
Effect of Compiler Optimizations on the Error Resilience of
Soft Computing Applications

Anna Thomas, Jaques Clapauch and Karthik Pattabiraman
Dept. of Electrical and Computer Engineering, University of British Columbia

{annat, jaquesc, karthikp}@ece.ubc.ca

ABSTRACT
While hardware errors are on the rise as chip sizes reduce, users
of commodity systems expect a near faultless experience with low
degradation in performance. Developers tune for higher perfor-
mance by enabling compiler optimizations on code, but these opti-
mizations affect the resilience of applications, making it difficult to
maintain an error resilience guarantee when multiple optimizations
are applied together (e.g., -O3 in gcc).

We focus on soft computing applications, (e.g., multimedia ap-
plications) that can tolerate most hardware errors as long as the
erroneous outputs do not deviate significantly from error-free out-
comes. We term outcomes that deviate significantly from the error-
free outcomes as Egregious Data Corruptions (EDCs). We study
how four specific compiler optimizations affect the resilience of
soft computing applications. Further, we investigate how the op-
timizations affect the detector placement locations for detecting
EDC causing faults. This helps us identify safe compiler optimiza-
tions that maintain a certain guarantee on the error resilience of
the application. Our work is a first step towards identifying the
performance-resilience tradeoff space.

Categories and Subject Descriptors
D.3.4 [Software Engineering]: Processors

General Terms
Reliability, performance

1. INTRODUCTION
Transient faults are on the rise with reducing chip sizes and tran-

sistors operating at lower voltages [13]. However, users desire a
near faultless experience when performing their daily tasks, while
at the same time demanding high performance. Achieving both
these goals is challenging in the face of transient faults. Hence, de-
velopers and architects are consciously making decisions regarding
the trade-off between performance and reliability of systems they
build. One such tradeoff arises when deciding on whether to enable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

compiler optimizations, which while increasing application perfor-
mance, may lower its resilience. We explore this tradeoff in this
paper.

We focus on a class of applications called soft computing appli-
cations [19]. These applications can tolerate most deviations in out-
comes while producing acceptable outputs. Examples of soft com-
puting applications are multimedia decoding applications, which
can tolerate blurry decoded images, and machine learning appli-
cations, which can tolerate noise. Researchers have predicted that
future workloads will belong primarily to this category [3]. Soft
computing applications have an associated fidelity metric, which is
a quantitative measure of the output quality. We use the term Egre-
gious Data Corruptions (EDCs) to denote outcomes that deviate
significantly from the fidelity metric, i.e., unacceptable outcomes.

Resilience is the property of an application to tolerate hardware
faults once they have occurred in the application. In the context of
soft computing applications, the resilience is the ability of an appli-
cation to prevent an error from becoming an EDC. In prior work,
we developed a technique for identifying code locations for plac-
ing error detectors in soft-computing applications, to detect EDCs
with high coverage [16]. In this paper, we study how compiler op-
timizations modify these placement decisions, and hence affect the
detection coverage of soft computing applications. We also investi-
gate the effect of compiler optimizations on the baseline EDC rate
of an application (without our technique).

Compiler optimizations may lower error resilience by making
some code regions more prone to EDC causing faults, compared to
the unoptimized version. For example, in the Loop Invariant Code
Motion (LICM) optimization, code which is assigned repeatedly to
the same value inside a loop, i.e., invariant code, is moved outside
the loop to the loop preheader. This optimization can result in a
higher EDC rate as the effect of a fault in the loop header variable
affects every iteration of the loop. However, in the unoptimized
code, there are lesser chances of an EDC since the variable would
be reset at every iteration of the loop.

Prior work has focused on the effect of compiler optimizations
on application vulnerability [14, 2] (see Section 2). However, these
studies do not investigate how optimizations affect the application
resilience, which is different from vulnerability. Other work [12, 5,
8] has investigated the problem of optimal error detector placement
for different failure types. However, these studies do not investigate
how their detector placement decisions are affected by compiler
optimizations. To our knowledge, ours is the first work to consider
the effect of compiler optimizations on application error resilience,
both with and without our detector placement technique.

We make the following contributions in this work:

1. We study the effect of four compiler optimizations on the re-
silience of soft computing applications, by performing fault

injection experiments on the optimized and unoptimized ver-
sions of these applications (with no detection technique),

2. We then investigate how the optimizations modify the EDC
coverage of our detector placement algorithm, by studying
its coverage with and without the optimization,

3. We identify safe optimizations, i.e., those for which our al-
gorithm maintained similar EDC coverages compared to the
unoptimized version,

4. Finally, we develop insights on how certain application char-
acteristics contribute to the change in resilience both with
and without our detection technique.

Our work helps to better understand the coupling of compiler
optimizations and reliability. Our study is a first step towards iden-
tifying compiler optimizations that maintain or achieve higher re-
silience compared to the baseline unoptimized versions of applica-
tions.

2. RELATED WORK
Prior work has focused on the effect of compiler optimization

on the vulnerability of applications, i.e., the probability that a hard-
ware fault affects the application and leads to an application failure.
This is different from resilience, which is the conditional probabil-
ity of a failure given an error in the application. Unlike vulnerabil-
ity, resilience is a property of the application alone, and does not
depend on hardware characteristics.

