How I Learned to Stop Worrying and
Love the “DOM” :

Characterizing and Improving the

Reliability of JavaScript-based Web
Applications

Karthik Pattabiraman

Frolin S. Ocariza, Jr., Kartik Bajaj, and Ali
Mesbah

University of British Columbia (UBC)

My Research

» Building fault-tolerant software applications

» Compiler & runtime techniques for resilience
Partitioning data for differential resilience [ASPLOS’ | []
Error detection in parallel programs [DSN’[2]

Error detection in soft-computing applications [DSN’ | 3]

» This talk
Reliability of modern web applications
[ISSRE’I0] [ISSRE’I I] [ICST’12] [ESEM’13] [ICST’13] [ASE’13]

Modern Web Applications: Examples

Google amazon “

Modern Web Applications: JavaScript

» JavaScript: Implementation of ECMAScript standard

Client-Side JavaScript: used to develop web applications
» Executes in client’s browser — send AJAX messages
» Responsible for web application’s core functionality

» Not easy to write code in — has many “evil” features

2

avaScript

Studies of JavaScript Web Applications

Performance and parallelism: Reliability Security and Privacy:
JSMeter [Ratanaworabhan-2010], o) [Yue-2009],
[Richards-2009], [Fortuna-2011] . Gatekeeper[Guarnieri-2009],

[Jang-2010]

Does Reliability Matter in Web Apps ?

» Snapshot of iFeng.com: Leading media website in China

— an error occurred when processing this
[an emor occurred while processing this directive]

FRBEHR MIKEEHARH
KIEF RS AREXEBFRR B
TREFBRE| N IRELFHIHS

N EE2FEHRAR SERE
HARH=)II+53%h: RaindEis = iS5
B INK RAFBABLEFERF

L ERBHFIREHEFTE
AR S BERRE R R EE
RS SRATRIA LS RIURFH

[EAEIBERABUALLCNE
A SHPERT RGBT HRBTRE
BWBRPEHRE A L R KB HBIFR

BRI RERE S LR 2 E

PEAILRFRESE RRIGRRTIER
AABLELIETTIR 408 LN 2 EIRIE
EBRIRSURBSENE SRRRERK
BRI MIDER RS ZRNEREAG
RSREERSEN SR EAFERRM
FIMEEF RSO TAMERE

JavaScript Reliability: Our Prior Work

» Earlier study based on Console Messages: Alexa top 100

» Popular web applications experience four distinct
JavaScript error messages on average [ISSRE’|l |]

» Many errors were non-deterministic and it was hard to

determine the root cause and impact of these errors
Total Distinct Errors

Talk Outline

» Bug Report Study of twelve open source JS applications
To understand bug characteristics [ESEM’ | 3]

» AutoFlox: Localizing DOM-related faults in]S applications

Based on dynamic backward slice [ICST’ 12 best paper
nominee]

» Vejovis: Automatically fixing JavaScript Faults [in
preparation]

» Future Directions & Other work

Bug Report Study: Goals

» What errors/mistakes cause JavaScript faults?

» What impact do JavaScript faults have!?

Bug Report Study of twelve popular,
Open Source JavaScript Applications

Bug Report Study: Experimental Objects

Eight JavaScript Web Applications

TNOOC J g& @WORDPRESS @

Joomlal Drupal

(: o w.(\
|\
hos -
W
4

ROUND CUBE WIKIMEDIA

Four JavaScript Libraries

& jQuery moo 1ol s

write less, do more. JavaScript framework

Bug Report Study: Methodology

» Collect bug reports from bug repositories

Focus on bugs that are marked fixed to avoid spurious bugs

Organized into a uniform format (XML file)

Search for all
bug reports

that have the
word

“JavaScript”

Filter out
reports that
are not

' marked “fixed”

OR the fault
does not

involve |S

Pick the first
30 reports and
analyze them
manually to
determine
cause/impact

Bug Report Study: Research Questions

» RQI:What types of JavaScript faults occur in web apps!?
» RQ2:What is the nature of failures from |S faults?

» RQ3:What is the impact of |S faults ?

» RQ4:What is the root cause of S faults?

» RQ5: How long does it take to fix a |S fault?

