
How I Learned to Stop Worrying and
Love the “DOM” :

 Characterizing and Improving the
Reliability of JavaScript-based Web

Applications

Karthik Pattabiraman
Frolin S. Ocariza, Jr., Kartik Bajaj, and Ali

Mesbah

 University of British Columbia (UBC)

My Research
}  Building fault-tolerant software applications

}  Compiler & runtime techniques for resilience
}  Partitioning data for differential resilience [ASPLOS’11]
}  Error detection in parallel programs [DSN’12]
}  Error detection in soft-computing applications [DSN’13]

}  This talk
}  Reliability of modern web applications
}  [ISSRE’10] [ISSRE’11] [ICST’12] [ESEM’13] [ICST’13] [ASE’13]

2

Modern Web Applications: Examples

3

Modern Web Applications: JavaScript
}  JavaScript: Implementation of ECMAScript standard

}  Client-Side JavaScript: used to develop web applications

}  Executes in client’s browser – send AJAX messages
}  Responsible for web application’s core functionality
}  Not easy to write code in – has many “evil” features

4

Studies of JavaScript Web Applications

5

Performance and parallelism:
JSMeter [Ratanaworabhan-2010],
[Richards-2009], [Fortuna-2011]

Reliability

?

Security and Privacy:
[Yue-2009],
Gatekeeper[Guarnieri-2009],
[Jang-2010]

pe
rfo

rm
an

ce

se
cu

rit
y

re
lia

bi
lit

y

Goal: Study and improve the reliability of JavaScript web applications

Does Reliability Matter in Web Apps ?

}  Snapshot of iFeng.com: Leading media website in China

6

an error occurred when processing this
directive

JavaScript Reliability: Our Prior Work
}  Earlier study based on Console Messages: Alexa top 100
}  Popular web applications experience four distinct

JavaScript error messages on average [ISSRE’11]
}  Many errors were non-deterministic and it was hard to

determine the root cause and impact of these errors

7

0
2
4
6
8

10
12
14
16
18

Total Distinct Errors

Talk Outline
}  Bug Report Study of twelve open source JS applications

}  To understand bug characteristics [ESEM’13]

}  AutoFlox: Localizing DOM-related faults in JS applications
}  Based on dynamic backward slice [ICST’12 best paper

nominee]

}  Vejovis: Automatically fixing JavaScript Faults [in
preparation]

}  Future Directions & Other work

8

Bug Report Study: Goals
}  What errors/mistakes cause JavaScript faults?

}  What impact do JavaScript faults have?

9

Bug Report Study of twelve popular,
Open Source JavaScript Applications

Bug Report Study: Experimental Objects

10

Eight JavaScript Web Applications

Four JavaScript Libraries

Bug Report Study: Methodology
}  Collect bug reports from bug repositories

}  Focus on bugs that are marked fixed to avoid spurious bugs
}  Organized into a uniform format (XML file)

11

Search for all
bug reports
that have the

word
“JavaScript”

Filter out
reports that

are not
marked “fixed”
OR the fault

does not
involve JS

Pick the first
30 reports and
analyze them
manually to
determine

cause/impact

Bug Report Study: Research Questions
}  RQ1: What types of JavaScript faults occur in web apps?

}  RQ2: What is the nature of failures from JS faults?

}  RQ3: What is the impact of JS faults ?

}  RQ4: What is the root cause of JS faults?

}  RQ5: How long does it take to fix a JS fault?

12

Bug Report Study: Fault Categories

13

TABLE II
IMPACT TYPES.

Type Description Examples
1 Cosmetic Table is not centred; header is too

small
2 Minor functionality loss Cannot create e-mail addresses

containing apostrophe characters,
which are often only used by spam-
mers

3 Some functionality loss Cannot use delete button to delete
e-mails, but delete key works fine

4 Major functionality loss Cannot delete e-mails at all; cannot
create new posts

5 Data loss, crash, or security issue Browser crashes/hangs; entire ap-
plication unusable; save button
does not work and prevents user
from saving considerable amount
of data; information leakage

• Syntax-Based Fault: There is a syntax error in the
JavaScript code. Example: There is an unescaped apos-
trophe character in a string literal that is defined using
single quotes.