Sridharan and Kaeli [14] developed the Program Vulnerability
Factor (PVF), a methodology to estimate the vulnerability of an ap-
plication at the program level. PVF abstracts at the program level
the Architectural Vulnerability Factor (AVF), which is an aggregate
metric that determines whether a hardware fault would escalate to
an erroneous output. AVF considers the occupancy of a microar-
chitectural unit in determining whether a fault in that unit is likely
to lead to an application failure, and is hence intricately tied to the
microarchitecture. PVF can estimate vulnerability under differing
microarchitectures, while having a strong correlation with the AVF.
Sridharan et al. use the PVF metric to explore the effect of compiler
optimizations on the bzip application.

Demertzi et. al. [2] study the effect of compiler optimizations on
vulnerability at the microarchitectural level. They apply a number
of gcc optimizations to SPEC benchmarks, and analyze the result-
ing machine code output. Optimizations improve the code perfor-
mance, allowing the code to be in flight for a lesser period of time,
and hence making it less susceptible to hardware faults. They deter-
mine the susceptibility of the code to a fault, using a metric called
Expected Failures during execution, which takes into account the
AVF and the number of Failures per 1 billion operations (FIT).
They then explore the effect of optimization collections (four op-
timization levels in gcc) on specific microarchitectural units such
as the Reorder Buffer, the Instruction Fetch Queue, and the Load
Store Queue.

In addition to the focus on resilience, our study differs from the
above ones in that it considers the effect of individual optimizations
(e.g., Loop Invariant Code Motion) on the resilience of the appli-
cation. On the other hand, the above studies look at the effects of
collections of optimizations enabled by the optimization levels in
gcc (e.g.,-O2), which makes it difficult to pinpoint which optimiza-
tion is responsible for the reduction in resilience (if any).

3. BACKGROUND

Figure 1: The EDC causing fault decoded image (left) versus Non-EDC
causing fault decoded image (right) from the JPEG decoder

In this section, we present our fault model, the concept of an
EDC, and the high-level idea of our previous work that identifies
error detector locations for EDC causing faults.

Fault Model: We consider transient hardware faults that oc-
cur in the processor, specifically those that occur in the functional
units, i.e., the ALU and the address computation for loads and
stores. However, faults in the memory components such as caches
are not considered, since these components are usually protected
at the architectural level using ECC or parity. We do not consider
faults in the control logic of the processor as this is a small por-
tion of the processor area, nor do we consider faults in the instruc-
tions, as these can be handled through control-flow checking tech-
niques [11]. As in prior work, we do not consider faults in floating
point registers [4] - this is part of future work.

Egregious Data Corruptions (EDCs) are application outcomes
that deviate significantly from the fault free outcome, i.e., they af-
fect outputs egregiously. This deviation is quantified by a fidelity
metric that is well defined for most soft computing applications [9].
For example, the fidelity metric used by speech decoders is Seg-
mental SNR. Silent Data Corruptions (SDCs), or outcomes that re-
sult in any deviation in the output from the fault free outcome, are a
superset of EDCs. An SDC is classified as either an EDC or a Non-
EDC, depending on the fidelity threshold value of the outcome.

The example in Figure 1 shows the faulty decoded images of the
JPEG decoder (part of Mediabench [7]), when a fault is injected
into the program. The fidelity threshold is the Peak Signal to Noise
Ratio (PSNR) between the fault-free decoded image, and the faulty
decoded image. As the PSNR value becomes lower, the output
corruption becomes more egregious. Assuming a fidelity threshold
value of PSNR 30, the faulty image on the left with a PSNR of
11.37 is classified as an EDC, while the faulty image on the right
with a PSNR value of 44.79 is classified as a Non-EDC. The com-
parison is performed with respect to the base image (not shown).

Detector Placement Technique: In our prior work [16], we
developed a technique to identify detector placement locations to
detect EDCs with high coverage while efficiently differentiating
them from the Non-EDC and benign faults. This technique relies
entirely on static analysis of the code, and the dynamic execution
profile of the application. Other work [4, 15] has identified control
and pointer data as detector placement targets. However, our tech-
nique identifies the following program data as critical from EDC
detector placement point of view:

1. Control data which affects large amount of data. For exam-
ple, loop termination conditions, and branches with pointer
arithmetic within their bodies.

2. Pointer data which points to large amount of data, and hence
a fault in the lower order bits of the pointer cause an EDC.
For example, faults affecting array indices usually cause a
Non-EDC or crash (depending on the bit location).

3. Calls to certain functions that return a value, and do not cause
any side-effects. A detector is placed to verify the return

value of the function, and no detectors are placed within the
function, as it is side-effect free.

We performed an initial study to formulate heuristics that iden-
tify EDC causing data. More details may be found in [16]. The
underlying common characteristic of these heuristics was that data
or instructions affecting larger amount of data, were highly likely to
cause an EDC, and should be protected with detectors. Let us con-
sider the example in Figure 2, which is based on the MPEG bench-
mark, from the Mediabench Benchmark. The function conv422to-
444 converts from YUV 4:2:2 subsampling (U and V components
are sampled at half the rate of Y component) to YUV 4:4:4 (all
components sampled at same rate). We found that faults in branches
B1 and B2 cause an EDC as they can affect the entire dst array, but
faults in the low order bits of the array index of Clip in P1 or a fault
in branch B3 causes a Non-EDC, as they affect only one element in
the dst array.