Bug Report Study: Fault Categories

Other
Syntax- 1%

Based Fault DOM-related
11% - 65%
Incorrect\ Incorrect /
ReturnOVaIue ~ S Method
3% - Parameter
o,
Undeﬁned_/ R
Method |v
5% Undefined/ Not DOM-
Null Variable Related
Usage 9%

6%

Incorrect Method Parameter Fault: Unexpected or invalid
value passed to JS method or assigned to JS property

DOM-Related Fault: The method is a DOM API method
- Account for around two-thirds of JavaScript Faults

13

Bug Report Study: DOM-Related Faults

html
body head
table div P script
/ / Text:
tr Y “Hello
world”

Want to retrieve this
element

Bug Report Study: DOM-Related Faults

JavaScript code: var x = document.getElementById(“elem”) ;

|]
DOM-related XI
JavaScript fault

DOM:

Id: elem

Bug Report Study: DOM-Related Fault

ID of element to retrieve: hello_world

; XZE :{Ogg}il;l? v Error: “hello_" is misspelled
3 wvar y = "“world”;
4 var elem = document.getElementById(x + Vy);
5 wvar dis = “";
6 1f (toggle == 1) { Fault: Code would attempt to
/ dis = “block”; retrieve the DOM element
using wrong ID.
else { Variable elem becomes NULL
10 dis = “inline”;
11 }

12 elem.style.display = dis; Failure: NULL EXCEPTION!

6

Bug Report Study: Research Questions

» RQI:What types of JavaScript faults occur in web apps!?

» RQ2:What is the nature of failures stemming from JS
faults?

» RQ3:What is the impact of |S faults ?
» RQ4:What is the root cause of JS faults?

» RQ5: How long does it take to fix a |S fault?

Bug Report Study: Nature of Failures

» DOM related errors are less likely to be code-terminating

54% of |avaScript faults lead to exceptions
88% of non-DOM-related faults lead to exceptions
Only 39% of DOM-related faults lead to exceptions

100
90
80
70
60
50
40
30
20
10

0

Overall

Non-DOM
related

Code-terminating
Errors

Output related errors

DOM
related

Bug Report Study: Research Questions

» RQI:What types of JavaScript faults occur in web apps!?

» RQ2:What is the nature of failures stemming from |S
faults?

» RQ3: What is the impact of |S faults ?
» RQ4:What is the root cause of JS faults?

» RQ5: How long does it take to fix a |S fault?

Bug Report Study: Impact of JS Faults

» Impact Types — Based on Bugzilla’s classification [ICSE’[]
Type | (lowest impact), Type 5 (highest impact)

140

o
o

o
1S3

of Bug Reports
o0}
o

(023
o

Number
N
o

N
o

" Hm FIH1 |

Type | Type 2 Type 3 Type 4 Type 5

¥ All Faults meaceTvee 80% of highest
impact faults

“ DOM-Related Faults Only are DOM-related

o

20

Bug Report Study: Research Questions

» RQI:What types of JavaScript faults occur in web apps!?

» RQ2:What is the nature of failures stemming from |S
faults?

» RQ3: What is the impact of JS faults ?
» RQ4:What is the root cause of JS faults?

» RQ5: How long does it take to fix a |S fault?

21

Bug Report Study: Causes of JS Faults

» Error Locations

» Most errors manually committed by programmer in S code

1% 1%

M JavaScript
SHTML

"' Server-Side Code

“ Server Config File

M Other

22

Bug Report Study: Research Questions

» RQI:What types of JavaScript faults occur in web apps!?

» RQ2:What is the nature of failures stemming from JS
faults?

» RQ3: What is the impact of JS faults ?
» RQ4:What is the root cause of JS faults!?

» RQ5: How long does it take to fix a |S fault?

