in Section III-B. Third, the IR is statically
instrumented with calls to the custom trace function, for
control and pointer data (see below).

PIN Fault Injector: We build a fault injector at the
assembly code level using PIN [9], a binary instrumentation
framework for X86 processors. We use the PIN fault injector to
quantitatively validate the accuracy of LLFI versus assembly
level fault injection. The PIN fault injector is based on the
same fault model used for LLFI. We inject a single bit flip
into the write register of one dynamic instance of an assembly

2LLFI is available at http://github.com/DependableSystemsLab/LLFI

4

instruction chosen at random from the set of all instructions
at runtime. The number of fault injections and the fidelity
threshold value were kept the same between LLFI and the
PIN fault injector. We present the results of this experiment
in Section VI-B.

Data Tracing: After injecting the fault, we trace its prop-
agation in the program as follows:

1) Instrumentation for trace collection: All relevant instruc-
tions were instrumented to record their result. In the
case of control instructions, these include the branch
target instructions 3 and the branch control variables.
Branch control variables are those that make up the
branch predicate. We trace the branch control variables to
identify faults that affect the predicate but do not flip the
branch. For pointer tracing, we instrument the instructions
computing array indices. Further, we tag the pointers, to
classify faults that occur at them as pointer deviation.

2) Trace Collection: During the fault-free run of the appli-
cation, the result along with the id of the instructions
instrumented above, is recorded. The same process is
followed for each run of the fault injection experiment.
We obtain three trace files for each fault injection run,
namely the branch target instructions, the branch control
variables, and the array index instructions.

3) Trace Comparison: At the end of each run of the fault
injection experiment, we compare the faulty traces with
the traces obtained during the fault-free execution, and
classify the fault into one of the four categories mentioned
in Table II. For example, a fault that differs in branch
target trace, but does not differ in the pointer trace, is in
category Control and NoPointer.

VI. RESULTS

In this section, we first present the benchmarks and the
fidelity metric along with the threshold values. We then present
the results of the quantitative comparison of LLFI with respect
to the PIN fault injector, followed by the results of fault
injection experiments, split according to the data categories
identified in Table II.

A. Benchmarks

We performed the fault injection for six applications of
MediaBench I and II [13], [21]. This is a commonly used
suite of soft-computing applications pertaining to multi-media
processing. Three of the benchmarks, namely JPEG, MPEG2
and H264 decoders, use Peak-Signal-to-Noise Ratio (PSNR)
between the faulty and fault-free decoded images as the fidelity
metric [12]. JPEG is an image decoder, while MPEG2 and
H264 are video decoders. The other three benchmarks are
speech decoders - G721, GSM and ADPCM, and they use
Segmental SNR as the fidelity metric [12]. We use PSNR of
30, and Segmental SNR of 80 as fidelity threshold values to
differentiate EDCs from Non-EDCs 4.

3Instructions and the result of instructions are the same in SSA form, and
hence we use them interchangeably

4We use Segmental SNR of 30 for ADPCM alone

We injected 1000 faults per benchmark using LLFI. We
observed a 100% activation rate, i.e., all injected faults are
activated. The EDC rates for all benchmarks are within an
error bar of 2.2%, at the 90% confidence interval.

B. Quantitive Validation of LLFI

Figure 6 quantifies the difference in fault outcomes between
fault injection done using PIN versus LLFI. For all bench-
marks, the EDC and Non-EDC rates are similar or higher
for LLFI versus the PIN injector. This shows the validity of
performing fault injections at the intermediate code level. On
average, LLFI has an EDC rate of 6.4% versus 3.3% for the
PIN fault injector, and a Non-EDC rate of 42.8% versus 23.9%
for the PIN fault injector. A significant fraction of faults in the
PIN experiment are benign or result in crashes. The average
EDC rate is skewed towards the high EDC rate in ADPCM
(which is around 23%). By excluding ADPCM, the average
EDC rates is 3% for LLFI versus 2% for PIN. Unlike the other
benchmarks, ADPCM has around 750 lines of code, with the
main functionality of the benchmark concentrated in a single
function. This function has many branch instructions, which
leads to a high number of SDCs.

Fig. 6: % of Fault-Injection outcomes between LLFI and PIN fault
injector, for all benchmarks

PIN Injector: To better understand the difference between
the results of LLFI and PIN injector, we studied the correlation
between faults at specific registers and the fault outcomes in
the PIN injector. Faults in the instruction pointer (IP) and the
stack pointer (SP) registers predominantly resulted in crashes.
However, a small number of faults in the IP register resulted
in EDCs (around 0.4% out of the total fault injections).
These faults do not have a corresponding mapping in LLFI
(difference 4 in Table I).

The high number of benign outcomes in PIN was due to
faults affecting the RFLAGS register. This register is written
in the case of the test instructions which is the predicate
used for conditional branching. RFLAGS has 64 bits, each
representing specific flags or reserved bits. The flag usually
tested is the zero flag in the corresponding conditional branch

5

Fig. 7: Fault-Injection outcomes as per different data categories,
across benchmarks under low fidelity threshold

instruction. Hence, a single bit flip which affects only one of
these flags, does not cause an error unless the zero flag bit is
flipped.

C. Fault Injection Results

Figure 7 shows the average results across benchmarks for
different failure types. From the figure, the average EDC rate
across applications is 6.4%, while the Non-EDC rate is 42.8%.
The crash rate is 22.5% and the benign fault rate is 28.3%.
From the overall results, one can observe that EDCs constitute
a small, but non-trivial fraction of the application outcomes.
In fact, only 8% of the errors that do not crash the application
result in EDCs. This shows that blindly detecting all non-
crashing errors would result in significant wastage of energy
and time, as many of them do not cause EDCs.