1 vo id conv422to444 (c h a r *src , c h a r * dst , i n t width ,
i n t height , i n t offset) {

2 . . .
3 w = width > >1;
4 if(dst < src + offset) / / B1
5 r e t u r n ;
6 f o r (j=0; j < height ; j++) { / / B2
7 f o r (i=0; i < width ; i++) {
8 i2 = i< <1;
9 im1 = (i < 1) ? 0 : i−1; / / B3

10 . . .
11 dst [i2] = Clip [(2 1 * src [im1]) > >8]; / / P1
12 }
13 }
14 . . .
15 }

Figure 2: Example Code of EDC versus Non-EDC data

Further, based on the heuristics, we developed an algorithm to
identify program locations for placing error detectors. The goal
of the algorithm is to preemptively detect EDC causing faults in
soft computing applications, under a given performance overhead
that the user is willing to tolerate. The algorithm requires as inputs
from the user: (a) the application source code, (b) the maximum
permissible performance overhead, and (c) the application’s exe-
cution profile, under representative inputs (contains the dynamic
instruction counts of the application).

Figure 3: Technique Workflow with required inputs

The workflow of our technique is outlined in Figure 3, and con-
sists of three steps. First, we compile the application source code
into an Intermediate Representation (IR). Second, we rank the above
critical instructions according to their EDC causing nature, based
on the heuristics and static analysis of the code. Third, we choose
the optimal data set for detector placement under the given perfor-
mance overhead bound, using a selection algorithm that combines
the obtained EDC ranks and the runtime profiling information.

Implementation: We implemented the EDC ranking and the
selection algorithm as custom passes in the LLVM compiler ver-

sion 2.9 [6]. First, the application source code is compiled into the
LLVM Intermediate Representation (IR) along with the mem2reg
optimization (i.e., promote loads/stores to registers). Second, the
IR is (a) statically analyzed to compute the static EDC rank for
the EDC causing instructions, and (b) instrumented to place de-
tectors identified using profile data, under the given performance
overhead bound. We wrote a custom pass for obtaining profile data
and for measuring the performance overhead, using LLVM basic
block profiling pass. Third, the instrumented IR is compiled into
machine code using the LLVM compiler’s code generation pass.

The error detectors are derived by replicating the static inter-
procedural backward slice of the EDC data item, and placing a
comparison statement after the copy of the item. We do not con-
sider reaching stores (for loads), and function pointers when com-
puting the backward slice. Instead, we simulate these detectors by
instrumenting the IR with trace calls at the locations chosen for de-
tector placement. These trace calls record the values of the EDC
data in a file, and a fault is detected if the fault-free and faulty trace
files differ. The fault-free trace file is obtained by running the in-
strumented IR on the same input, with no faults injected.

In this paper, the compiler optimizations are done at the inter-
mediate code level, and we study how the EDC coverage of our
technique varies under these optimizations1. At a high level, this
helps us in understanding how the detection technique is affected
by the compiler optimizations. As we show later, certain optimiza-
tions reduce the EDC coverage of our technique, and the extent of
reduction depends on program characteristics.

4. OPTIMIZATIONS
In this section, we present the specific optimizations under which

we evaluate the resilience of soft computing applications, and the
rationale behind choosing these optimizations for our study. For
each optimization, we formulate research question(s) on the be-
haviour of faults in applications under the optimization. Note that
the research questions are orthogonal to our detection technique.
We investigate these research questions in Section 6.1. They ex-
amine how faults affecting the applications behave under these op-
timizations, with no detection technique in place. We study the
effect of the optimizations on our technique in Section 6.2.

We define EDC rate as the fraction of EDC outcomes out of
all fault outcomes of the application. The optimizations affect the
baseline resilience of the application by either (a) increasing the
EDC rate compared to unoptimized code, i.e., lowering the re-
silience, or (b) decreasing the EDC rate compared to unoptimized
code, i.e., improving the resilience of optimized code.

4.1 Combine Redundant Instructions:
Inst-Combine

The Combine Redundant Instructions optimization (Inst-Combine),
as the name implies, optimizes code by combining multiple instruc-
tions into one. The question we ask for this optimization is:

RQ1: Do faults affecting inst-combined optimized code have a
higher likelihood of causing EDCs, thereby increasing the EDC
rate compared to the unoptimized version?

There are two conflicting answers to this question:

• A hardware fault affecting the combined instruction in the
optimized version has a higher likelihood of leading to an
EDC compared to a fault affecting the redundant instructions
in the unoptimized version. This is because the combined

1We had only enabled the mem2reg optimization of LLVM in our
earlier work [16].

instruction represents the collection of original redundant in-
structions, and might have a more pronounced effect on the
output, thus leading to an EDC.

• The probability of the combined instruction in the optimized
version being affected by a fault, is lower than the set of re-
dundant instructions in the unoptimized version, as it has a
smaller footprint.