• Other: Errors that do not fall into the above categories.
Example: There is a naming conflict between methods or
variables in the JavaScript code.

Failure Categories. The failure category refers to the observ-
able consequence of the fault. For each bug report, we marked
the failure category as either Code-terminating or Output-
related, as defined in Section II-B. This categorization helps
us answer RQ2.
Impact Types. To classify the impact of a fault, we use
the classification scheme used by Bugzilla.3 This scheme is
applicable to any software application, and has been also used
in other studies [7], [8]. Table II shows the categories. This
categorization helps us answer RQ2.
Error Locations. The error location refers to the code unit or
file where the error was made (either by the programmer or
the server-side program generating the JavaScript code). For
each bug report, we marked the error location as one of the
following: (1) JavaScript code (JS); (2) HTML Code (HTML);
(3) Server-side code (SSC); (4) Server configuration file (SCF);
(5) Other (OTH); and (6) Multiple error locations (MEL). In
cases where the error location is marked as either OTH or
MEL, the location(s) is/are specified in the error description.
This categorization helps us answer RQ3.
Browser Specificity. In addition, we also noted whether a
certain bug report is browser-specific – that is, the fault
described in the report only occurs in one or two browsers,
but not in others – to help us answer answer RQ4.
Time for Fixing. To answer RQ5, we define the triage time as
the time it took a bug to get assigned to a developer, from the
time it was reported (or, if there is no “assigned” marking, the
time until the first comment is posted in the report). We also
define fix time as the time it took the corresponding JavaScript
fault to get marked as “fixed”, from the time it was triaged. We
recorded the time taken for each JavaScript bug report to be

3http://www.bugzilla.org/

!"#$%"$#&
'())*+,-.,/)$*

!0,1$*
23*

!"#$%"$#*
4$567#*

83*

9":7--$:5*
;$5(-"*+,)($*

<3*

=>"5,?@
A,0$#*B,()5*

CC3*

D56$-*
C3*

'75*ED4@
;$),5$#*
F3*

ED4@-$),5$#*
283*

9":7--$:5*
4$567#*

G,-,H5-*
IJ3*

Fig. 2. Pie chart of the distribution of fault categories.

triaged, and for the report to be fixed; note that other studies
have classified bugs on a similar basis [9], [10]. Further, note
that times are calculated based on the calendar date; hence, if
a bug report was triaged on the same date as it was reported,
the triage time is recorded as 0.

IV. RESULTS

We now present the results of our empirical study on
JavaScript bug reports. The subsections are organized accord-
ing to the research questions enumerated in Section III-A.

A. Fault Categories
Table III shows the breakdown of the fault categories in

our experimental objects. The pie chart in Figure 2 shows the
overall percentages. As seen from the table and the figure,
the vast majority – approximately 74% – of JavaScript faults
belong to the “Incorrect Method Parameter” category. This
suggests that most JavaScript faults result from errors related
to setting up the parameters of native JavaScript methods, or
the values assigned to native JavaScript properties.

Finding #1: “Incorrect Method Parameter” faults
account for around 74% of JavaScript faults.

In our earlier study of JavaScript error messages [1] and on
fault-localization of JavaScript errors [11], we also noticed that
there are many of these “Incorrect Method Parameter” faults,
but their prevalence was not quantified. Interestingly, we also
observed in these earlier studies that many of the methods and
properties affected by these faults are DOM methods/proper-
ties (either DOM access or DOM update methods/properties,
as defined in Section II). Based on these prior observations,
we became curious as to how many of these “Incorrect
Method Parameter” faults are DOM-related faults – that is,
“Incorrect Method Parameter” faults in which the incorrect
parameter or assignment value propagates into a DOM method
or property, such as getElementById(), setAttribute(), or
innerHTML.