23

Bug Report Study: Triage and Fix Times

» Triage Time:Time it took to assign/comment on bug

» FixTime:Time it took to fix the bug since it was triaged

24

100

~ [o.]
o o

o
o

Average # of Days

o

Triage Time

® All Faults
~ "'DOM-Related Only
1 . Non-DOM-Related

Fix Time

Bug Report Study: Summary

» Bug report study of |2 applications:]S faults
Over 300 bug reports analyzed; only fixed bugs considered

» DOM-related faults dominate JavaScript faults
Responsible for nearly two-thirds of all faults
Mostly lead to output errors (not exceptions)
Responsible for 80% of highest impact faults
Arise in the JavaScript code (not server/HTML)
Take 50% longer time to fix for developers

» Need low-cost solutions for DOM-related faults

25

Talk Outline

» Bug Report Study of twelve open source JS applications
To understand bug characteristics [ESEM’ | 3]

» AutoFlox: Localizing DOM-related faults in]S applications

Based on dynamic backward slice [ICST’ 12 best paper
nominee]

» Vejovis: Automatically fixing JavaScript Faults [in
preparation]

» Future Directions & Other Work

26

AutoFlox: Fault Localization

» What to do after we find errors? Need to fix them

» Fault localization: Find the root cause of the error
Focus on DOM-related JavaScript errors

27

AutoFlox: Scope of Technique
» Types of DOM-related |S errors

Code-terminating DOM-related JS errors

element = $(“elem”);

b = element.getAttribute(“badAttr”)
element.innerHTML = “text’;

b.value = “newValue”; % exception

Output DOM-related JS errors

function changeToBlue(elem) {

elem.style.color = “red”; Wrong colour change

28

AutoFlox: Running Example

» Show a banner that cycles through four images every 5s

1 function changeBanner (bannerID) ({

\ "
banneriD will be set to

undefined

7 bannerToChange = document.getElementById(prefix + bannerlID) ;
Would return null
9 bannerToChange.addClassName (“active”) ; Passed with no argument

(even though
NULL~ changeBanner needs one

asynchronb atQhhent)
L

13 changeTimer = setTimeout (changeBanner, 5000) ;

29

AutoFlox: Block Diagram

Web Application

|

Instrument JS RunWeb |_. | Generate
—— . .
Code Application Traces
Trace file

- 7

L4

Analyze Extract Partition into
backward slice Relevant Sequences

Sequence

direct DOM access
30

Trace
Collection
Phase

Trace
Analysis
Phase

AutoFlox: Trace Collection

Web Application

|

Instrument JS RunWeb |_. | Generate
—— .)
Code Application Traces

Trace file

\4

31

AutoFlox: Trace Collection

AutoFlox: Trace Analysis

Web Application

Trace file

direct DOM access

AutoFlox: Trace Analysis

AutoFlox outputs this line as

/ direct DOM access

7 bannerToChange = document.getElementById(prefix + bannerlID) ;

bannerToChange
\ | being assigned
Last variable to o)

return val
take on null value DOM accé\égrker
function

Sequences.: (1) line2 -> line3 -> line5 -> line6 -> line7 -> line8 -> line9
Relevant Seq.: Iin?é?“—ﬁeq@e_@“—ﬁeq%eZ -> line3 -> lined -> line6 -> line7 -> line8 -> line9

34

AutoFLox: Implementation

» Trace Collection: Modified versions of existing tools
InvarScope [Groeneveld et al.]
Crawljax [Mesbah et al.]

» Trace Analysis:Written from scratch

» Evaluated on three applications
Tudu

TaskFreak
Wordpress

35

AutoFlox: Accuracy

» Approach: Fault injection into TUDU, TaskFreak, and

WordPress to emulate DOM-related |S faults

Web App Total Number | Number of Percentage
of Mutations direct DOM identified
accesses
identified
TaskFreak 29 29 100%
TUDU 24 24 100%
WordPress |3 7 53.8%
Overall 66 60 90.9%

36

AutoFlox: Performance

» Approach: Measure trace collection overhead
Tumblr website to localize example fault
Successfully localized the fault

» Results
Trace collection incurred 35% overhead
Trace analysis took 0.115 seconds to complete

37

AutoFlox: Summary

» Fault localization for DOM-related JS errors
Errors due to interaction of DOM and JS
Assumes code-terminating faults that result in exceptions

» AutoFlox uses dynamic backward slicing to
successfully isolate > 90% of injected faults

38

Talk Outline

» Bug Report Study of twelve open source JS applications
» To understand bug characteristics [ESEM’ | 3]

» AutoFlox: Localizing DOM-related faults in S applications

» Based on dynamic backward slice [ICST’ |2 best paper
nominee]

» Vejovis: Automatically fixing JavaScript Faults [in
preparation]

» Future Directions & Other work

39

Vejovis: Motivation

» Automatically “fix” DOM-related faults

» Starts from DOM interaction point (i.e.,
AutoFLox’s output)

» Finds symptoms to determine “possible
sicknesses”

Suggests workarounds to get rid of these
symptoms and, hopefully, the actual error.