4.2 Loop Invariant Code Motion: LICM
Loop invariant code motion (LICM) is an optimization technique

which moves invariant code within the loop to the loop pre-header,
i.e., it is no longer executed within loop iterations. This optimiza-
tion is prevalent in popular compilers such as gcc, and LLVM. Note
that the effect of the optimization on the code is highly dependent
on the application. In particular, it works in applications that con-
tain invariant code within loops that can be moved outside. The
question we ask around this optimization is:

RQ2: Do faults affecting the invariant code moved outside the
loop in LICM optimized application have a higher likelihood of
causing EDCs, thereby increasing the EDC rate compared to the
unoptimized version?

Similar to Inst-Combine, LICM also brings forth contrasting pos-
sibilities in terms of soft errors:

• There is a lower likelihood of a fault affecting the invariant
code that is moved to the preheader (executed less frequently
than code within the loop), and hence lower likelihood of
EDCs.

• On the other hand, if a fault affects the invariant code moved
outside the loop, there might be a greater propagation of the
error since the value is not being reset in each iteration as in
the unoptimized version. This leads to a higher likelihood of
EDCs.

4.3 Loop Unrolling: Loop-Unroll
Loop unrolling (loop-unroll) trades off static code size for per-

formance, by unrolling the loops in a program (as the name sug-
gests) [18]. This reduces branch misprediction penalties, as there
are fewer branches to (mis-)predict. Also, if the loop statements
are independent, higher performance gain can be achieved by loop
parallelism. Note that the effect of the loop unrolling is dependent
on the loop unrolling factor, and factors such as the loop trip count.
The question we ask regarding this optimization is:

RQ3: Do faults affecting loop-unrolled optimized code have a
lower likelihood of causing EDCs, thereby lowering the EDC rate
compared to the unoptimized version?

By loop unrolling, the dynamic count of loop termination branch
conditions reduces. Hence, there might be a lower probability of
a hardware fault striking the branch condition, and leading to an
EDC.

4.4 Sparse Conditional Constant Propagation:
SCCP

The Sparse Conditional Constant Propagation optimization (SCCP),
propagates constants throughout the code. In the process, certain
conditional branches that use these constants become unconditional,
which in turn propagates more constants. Also, after SCCP, the
static code size is further reduced through dead code elimination
(another optimization pass).

RQ4: Do faults affecting SCCP optimized code, have a higher
likelihood of causing EDCs, thereby increasing the EDC rate com-
pared to the unoptimized version?

Due to SCCP, the dynamic code size would be lower as con-
ditional branches and dead code are eliminated through constant
propagation. We speculate that the effect of a hardware fault would
be more pronounced, and hence the fault has a higher likelihood of
causing an EDC.

5. EXPERIMENTAL SETUP
In this section, we present the benchmarks and the fidelity thresh-

olds, followed by the evaluation metrics and the approach we use
to analyze the effect of the optimizations on the application error
resilience (both with and without our detection technique).

Benchmarks: We use six soft-computing applications, two
from MediaBench [7] and four from Parsec [1]. Table 1 shows
the benchmarks, and the fidelity thresholds, along with the fidelity
threshold values (mentioned in parantheses in column 4). We made
small changes to some of the benchmark programs as explained in
our prior work [16], to make them work with our infrastructure.

Table 1: Characteristics of Benchmark Programs. Higher distortion (scaled
difference) is more egregious, lower PSNR is more egregious.

Benchmark
(Lines of
C/C++
Code)

Description Input Fidelity Met-
ric (threshold
value)

Black-
Scholes
(1661)

Compute option
pricing using
Black-Scholes
Partial Differential
Equation

Sim-
large

Scaled differ-
ence of option
prices (0.3)

X264
(37454)

Media Application
performing H.264
encoding of video

test Mean distortion
of PSNR (mea-
sured by H.264
reference de-
coder) and
the encoded
video’s bitrate
(0.017)

Canneal
(4506)

Simulated cache-
aware annealing to
optimize routing
cost of a chip design

Sim-
dev

Scaled differ-
ence of routing
cost between
faulty and
original version
(0.026)

Swaptions
(1428)

Price portfolio
of swaptions us-
ing Monte-Carlo
simulations

Sim-
small

Scaled dif-
ference of
swaption prices
(0.00001)

JPEG
(30579)

Image Decoder test-
img.jpg

PSNR between
faulty and
fault-free de-
coded images
(30)

MPEG2
(9832)

Video Decoder mei16-
v2.m2v

PSNR be-
tween faulty
and fault-free
decoded image
set (30)

Fidelity Metrics and Threshold Values: We use the Quality of
Service (QOS) metrics from prior work [10] as the fidelity metrics
for the Parsec benchmarks. We distinguish EDCs from Non-EDCs
using the fidelity threshold value. This threshold value does not
change between inputs. The distortion or scaled difference is the

difference in absolute values between faulty and original fault-free
value divided by the original fault-free value. For the Parsec bench-
marks, we chose the fidelity threshold value such that 30% of the
most egregious deviations from the SDC set are classified as EDCs.
For MPEG and JPEG, we manually inspected the faulty outputs,
and noticed that EDCs were caused when the PSNR value was be-
low 30, i.e., the images were severely distorted. Hence, we choose
the value 30 as the fidelity threshold for these two programs.

Coverage Evaluation: We evaluate our technique by perform-
ing fault injection on the benchmark programs in Table 1. These
fault injection experiments are performed on five versions of each
benchmark’s code, namely the unoptimized code, and the four opti-
mized versions (see Section 4). We kept the fidelity threshold value
and number of injections the same between the optimized and un-
optimized versions.

