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Soft Computing Applications 
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 Applications in AI, multimedia processing 
 Expected to dominate future workloads [Dubey’07] 
 Tolerate many kinds of faults in data – Error Resilient 

Original image (left) versus faulty image from JPEG decoder 



Egregious Data Corruptions (EDCs) 
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 Large or unacceptable deviation in output  
 Based on fidelity metric (e.g., PSNR < 30) 

EDC image (PSNR of 11.37) of JPEG vs Non-EDC image (PSNR of 44.79) 



Goal 
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 Detect EDC causing faults 
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Preliminary Fault Injection Study 
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Why focus on  EDC Causing Faults? 
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Blindly detecting all faults is 
wasteful ! 

  92% : tolerable outcomes 

 Media-bench programs: Soft-computing applications 



Background 
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Static analysis algorithm to identify detector 
locations for EDCs [DSN 2013 – Anna Thomas] 
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Background: EDC Coverage of technique 
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Average EDC Coverage of 85% at 20% 
performance overhead 



This Paper 
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Compiler Optimizations 

Improve Performance! Resilience  

End Goal: Identify optimizations that guarantee error resilience 

Performance - 
resilience trade 
off space 



Outline 
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  Background 

  Problem and Approach 

  Experimental Setup and Results 

  Conclusion 



Problem 
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Optimizations affect error resilience 
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How do optimizations affect the error resilience of 
soft computing applications, with our technique ? 



Approach 
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 Identified common compiler optimizations 

 Performed fault injections on unoptimized and 
optimized versions of soft computing apps 

 Studied the effect of optimizations: 
 Baseline resilience 
 EDC coverage of our technique 



Compiler Optimizations 
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 Identified four optimizations in LLVM compiler (of 15) 
  InstCombine 
  LICM 
  Loop Unroll 
  SCCP 



Compiler Optimizations 
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 Identified four optimizations in LLVM compiler (of 15) 
  InstCombine 
 LICM 
  Loop Unroll 
  SCCP 

 Why these optimizations ? 
  Have conflicting effects on EDC rate 



Compiler Optimizations 

15 

Combine Redundant Instructions: Inst-Combine 
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Compiler Optimizations 
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Loop Invariant Code Motion: LICM 
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Outline 
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Experimental Setup 
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 Six Benchmarks from MediaBench and Parsec Suite 
  Fidelity Metric: PSNR, scaled distortion [Misailovic12] 
  EDC thresholds based on visual perception or 30% of SDCs 

 Performed fault injections using LLFI [Thomas 13]  
  5000 fault injections per benchmark per optimization 
  Error Bars: (± 0.8% at 95% CI) 

 Measured coverage under 20% performance overhead 
  Coverage = (No of EDCs detected / total no of EDCs)*100 



Baseline Resilience: EDC Percentages 
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Bench-
mark  

Inst- 
Combine  LICM  Loop- 

Unroll  SCCP  UnOpt  

Blackscholes  9.9  9.48  8.48  9.38  10  

X264  2.48  2.96  2.82  2.1  2.24  

Canneal  4.56  3.26  3.26  3.94  3.32  

Swaptions  2.5  3.12  2.44  2.98  2.36  

JPEG  3.68  3.56  4.16  4.08  3.76  

MPEG2  2  2.1  2.56  1.7  2.3  

Average  4.19  4.08  3.95  4.03  3.99  



EDC Coverage: InstCombine 
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Safe Optimization: Within 5% lower than baseline 



EDC Coverage: LICM 
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Conclusion and Future Work 
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 Compiler optimizations: Characterize performance-
resilience trade off in soft computing applications 
 Baseline resilience lowered in some benchmarks  
 Our technique preserves resilience in most cases 

Future Work 
  Include more optimizations – ongoing work 
  Classify optimizations into resilience packages 
  Decision tree for applying optimizations 

Contact: Anna Thomas <annat@ece.ubc.ca> 
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Compiler Optimizations 
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Loop Unrolling: Loop-Unroll 
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Lower EDC rate on Loop-Unrolled Code?  



Compiler Optimizations 
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Sparse Conditional Constant Propagation: SCCP 
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LLVM Fault Injector LLFI 
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LLFI: Fault Injector at LLVM compiler’s intermediate code 
level [Thomas’13] 

  easy source 
code mapping  


