
LLFI: An Intermediate Code Level
Fault Injector For
Soft Computing Applications

Anna Thomas and Karthik Pattabiraman

University of British Columbia (UBC)

Transient Errors: Traditional “Solutions”

2

 Guard-banding  Duplication

Widening gap between
average and worst-case
due to variations

Average Worst-case

Guard-band

Hardware duplication
(DMR) can result in 2X
slowdown

High Power and Performance Overheads

Why Software Solutions?

3

Impactful Errors

Device/Circuit Level

Architectural Level

Operating System Level

Application Level

Overheads

Soft Computing Applications

4

 Applications in AI, multimedia processing
 Examples in RMS Workloads [Dubey’07]
 Tolerate many kinds of faults in data and code

Original image (left) versus faulty image from JPEG decoder

Egregious Data Corruptions

5

 Large or unacceptable deviation in output
 Based on fidelity metric (e.g., PSNR)

EDC image (PSNR of 11.37) of JPEG vs Non-EDC image (PSNR of 44.79)

Why detect EDC Causing Faults?

6

 Why not detect all faults?

92% of faults that do not
crash the application result
in tolerable outcomes

 Unacceptable outcome to the end user

Goal

7

 End Goal: Detect EDC causing faults
  Pre-emptively – to avoid unacceptable outputs
and

  Selectively – to avoid wasteful recovery

 Identify Source Level characteristics of EDC causing
faults

This Talk

8

 End Goal: Detect EDC causing faults
  Pre-emptively – to avoid unacceptable outputs
and

  Selectively – to avoid wasteful recovery

 Identify Source Level characteristics of EDC causing
faults

Approach

9

 Step 1: Perform fault injections to separate EDCs
from Non-EDCs

 Step 2: Identify correlation between data
categories (eg: pointers) and fault outcomes

Fault Injection
(Step 1)

Data Correlation
(Step 2)

Step 1: LLVM Fault Injector LLFI

10

Fault Injector at LLVM compiler’s intermediate code level
(widely used compiler framework) [Lattner’05]

  Easy source
code mapping

  Program
analysis and
transformation
support

  Robust
Lowering

Fault
Injection

Data
Correlation

LLFI Framework

11

Execute
Application

Choose
dynamic data
instance at

random

Inject Random
Single bit flip

Compare
faulty &

fault-free
outcome

Crash
Fidelity
Metric

Benign

EDC

Non-
EDC

No Change

Exception
Value Change

Low Deviation

High deviation

Fault
Injection

Data
Correlation

Step 2: Data Categorization

12

  Trace backward slice of Control and Pointer Data

int main() {
 int fact, i, n;
 n = atoi (argv[1]);
 fact = 1;

 for(i = 1 ; i <= n; i++)
 fact = fact * i;

 print fact;
}

Control Data

Trace this value

Pointer
Faulty Trace

Control
Faulty Trace

Fault
Injection

Data
Correlation

Pointer
Fault Free

Trace

Control
Fault Free

Trace

Step 2: Data Categorization

13

Pointer
Control

Pointer
Faulty Trace

Control
Faulty Trace

NoDev NoDev Dev Dev

Pointer Non
Control

Non Pointer
Control

Non-Pointer
NonControl

Compare with fault free trace Compare with fault free trace

Fault
Injection

Data
Correlation

Data Categorization: MPEG Decoder

Image Source: Computer Desktop Encyclopedia c 2004, The Computer Language Co.
Inc.

14

void conv422to444 (char *src, char *dst,
int offset, int width) {
 if(dst < src + offset)
 return;
 for(int i=0; i < width; i++) {
 im1 = (i < 1) ? 0 : i – 1
 …
 dst[im1] = Clip [(21*src[im1])>>8];
 }
 …
}

Fault
Injection

Data
Correlation

Data Categorization: Control Pointer

15

void conv422to444 (char *src, char *dst, int
offset, int width) {
 if(dst < src + offset)
 return;
 for(int i=0; i < width; i++) {
 im1 = (i < 1) ? 0 : i – 1
 …
 dst[im1] = Clip [(21*src[im1])>>8];
 }
 …
}

Control Pointer

 Fault in
low bit of
src or dst

Fault
Injection

Data
Correlation

Data Categorization:Control Non-Pointer

16

void conv422to444 (char *src, char *dst, int
offset, int width) {
 if(dst < src + offset)
 return;
 for(int i=0; i < width; i++) {
 im1 = (i < 1) ? 0 : i – 1
 …
 dst[im1] = Clip [(21*src[im1])>>8];
 }
 …
}

Control Non-
Pointer

 Fault in i
 Branch

Flip

Fault
Injection

Data
Correlation

Data Categorization:Pointer Non-Control

17

void conv422to444 (char *src, char *dst, int
offset, int width) {
 if(dst < src + offset)
 return;
 for(int i=0; i < width; i++) {
 im1 = (i < 1) ? 0 : i – 1
 …
 dst[im1] = Clip [(21*src[im1])>>8];
 }
 …
}

Pointer Non-
Control

 Fault in
index of
Clip

Fault
Injection

Data
Correlation

Experimental Setup

18

 Six Benchmarks from MediaBench Suite
  Video, Image and Speech Decoders
  Fidelity Metric: PSNR, Segmental SNR

 Performed fault injections using LLFI
  1000 fault injections, 1 fault per run (2.2% at 90% CI)

 All injected instructions are executed

 Identified Correlation between faults in pointer/
control data and EDC outcomes

LLFI Accuracy

19

 Differences introduced by translation from
Intermediate Representation to assembly

 Quantified difference between LLFI versus Assembly
fault injector built using PIN
 PIN: binary rewriting tool from Intel

LLFI Accuracy

20

Same number of fault injections and fidelity threshold values

% of EDCs are similar in LLFI versus assembly
level fault injection

Data Categorization of Fault Outcomes

21

High correlation between Control Non-Pointer and EDC/Non-EDC

Data Categorization of Fault Outcomes

22

Pointer Non Control: Faults in low Order bits caused EDC/ Non-EDC

Conclusion

23

LLFI: Intermediate Code Level Fault Injector
  Identify source level characteristics of EDC faults
  Validated accuracy of LLFI versus assembly level injection
 Correlation between EDC faults and data categories

Current Work (To Appear in DSN’13)
  Identified heuristics based on data correlation

LLFI: https://github.com/DependableSystemsLab/LLFI
Contact: annat@ece.ubc.ca

Qualitative Difference

24

 0.4% of total injected faults affect IP register and cause
EDCs

 All faults affecting SP register cause Crashes

 Test instructions in branch conditions affect RFLAGS
register – high number of benign outcomes

Factorial IR

25