For performing the fault-injection experiments, we use LLFI, a
program level fault-injection tool that we developed [17]. LLFI
works at the LLVM compiler’s intermediate representation (IR)
level, and allows fault-injections to be performed at specific pro-
gram points, and into specific data types. In each run, a fault, i.e.,
a single bit flip, is injected into the destination register of exactly
one dynamic instance of an instruction chosen at random (among
all the executed instructions), and the outcome of the fault is clas-
sified by comparing the final output with the fault free outcome.
The fault-free or baseline outcome is obtained by running the orig-
inal executable with the same input, but without any injected faults.
We classify the outcomes of the injected faults into Crash, Benign,
EDCs and Non-EDCs (the hang rate is very low in our experi-
ments). All injected faults are executed i.e., the instruction into
whose output the fault was injected, is executed by the program.

The EDC coverage is the fraction of detected EDCs out of total
EDCs, while the Non-EDC and benign coverage is the fraction of
detected Non-EDCs and Benign faults out of the total Non-EDC
and Benign faults. We measure the EDC coverage of our technique
under the optimized versions of the six benchmarks, for each op-
timization, and on the unoptimized version. We present only the
EDC coverage, as the Non-EDC and Benign coverage did not vary
much between the optimized and unoptimized versions.

We inject 5000 faults for each benchmark and optimization com-
bination. The EDC rates are statistically significant with an error
bar of ± 0.8% at the 95% confidence interval 2. We inject only one
fault in each run, as we assume that transient faults are relatively
rare events compared to the total execution time of an application.
We measure the EDC coverage under the performance overhead
bound of 20% (the dynamic instruction count of the replicated in-
structions).

Analysis approach: We measure the effect of optimization on
the baseline resilience (with no detection technique) by investigat-
ing the increase or reduction in the EDC rate of the optimized ver-
sion versus unoptimized version. For the second part of our anal-
ysis, i.e., studying the effect of optimization on our detection tech-
nique, we perform a quantitative analysis by comparing the EDC
coverage of our technique under the optimized version versus the
unoptimized version.

We consider an optimization safe under our technique, if the
EDC coverage is comparable to that of the unoptimized code, i.e.,
higher or within 5% lower with respect to the unoptimized code.
In cases where the the optimization is unsafe, we qualitatively ex-
amine the detector locations chosen in the optimized version to un-
derstand why the EDC coverage is lower.

2Blackscholes has an error bar of ± 0.8%, while other benchmarks
have an error bar within ± 0.5%.

6. RESULTS
In this section, we present the effect of compiler optimization

on the application error resilience (independent of our detection
technique), and answer the research questions posed in Section 4.
We then present the effect of the optimizations on our detection
technique, by reporting the EDC coverage of our technique for the
four optimizations under the 20% performance overhead.

6.1 Effect of compiler optimization on error
resilience

Table 2 shows the percentage of EDC outcomes for each bench-
mark under the four optimizations. The EDC percentages presented
in the table are independent of our technique, and it shows how the
resilience of the applications varies from the baseline unoptimized
version with no detection technique in place. Recall that the opti-
mization reduces the error resilience of the application compared
to baseline resilience, when the EDC rate of the optimized version
of the application is higher compared to the unoptimized one.

Table 2: Percentage of EDC outcomes in each benchmark under the four
optimizations, and the unoptimized version. Error bars are ± 0.8%

Benchmark Inst-
Combine

LICM Loop-
Unroll

SCCP UnOpt

Blackscholes 9.9 9.48 8.48 9.38 10
X264 2.48 2.96 2.82 2.1 2.24
Canneal 4.56 3.26 3.26 3.94 3.32
Swaptions 2.5 3.12 2.44 2.98 2.36
JPEG 3.68 3.56 4.16 4.08 3.76
MPEG2 2 2.1 2.56 1.7 2.3
Average 4.19 4.08 3.95 4.03 3.99

The occurrence of EDC causing faults in the optimized code
varies significantly (beyond the error bars) from the unoptimized
version, depending on the benchmark. This is true for all four op-
timizations. We present the analysis for each optimization, by con-
sidering benchmarks whose EDC rates vary significantly from the
unoptimized version.

6.1.1 Inst-Combine
In general, Inst-Combine optimized benchmarks have a lower

EDC rate than the corresponding unoptimized version, thereby main-
taining the baseline error resilience of the application. However,
Inst-Combine optimized Canneal has a higher EDC rate than its
unoptimized version 3. On further investigation, we found that the
dynamic count of instructions in the optimized version is an order
of magnitude lower than the unoptimized version. For all other
benchmarks, the difference in dynamic count is within 1%. To
answer RQ1, faults affecting Inst-combine optimized code have a
higher likelihood of causing an EDC, only if the reduction in dy-
namic code size with respect to the unoptimized version is highly
pronounced.