Workaround patterns based on “common
fixes” applied to DOM-related errors

40

Vejovis: Example

JavaScript Code:
Set up the class

1 var cls = “pre’%; name of element

2 for (var i = 0; i <= being retrieved

3 cls =cls + i”) Retrieve element using $().

¢ var elem = 5(“p." + Cls){l\\ In last iteration of loop, code
5 elem[0].style.display = “block”; tries to retrieve p element with
6 } UNclass “ore0123”. T'Pli% ﬁllc')es not
I SE(HEREBERF TION

P P P
class=*“pre0” | class="pre0l” class=*pre012”

SPAN SPAN SPAN SPAN
class="“pre0” class=*“pre0l” class=*pre012” class=*pre0123”

41

Vejovis: Example

JavaScript Code: Vejovis
Step 1: Assume CSS
1 var cls = “pre”; selector is wrong. Divide the
2 for (var 1 = 0; 1 <= 3; i++) { selector into components.
3 «c¢ls = cls + 1i;
4 var elem = §(“p."” + cls); e.g., Selectoris “p.pre0123”.
5 elem[0].style.display = “block”; Components:
6 } - Tag hame p

- “Has class” indicator .
- Id name pre0123

DOM State: DIV

P P P
class=*“pre0” | class=“preOl” @ class="“pre012”

SPAN SPAN SPAN SPAN
class="“pre0” class=“pre0l|” @ class="pre012” class=*pre0123”

42

Vejovis: Example

JavaScript Code: Vejovis
Step 2: Divide each component into
1 var cls = “pre”; string set.
2 for (var i = 0; i <= 3; i++) {
3 cls =cls + i; e.g., String set of “pre0123”
4 var elem = $(“p.” + cls); - “pre” (Line 1)
5 elem[0].style.display = “block”; - =g~ (Line 3, Iteration 1)
6 } - “1" (Line 3, Iteration 2)

— #“2" (Line 3, Iteration 3)
- “3" (Line 3, Iteration 4)

DOM State: DIV

P P P
class=*“pre0” | class="pre0l” class=*pre012”

SPAN SPAN SPAN SPAN
class="“pre0” class=*“pre0l” class=*pre012” class=*“pre0123”

43

Vejovis: Example

: Vejovis
JavaScript Code: : .
P Step 3: Find valid replacements
1 var cls = “pre”; for each component of the selector,
2 for (var i = 0; i <= 3; i++) { based on the current DOM state.
3 ls = cls + 1i; _
o= - S_ l,, ” e.g., Valid replacements for the ID
4 var elem = $(“p.” + cls); { 123 inth
5 elem[0].style.display = “block~; componentpre0123 inihe
6 1 original selector “p.pre0123" are
- “p.pre0”
DOM State: DIV - “p.pre0l”

- “"p.prel0l2”

P P P
class=*“pre0” | class="pre0l” class="“pre012”

SPAN SPAN SPAN SPAN
class="“pre0” class=*“pre0l” class=*“pre012” @@ class=*“pre0123”

44

Vejovis: Example

JavaScript Code: Vejovis
Step 4: For each string set part,
1 var cls = “pre”; assume that part is wrong.
2 for (var i = 0; i <= 3; i++) { Use string constraint solver to find
3 c¢ls = cls + 1i; suitable replacements based on
4 var elem = §(“p."” + cls); valid selectors found earlier.
‘Z }elem[O].style.display = “block”; Example: Let's say the “3” part of

“pre0123” is assumed wrong.

