
Effect of Compiler Optimizations on
the Error Resilience of Soft
Computing Applications

Anna Thomas,
Jacques Clapauch,
Karthik Pattabiraman

University of British Columbia (UBC)

Soft Computing Applications

2

 Applications in AI, multimedia processing
 Expected to dominate future workloads [Dubey’07]
 Tolerate many kinds of faults in data – Error Resilient

Original image (left) versus faulty image from JPEG decoder

Egregious Data Corruptions (EDCs)

3

 Large or unacceptable deviation in output
 Based on fidelity metric (e.g., PSNR < 30)

EDC image (PSNR of 11.37) of JPEG vs Non-EDC image (PSNR of 44.79)

Goal

4

 Detect EDC causing faults

Non-
EDC

EDC

Detector

Benign

Pre-emptive

Selective

Application Execution

Preliminary Fault Injection Study

5

Execute
Application

Choose
dynamic data
instance at

random

Inject Random
Single bit flip

Compare
faulty &

fault-free
outcome

Crash
Fidelity
Metric

Benign

EDC

Non-
EDC

No Change

Exception
Value Change

Low Deviation

High deviation

Why focus on EDC Causing Faults?

6

Blindly detecting all faults is
wasteful !

  92% : tolerable outcomes

 Media-bench programs: Soft-computing applications

Background

7

Static analysis algorithm to identify detector
locations for EDCs [DSN 2013 – Anna Thomas]

Compiler
EDC

Ranking
Algorithm

Selection
Algorithm

IR

 Application
Source Code

Performance Overhead

Data Variables or Locations to Protect

Execution Profile

Backward slice replication

Background: EDC Coverage of technique

8

Average EDC Coverage of 85% at 20%
performance overhead

This Paper

9

Compiler Optimizations

Improve Performance! Resilience

End Goal: Identify optimizations that guarantee error resilience

Performance -
resilience trade
off space

Outline

10

  Background

  Problem and Approach

  Experimental Setup and Results

  Conclusion

Problem

11

Optimizations affect error resilience

Affect
Baseline

Resilience
(EDC Rate)

Affect EDC
Coverage of

our technique

How do optimizations affect the error resilience of
soft computing applications, with our technique ?

Approach

12

 Identified common compiler optimizations

 Performed fault injections on unoptimized and
optimized versions of soft computing apps

 Studied the effect of optimizations:
 Baseline resilience
 EDC coverage of our technique

Compiler Optimizations

13

 Identified four optimizations in LLVM compiler (of 15)
  InstCombine
  LICM
  Loop Unroll
  SCCP

Compiler Optimizations

14

 Identified four optimizations in LLVM compiler (of 15)
  InstCombine
 LICM
  Loop Unroll
  SCCP

 Why these optimizations ?
  Have conflicting effects on EDC rate

Compiler Optimizations

15

Combine Redundant Instructions: Inst-Combine

Redundant
Instructions

Uninteresting
Code

Uninteresting
Code

Combined
Instructions

IC Opt

High EDC
Likelihood

Lower
Probability

of fault
strike

But…

Conflicting effect on EDC rate!

Compiler Optimizations

16

Loop Invariant Code Motion: LICM

Invariant
Code

Loop Body

Loop Header

LICM

Loop Body

Loop Header

Invariant
Code

High EDC
Likelihood

Lower
Probability

of fault
strike

But…

Conflicting effect on EDC rate!

Outline

17

  Background

  Problem and Approach

  Experimental Setup and Results

  Conclusion

Experimental Setup

18

 Six Benchmarks from MediaBench and Parsec Suite
  Fidelity Metric: PSNR, scaled distortion [Misailovic12]
  EDC thresholds based on visual perception or 30% of SDCs

 Performed fault injections using LLFI [Thomas 13]
  5000 fault injections per benchmark per optimization
  Error Bars: (± 0.8% at 95% CI)

 Measured coverage under 20% performance overhead
  Coverage = (No of EDCs detected / total no of EDCs)*100

Baseline Resilience: EDC Percentages

19

Bench-
mark

Inst-
Combine LICM Loop-

Unroll SCCP UnOpt

Blackscholes 9.9 9.48 8.48 9.38 10

X264 2.48 2.96 2.82 2.1 2.24

Canneal 4.56 3.26 3.26 3.94 3.32

Swaptions 2.5 3.12 2.44 2.98 2.36

JPEG 3.68 3.56 4.16 4.08 3.76

MPEG2 2 2.1 2.56 1.7 2.3

Average 4.19 4.08 3.95 4.03 3.99

EDC Coverage: InstCombine

20

Safe Optimization: Within 5% lower than baseline

EDC Coverage: LICM

21

Outline

22

  Background

  Problem and Approach

  Experimental Setup and Results

  Conclusion

Conclusion and Future Work

23

 Compiler optimizations: Characterize performance-
resilience trade off in soft computing applications
 Baseline resilience lowered in some benchmarks
 Our technique preserves resilience in most cases

Future Work
  Include more optimizations – ongoing work
  Classify optimizations into resilience packages
  Decision tree for applying optimizations

Contact: Anna Thomas <annat@ece.ubc.ca>

Backup Slides

24

Compiler Optimizations

25

Loop Unrolling: Loop-Unroll

Loop
Termination
Condition

Loop Body

Unroll

Loop
Termination
Condition

Unrolled
Loop Body

Low chance
of fault strike

Lower EDC rate on Loop-Unrolled Code?

Compiler Optimizations

26

Sparse Conditional Constant Propagation: SCCP

Conditional
branches &
constants

Uninteresting
Code

SCCP

Conditionals
removed

(Optimized
code)

Uninteresting
Code

High EDC
Likelihood

Higher EDC rate on SCCP optimized Code?

LLVM Fault Injector LLFI

27

LLFI: Fault Injector at LLVM compiler’s intermediate code
level [Thomas’13]

  easy source
code mapping