6.1.2 LICM
For LICM as shown in Table 2, all benchmarks except Swaptions

and X264 have LICM optimized EDC rate similar to that of the un-
optimized version. Swaptions is significantly higher than the base-
line unoptimized version, i.e., the optimization lowers its resilience
compared to the unoptimized version. Swaptions contains many
instances of invariant code within loops. Figure 4 shows two such

3Swaptions and X264 also have a higher EDC rate, but they are
within the error bars of their respective EDC rates.

functions, Discount_Factors_Blocking and HJM_SimPath_For-
ward_Blocking. The loop invariant code in Discount_Factors-
_Blocking is i * BLOCKSIZE + b at line 6, which is hoisted out-
side the loop. Similarly, for HJM_SimPath_Forward_Blocking,
we have multiple instances of invariant code such as iN-1 at line
15 and 18, and BLOCKSIZE *j + b at line 19. In the LICM opti-
mized version for the HJM_SimPath_Forward_Blocking function,
we did not see faults affecting the invariant code at all. In the un-
optimized version, faults affect multiple invariants within the loop
(the probability of the fault striking is much higher as the invariant
code is within the loop), and many of them lead to benign outcomes
or Non-EDCs.

Figure 4: Loop Invariant Code Examples in Swaptions

It is interesting to note that the increase in EDC rate for Swap-
tions compared to its unoptimized version, is not due to faults af-
fecting the invariant code outside the loop (we did not observe
faults affecting the invariant code). The increase is due to faults
affecting loop termination conditions whose loop body contains
a call to the function RanUnif(), and these faults lead to EDCs.
These loop bodies contain invariant code similar to those in func-
tion HJM_SimPath_Forward_Blocking. Due to the reduction in
dynamic code size of statements within the loop body of the LICM-
optimized Swaptions, there are a higher number of faults affect-
ing the loop termination conditions, and hence a higher number of
EDCs.

To answer RQ2, the increase in EDC rate of LICM-optimized ap-
plications compared to the unoptimized version, is not due to faults
affecting the invariant code hoisted outside the loop. Also, we
found that under the conditional probability that a random hard-
ware fault occurs in the application, there is a low likelihood of
a fault affecting invariant code hoisted outside the loop in LICM
optimized code.

6.1.3 Loop-Unroll
The EDC rates of most Loop-Unroll optimized benchmarks are

within the error bars of their corresponding unoptimized versions.
While there is an increase in the static code size for all benchmarks
with this optimization, this is mostly due to the pre-requisite passes.
These passes, lcssa (loop-closed-ssa), and loop-simplify insert loop
pre-headers, and an extra branch before the loop. Hence, in the un-
optimized version while one loop termination branch condition is
present, in the optimized version two branch conditions are present
for the same loop. In most benchmarks, an extra branch condition
is added by the prerequisite passes, but no unrolling happens (pos-
sibly due to absence of trip count information).

To answer RQ3, we cannot conclude that the likelihood of faults
leading to EDC for loop-unrolled optimized code is lower. Only

Blackscholes has a lower EDC rate compared to the unoptimized
version. We did not see any reduction in the number of faults af-
fecting branch conditions.

6.1.4 SCCP
The EDC rates of most SCCP optimized benchmarks are similar

to the corresponding unoptimized versions, except for Canneal and
Swaptions. However, this increase does not have any correlation
with the reduction in dynamic code size. In most cases, SCCP
optimization eliminates bitcast instructions, and variable indices
in the getelementptr instruction (to use constant indices).

To answer RQ4, certain applications have a higher likelihood of
EDC causing faults in SCCP optimized code, i.e., higher EDC rates
for SCCP optimized code, but this increase is not correlated with
the reduction in dynamic code size. We will investigate this more
in future work.

6.2 Effect of compiler optimization on detec-
tion technique

In this section, we present the effect of the optimizations on the
detectors chosen by our technique. We also present the effect of
the four optimizations on the EDC coverage of our technique, and
which optimizations are safe under our detection technique (be-
yond the change in baseline resilience).

6.2.1 Detectors
Table 3 presents the number of detectors under different opti-

mizations for the 20% performance overhead bound, chosen by our
technique.

Table 3: Number of detectors in each benchmark under different optimiza-
tions for 20% performance overhead

Benchmark Inst-
Combine

LICM Loop-
Unroll

SCCP UnOpt

Blackscholes 14 14 16 14 14
X264 330 468 301 331 331
Canneal 31 36 40 36 36
Swaptions 134 30 60 136 136
JPEG 75 63 65 61 61
MPEG2 162 167 146 165 165

Our technique identifies these locations by estimating the perfor-
mance overhead of a specific location based on the dynamic count
of replicated code, i.e., the backward slice of the detector loca-
tion. Hence, the detector placement locations identified using our
technique is tightly coupled with how the optimizations change the
benchmark code.

For example, the number of detectors chosen by Inst-combine
optimization depends on which redundant instructions are com-
bined. The JPEG optimized version has a higher number of de-
tectors than its unoptimized version (75 versus 61). This is because
the combined instructions belong to the backward slice of the cho-
sen detector locations, and hence the performance overhead of the
detector is lower than that in the unoptimized version.

However, the number of detectors are much lower in Canneal,
when Inst-Combine is applied to it. The redundant instructions that
are eliminated reduce the overall dynamic count of instructions,
but does not change the dynamic count of the backward slice of
the detector locations. Hence, the performance overhead of the
individual detectors in the optimized version is higher, and under
the given performance overhead bound, lower number of detectors
get chosen.