_ DIV Hence, we must find a valid
DOM State: selector such that “3” has been
replaced —i.e., a valid selector of
P = P the form “p.pre012<s>",

<s> ina.
class=“pre0” | class=“pre0|” Q@ class="pre012” where <s> may be empty string

SPAN SPAN SPAN SPAN
class="“pre0” class=*“pre0l” class=*pre012” class=*pre0123”

45

Vejovis: Example

JavaScript Code: Example: To replace “p.pre0123”
with “p.pre012”, the following

1 var cls = “pre”; suggestion is displayed:

2 for (var i = 0; 1 <= 3; 1i++) {

3 c¢ls = cls + i; “Off by one. Modify the upper bound

4 wvar elem = $(“p.” + cls); of the for loop that contains Line 3”

5 elem[0].style.display = “block”;

6 }

DOM State: DIV

P P P
class="“pre0” | class="pre0l” class=“pre012”

SPAN SPAN SPAN SPAN
class="“pre0” class=*“pre0l” class=*pre012” class=*pre0123”

46

Vejovis: Implementation

» Crawljax used to crawl web application [Mesbah’09]

User specifies “clickables” to reproduce bug

» Rhino used to instrument |S code (for retrieving traces
and supplementary information)

Instrumentation done at AST level

» Hampi used to perform string constraint solving when
finding potential replacement selectors [Kiezun’09]

Valid selectors used when defining “Context Free Grammar”

47

Talk Outline

» Bug Report Study of twelve open source JS applications
» To understand bug characteristics [ESEM’| 3]

» AutoFlox: Localizing DOM-related faults in S applications

» Based on dynamic backward slice [ICST’ |2 best paper
nominee]

» Vejovis: Automatically fixing JavaScript Faults [in
preparation]

» Future Directions & Other work

48

Future Directions

» Integrating multiple techniques into a single IDE
Allow programmers to reason about DOM interactions
Automated code synthesis for DOM-JS interactions

» Support for HTML5 primitives and features

Canvas interactions, local storage etc.

o] "

€ C i | © co.io/mattpardee/c9 =
ew
ole

Pve seen the

FUTURE

It’sin my

BROWSER

49

Mutandis [Mirshokraie - ICST 201 3]

» Mutates original program to test quality of test suites
» Problem: Equivalent mutants obscure the value
» Generate only a few equivalent mutants — FunctionRank

» Introduced DOM-specific and |S-specific mutations

=
©

Original Program Mutant

50

Pythia [Mirshokraie — ASE 201 3]

» Automated unit test and oracle generation for web apps.

» First, crawls application to generate event sequences
» Extracts unit tests from sequences with high coverage
» Creates Oracles for unit tests using mutation testing

'
<M Coleoct Maximize
st -:F . ol
° | Craw Traco Coweragn

_.i

51

Clematis [Alimadi — under preparation]

» Challenge: Web applications are complex, and consist of
DOM interactions, AJAX messages and timeouts

» Difficult to trace the links between events and |S code

» Clematis allows users to visualize causal dependencies
between events and code, and between asynchrous events

| Sousce [Trae Source I Tiace l&nn‘t l Trace .
okl b J DI DI CESD] Iy | wloall b I CE=D ek b IIEETD,
o vt | ebnf] g ﬂ : one 1 . ' —

o3 1 — 2 1.1 e .
I S S| s R =0
S e & =[S
q e ——
e " U Ll o

Conclusions

» Modern web applications growing in importance
Reliability is a significant challenge for these applications

» Characterized the reliability of modern web
applications [ESEM’| 3]
Majority of errors are DOM-related (66%)
Majority of highest impact errors are DOM-related (80%)

» Techniques to address DOM-related faults

AutoFlox: To localize DOM-related faults [ICST’12]
Vejovis: To automatically fix DOM-related faults [in prep.]

53

Pater Sellers « George C. Scott
« Siasluy Ksbrick's

Dr. Strangelove
Or:

| Learned
Teo

Stop

Worrying
And
Lome
The

=3

Questions ?

the hot (ine surpense comedy

karthikp@ece.ubc.ca

e S22 Hayden K222 Wy SIFR PR s vy b e http.://blogs.ubc.ca/karthik/Software
e ey Kubrich, Peter George & Tormy SOUher s v v mar s va i
S | bt S:J..‘?i Kab A £ 1o vt Atum e

4