We observe the following trends about the correlation be-
tween the data items monitored (control and pointer) and the
fault outcome from Figure 7.
R1. Control Non Pointer: An EDC outcome is highly cor-

related with a deviation in a data item belonging to the
control backward slice (i.e., control non-pointer). These
data items are usually loop termination conditions. Al-
though Non-EDCs are also highly correlated with faults
in control non-pointer, one difference between an EDC
and a Non-EDC outcome is based on the amount of data
affected by the branch deviation.

R2. Pointer Non Control: Data items that are in the back-
ward slice of pointer data, but not that of control data (i.e.,
pointer non-control) are highly correlated with crashes.
However, such faults can also result in SDCs (i.e., both
EDCs and non-EDCs), especially if the fault affects the
low-order bits of the pointer variable. A subset of the
faults affecting low order bits cause EDCs.

R3. Non Control Non Pointer: Faults that do not belong to
the backward slice of control or pointer data are usually
benign. These faults usually get masked before being
classified as belonging to these backward slices.

R4. Control Pointer: Although only a small fraction of faults
cause deviations in the backward slices of both control

and pointer data (around 5.8%), there is a high probability
of such faults resulting in an EDC or SDC (e.g., around
62% of such faults result in an SDC outcome).

VII. CONCLUSION

Soft computing applications can tolerate most errors that
result in deviations in output or Silent Data Corruptions
(SDCs). However, they do not tolerate outcomes that deviate
significantly from the fault-free outcome, e.g. major glitches
in decoded video. We classify such outcomes as Egregious
Data Corruptions (EDCs). We performed a study to identify
the correlation between faults in specific data types, and EDC
outcomes, by building an LLVM based fault injector, LLFI.

Using LLFI, we perform fault injection experiments and
monitor the categories of control and pointer data during
the fault injection, to observe their correlation to the fault
outcomes. We find that the class of faults affecting data
belonging to the backward slice of control non-pointer cause
the maximum number of EDCs. This data categorization helps
us identify sensitive data in code, and hence identify detector
placement locations.

Acknowledgements: This work was supported in part by
a Discovery grant and an Engage Grant, from the National
Science and Engineering Research Council (NSERC), Canada.

REFERENCES

[1] N. P. Carter, H. Naeimi, and D. S. Gardner, “Design techniques for cross-layer resilience,”
ser. DATE ’10, 2010, pp. 1023–1028.

[2] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochastic processors,” ser.
DATE ’10, pp. 335–338.

[3] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: an architectural framework for
software recovery of hardware faults,” ser. ISCA ’10. ACM.

[4] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: saving dram refresh-
power through critical data partitioning,” ser. ASPLOS ’11. ACM, 2011, pp. 213–224.

[5] M. Carbin and M. C. Rinard, “Automatically identifying critical input regions and code in
applications,” ser. ISSTA ’10. ACM, 2010, pp. 37–48.

[6] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “Ersa: error resilient system
architecture for probabilistic applications,” ser. DATE ’10, pp. 1560–1565.

[7] L. Zadeh, “What is soft computing?” Soft computing, vol. 1, no. 1, pp. 1–1, 1997.
[8] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis &

transformation,” ser. CGO ’04.
[9] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Reddi,

and K. Hazelwood, “Pin: building customized program analysis tools with dynamic
instrumentation,” in ACM SIGPLAN Notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.

[10] U. Schiffel, A. Schmitt, M. Susskraut, and C. Fetzer, “Slice your bug: Debugging error
detection mechanisms using error injection slicing,” in EDCC ’10, pp. 13 –22.

[11] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer: exploiting
application-level fault equivalence to analyze application resiliency to transient faults,”
ser. ASPLOS ’12. ACM, 2012, pp. 123–134.

[12] X. Li and D. Yeung, “Application-level correctness and its impact on fault tolerance,” ser.
HPCA ’07, feb., pp. 181 –192.

[13] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool for evaluating and
synthesizing multimedia and communicatons systems,” in MICRO 30. IEEE Computer
Society, 1997, pp. 330–335.

[14] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated instructions in super-
scalar processors,” IEEE Transactions on Reliability,, vol. 51, no. 1, pp. 63 –75, mar 2002.

[15] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck, “Efficiently computing static
single assignment form and the control dependence graph,” ACM Trans. on Programming
Languages and Systems, vol. 13, no. 4, pp. 451–490, 1991.

[16] S. D. Toit. (2009, May) Why we chose llvm. [Online]. Available: http://software.intel.
com/en-us/blogs/2009/05/27/why-we-chose-llvm/

[17] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-level detectors for reducing
silent data corruptions,” ser. DSN ’12. IEEE Computer Society, pp. 181–188.

[18] D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart, T. Metodi, and F. Chong,
“Characterization of error-tolerant applications when protecting control data,” in IEEE Intl.
Symposium on Workload Characterization, oct. 2006, pp. 142 –149.

[19] A. Sundaram, A. Aakel, D. Lockhart, D. Thaker, and D. Franklin, “Efficient fault tolerance
in multi-media applications through selective instruction replication,” ser. WREFT ’08.
ACM, 2008, pp. 339–346.

[20] M. Weiser, “Program slicing,” ser. ICSE ’81. IEEE Press, pp. 439–449.
[21] J. Fritts, F. Steiling, and J. Tucek, “Mediabench ii video: expediting the next generation of

video systems research,” Embedded Processors for Multimedia and Communications II,
Proceedings of the SPIE, vol. 5683, pp. 79–93, 2005.

6