6.2.2 EDC Coverage
Figures 5, 6, 7 and 8 show the normalized EDC coverage with

respect to the baseline coverage for the four optimizations. The
baseline EDC coverage is the coverage for the unoptimized version
of the benchmark. We do not show the absolute baseline coverages
because our study focuses on the change in coverage by the opti-
mizations. Note that the baseline coverages of all benchmarks are
normalized to 100%. From Figure 6, we find that LICM is a safe
optimization for all benchmarks under our technique.

The EDC coverage differs across benchmarks, for the four op-
timizations. For three of the benchmarks, JPEG, MPEG and Can-
neal, all four optimizations are safe compared to the unoptimized
version, i.e., either higher than the baseline coverage or within 5%
lower than the baseline. Hence, the effect of optimization on EDC
coverage depends on benchmark specific characteristics. For the
remaining three Parsec benchmarks, individual optimizations are
unsafe depending on the benchmark. We study these characteris-
tics in more detail.

Figure 5: Normalized EDC Coverage of InstCombine with respect to the
Unopt EDC Coverage (shown as 100%).

Figure 6: Normalized EDC Coverage of LICM with respect to the Unopt
EDC Coverage (shown as 100%).

Figure 7: Normalized EDC Coverage of Loop-Unroll with respect to the
Unopt EDC Coverage (shown as 100%).

Figure 8: Normalized EDC Coverage of SCCP with respect to the Unopt
EDC Coverage (shown as 100%).

Inst-Combine: From Figure 5, InstCombine is safe for all
benchmarks except X264 and Swaptions. On further investigation,
we noticed that for these benchmarks, Inst-Combine modifies code
such that regions that were less susceptible to faults in the unop-
timized version become more susceptible in the optimized version,
and this reduces the EDC coverage of our technique. Note that
these regions were not protected in the unoptimized version either,
but fewer faults affected those regions compared to the optimized
version, leading to fewer EDCs in the unoptimized version.

For example, in Inst-Combine optimized Swaptions, a higher
number of faults affect the code within the function RanUnif(),
compared to those affecting the unoptimized version (40% in op-
timized versus 22% of total EDCs in unoptimized). This function
is not protected in both the optimized and unoptimized version.
RanUnif() is responsible for the 12% reduction in coverage com-
pared to the baseline coverage. Similarly, in X264, a higher number
of faults affect code regions within the function cabac_encode_de-
cision_c (14% versus 8% of the total EDCs in the unoptimized
version). Detectors are not placed in this function for either the
unoptimized or the optimized version. Note that both these func-
tions have a much higher dynamic execution time compared to the
remaining sections of the code. Hence, the reduction in dynamic
code size results in more faults affecting these functions.

Loop-Unroll: Loop-Unroll is a safe optimization under our
technique for all benchmarks except Blackscholes and Swaptions.
In Blackscholes, the EDC coverage for the loop unrolled version
is around 12% lower than the baseline coverage (see Figure 7).
The loop termination condition at line 3 for function bs_thread
in Figure 9, has a large number of faults affecting it. This leads
to EDCs, both in the unoptimized and the optimized version. In
the optimized version, while the loop is not unrolled, a new branch
condition is added to the loop preheader, and this condition is cho-
sen for detector placement while the loop termination condition is
not chosen by our algorithm. In the original code, the loop termi-
nation condition is chosen by our algorithm. Hence, while this new
location does not contribute to EDC coverage, the original detector
on the loop termination condition would have detected the EDCs
caused at that location.

Figure 9: Blackscholes code segment

The low EDC coverage in Swaptions is because of the high num-
ber of faults affecting the RanUnif() function (47% in optimized
versus 22% of the total EDCs in the unoptimized version). Loop-
Unrolling leads to different consequences in different benchmarks,
making it difficult to gauge the error resilience of applications.
This is because in cases where loops are not unrolled, the pre-
requisite passes add extra static branch conditions to loops, which
may affect the EDC coverage.

SCCP: From Figure 8, SCCP is safe under our technique for
all benchmarks except X264, under the 20% performance over-
head. The low coverage in X264 is attributed to the higher number
of faults affecting the cabac_encode_decision_c function (14%
versus 8% of the total EDCs in the unoptimized version). It is inter-
esting to note that the low coverage in the Inst-Combine optimized
version of X264 is due to the same reason.

Summary: From Sections 6.1 and 6.2, we find that maintaining
a resilience guarantee under compiler optimizations is entirely de-
pendent on which regions of code become more susceptible to EDC
causing faults 4. In some cases such as LICM-optimized Swap-
tions and Inst-Combine optimized Canneal, the resilience of the
optimized version is lower compared to its unoptimized version (in
the absence of our detection technique), i.e., the EDC rate is higher
compared to the unoptimized version. However, our detection tech-
nique maintains the overall resilience of these applications, because
the increased number of EDC causing faults in the optimized ver-
sion affects locations that are already protected by our technique. In
other cases such as Inst-Combine optimized X264 and Swaptions,
and SCCP optimized X264, the baseline resilience is maintained in
the optimized version (the EDC rate is lower or similar), but these
lower number of EDC causing faults affects those locations not pro-
tected by our technique. Hence, our detection technique maintains
the overall resilience of most applications under the three compiler
optimizations (except Loop-Unroll), regardless of how these opti-
mizations affect the baseline resilience.

