Predicting Job Completion Times Using System Logs in Supercomputing Clusters

Xin Chen, Charng-Da Lu and Karthik Pattabiraman University of British Columbia (UBC)

A Challenge in Supercomputing Systems

- Failures in supercomputers
- Challenges for applications
 - Complete tasks
 - Achieve high throughput
- Possible solutions
 - Workload management
 - Checkpointing and recovery

http://ccr.buffalo.edu/support/research_facilities.html

System Log Analysis

Indicators of a system's health status

- Most produced during normal operations
- Isolate log messages that are indicative of job terminations
- Untagged system logs

kernel: blcr: Checkpoint/Restart module removed

kernel: imklog, log source = /proc/kmsg started

Tagged system logs (e.g., Blue Gene/L)

RAS KERNEL FATAL data **TLB** error interrupt

RAS KERNEL INFO instruction cache parity error corrected

Contribution

Predict the job completion time

- No annotations or tags about failures
- A low rate of false positives
- Use Hidden Markov Models (HMMs) to learn job running status

Job Sorted Log Messages

5

An Example of Part of a Job's Log Messages

6

Approach

The prediction workflow

Important Log Templates

- A two-step process
 - Identify messages that are more likely to occur towards the end of a job

Example Log Template	Frequency
puppet-agent: content change	0.908669
pbs mom: req cpyfile Unable to copy file	0.939497
abrtd: no proper key	0.846774

 Identify message pairs consisting of messages identified in the first step

Build Hidden Markov Models

9

Build Hidden Markov Models

After a time step (10 seconds):

- Transitions between states
- Emissions from states to outputs

Residual Time Prediction

- Start from the first state, and compute HMM parameters
- Calculate the new model when an important log appears
- Estimate the most possible states in the period (Viterbi algorithm)
- Calculate the predicted residual time at the new state

Evaluation

Dataset

- The "Edge" cluster in Center for Computational Research at the State University of New York (SUNY) Buffalo
- Logs in April 2012
- 951 compute nodes and 120,639 jobs

Cross validation

I0 folds: random and equal size

Results

Errors of predicted and actual completion times

 The accuracy of predicting job termination within a short period

Prediction Time Errors

Error between predicted and actual residual times

- 91.28% prediction errors less than 5000 seconds
 74.43% prediction errors less than 200 seconds
- Job statistics

|4

Predicting Job Termination Within a Short Period

Standard choice: 10 minutes

 $prediction \ accuracy = \frac{true \ positive + true \ negative}{true \ positive + f alse \ negative + f alse \ positive + true \ negative}$

Predicting Job Termination Within a Short Period

- "Baseline model": the entire training datasets
- "Short job model": trained by jobs less than one hour

Conclusion

- Predicting job completion times in supercomputing clusters
 - Hidden Markov Models
 - Frequency-based log messages
- Predict 75% of jobs within 200 seconds of error
- Predicting job termination within a short period using short jobs train the HMM
 - A highest accuracy of 93% in the final states
- Future directions
 - Online prediction system
 - Mine and identify log subsequences and patterns