7. CONCLUSION
We study the effect of four compiler optimizations on the error

resilience of soft computing applications. While these applications
tolerate most hardware faults, they do not tolerate certain faults,
that lead to large deviation in outcomes. We term such outcomes as
Egregious Data Corruptions (EDCs). The resilience is the ability
of an application to prevent the fault from becoming an EDC.

By performing fault injection experiments on the unoptimized
and optimized versions of soft computing applications, we analyze
how the optimizations affect the baseline error resilience (without
any detection technique in place). For example, they reduce the
resilience by increasing the number of EDC outcomes. We find that
certain optimizations lower the baseline resilience, and this varies
between benchmarks.

We also study the effect of compiler optimizations on our de-
tector placement technique (developed as part of prior work) that
places replication based detectors in code. We define an optimiza-
tion to be safe under our technique, when it guarantees a certain
EDC coverage compared to the unoptimized code. Based on our
results on the effect of optimization on the baseline resilience and
the coverage obtained by our technique, we find that to guarantee a
certain error resilience for soft computing applications under com-
piler optimizations, efforts should be directed towards identifying
which code regions are more susceptible to faults under these op-
timizations. In cases where the baseline resilience is lowered, our

4Loop-Unroll does not fit in this category, as it transforms code but
unrolling does not happen in most cases

technique still maintains the overall resilience since the locations
affected by the faults are protected by our technique. However, in
cases where the baseline resilience of applications is maintained,
optimizations such as SCCP and Inst-Combine make certain code
regions more susceptible to faults. These locations are not pro-
tected by our technique, leading to a lower EDC coverage. As part
of future work, we will study more optimizations, and group these
optimizations into resilience packages, each package representing
a certain level of resilience. This will help developers to choose
optimizations for soft computing applications, while guaranteeing
a certain degree of error resilience.

Acknowledgment
We thank the anonymous reviewers, Sasa Misailovic, Sathish Gopa-
lakrishnan and Elizeu Santos-Neto for their comments that helped
improve the paper. This work was supported in part by a Discovery
grant and an Engage Grant, from the National Science and Engi-
neering Research Council (NSERC), Canada.

8. REFERENCES
[1] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The PARSEC

benchmark suite: Characterization and architectural implications.
PACT, pages 72–81, 2008.

[2] M. Demertzi, M. Annavaram, and M. Hall. Analyzing the effects
of compiler optimizations on application reliability. In Workload
Characterization (IISWC), 2011 IEEE International Symposium
on, pages 184 –193, nov. 2011.

[3] P. Dubey. Recognition, mining and synthesis moves computers to
the era of tera. Technology@ Intel Magazine, pages 1–10, 2005.

[4] Siva Kumar Sastry Hari, Sarita V. Adve, and Helia Naeimi.
Low-cost program-level detectors for reducing silent data
corruptions. DSN, pages 181–188, 2012.

[5] M. Hiller, A. Jhumka, and N. Suri. On the placement of software
mechanisms for detection of data errors. DSN, pages 135–144,
2002.

[6] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. CGO, pages 75–86,
2004.

[7] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. Mediabench: a
tool for evaluating and synthesizing multimedia and
communicatons systems. MICRO, pages 330–335, 1997.

[8] M. Leeke, S. Arif, A. Jhumka, and S.S. Anand. A methodology for
the generation of efficient error detection mechanisms. DSN, pages
25–36, 2011.

[9] Xuanhua Li and D. Yeung. Application-level correctness and its
impact on fault tolerance. HPCA, pages 181 –192, 2007.

[10] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality
of service profiling. ICSE, pages 25–34, 2010.

[11] N. Oh, P.P. Shirvani, and E.J. McCluskey. Error detection by
duplicated instructions in super-scalar processors. IEEE
Transactions on Reliability,, 51(1):63–75, mar 2002.

[12] K. Pattabiraman, Z. Kalbarczyk, and R.K. Iyer. Application-based
metrics for strategic placement of detectors. PRDC, dec. 2005.

[13] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler,
Doug Burger, and Lorenzo Alvisi. Modeling the effect of
technology trends on the soft error rate of combinational logic. In
Proceedings of the 2002 International Conference on Dependable
Systems and Networks, DSN ’02, pages 389–398, Washington, DC,
USA, 2002. IEEE Computer Society.

[14] Vilas Sridharan and David R. Kaeli. Eliminating microarchitectural
dependency from architectural vulnerability. In HPCA, pages
117–128. IEEE Computer Society, 2009.

[15] D.D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart,
T. Metodi, and F.T. Chong. Characterization of error-tolerant
applications when protecting control data. IISWC, pages 142 –149,
2006.

[16] Anna Thomas and Karthik Pattabiraman. Error detector placement
for soft computing applications. DSN, 2013.

[17] Anna Thomas and Karthik Pattabiraman. LLFI: An intermediate
code level fault injector for soft computing applications. SELSE,
2013.

[18] Jeffrey D. Ullman and Alfred V. Aho. Addison-Wesley Pub. Co.,
Reading, Mass, USA, 1977.

[19] L.A. Zadeh. What is soft computing? Soft computing, 1(1):1–1,
1997.