We further classified the “Incorrect Method Parameter”
faults based on the methods/properties in which the incorrect

5

Incorrect Method Parameter Fault: Unexpected or invalid
value passed to JS method or assigned to JS property

DOM-Related Fault: The method is a DOM API method
 - Account for around two-thirds of JavaScript Faults

Bug Report Study: DOM-Related Faults

14

html

body head

script div p

Text:
“Hello
world”

table

tr p

Want to retrieve this
element

Bug Report Study: DOM-Related Faults

15

div

id: elem

JavaScript code:

DOM:

var x = document.getElementById(“elem”); var x = document.getElementById(“elme”);

Inexistent ID Will return null

DOM-related
JavaScript fault

Bug Report Study: DOM-Related Fault

16

1 !var toggle = 1;!
2 !var x = “hlelo_”;!
3 !var y = “world”;!
4 !var elem = document.getElementById(x + y);!
5 !var dis = “”;!
6 !if (toggle == 1) {!
7 ! !dis = “block”;!
8 !}!
9 !else {!
10 ! !dis = “inline”;!
11 !}!
12 !elem.style.display = dis;!

ID of element to retrieve: hello_world

1 !var toggle = 1;!
2 !var x = “hlelo_”;!
3 !var y = “world”;!
4 !var elem = document.getElementById(x + y);!
5 !var dis = “”;!
6 !if (toggle == 1) {!
7 ! !dis = “block”;!
8 !}!
9 !else {!
10 ! !dis = “inline”;!
11 !}!
12 !elem.style.display = dis;!

Error: “hello_” is misspelled

Fault: Code would attempt to
retrieve the DOM element
using wrong ID.
Variable elem becomes NULL

Failure: NULL EXCEPTION!

Bug Report Study: Research Questions
}  RQ1: What types of JavaScript faults occur in web apps?

}  RQ2: What is the nature of failures stemming from JS
faults?

}  RQ3: What is the impact of JS faults ?

}  RQ4: What is the root cause of JS faults?

}  RQ5: How long does it take to fix a JS fault?

17

Bug Report Study: Nature of Failures
}  DOM related errors are less likely to be code-terminating

}  54% of JavaScript faults lead to exceptions
}  88% of non-DOM-related faults lead to exceptions
}  Only 39% of DOM-related faults lead to exceptions

18

0

10

20

30

40

50

60

70

80

90

100

Overall DOM-related Non DOM-
related

Code-terminating
Errors
Output related errors

Non-DOM
related

DOM
related

Bug Report Study: Research Questions
}  RQ1: What types of JavaScript faults occur in web apps?

}  RQ2: What is the nature of failures stemming from JS
faults?

}  RQ3: What is the impact of JS faults ?

}  RQ4: What is the root cause of JS faults?

}  RQ5: How long does it take to fix a JS fault?

19

Bug Report Study: Impact of JS Faults
}  Impact Types – Based on Bugzilla’s classification [ICSE’11]

}  Type 1 (lowest impact), Type 5 (highest impact)

20

0

20

40

60

80

100

120

140

Type 1 Type 2 Type 3 Type 4 Type 5

N
um

be
r

of
 B

ug
 R

ep
or

ts

Impact Type

All Faults
DOM-Related Faults Only

80% of highest
impact faults
are DOM-related

Bug Report Study: Research Questions
}  RQ1: What types of JavaScript faults occur in web apps?

}  RQ2: What is the nature of failures stemming from JS
faults?

}  RQ3: What is the impact of JS faults ?

}  RQ4: What is the root cause of JS faults?

}  RQ5: How long does it take to fix a JS fault?

21

Bug Report Study: Causes of JS Faults
}  Error Locations

}  Most errors manually committed by programmer in JS code

22

86%

1% 10%

1% 1%
JavaScript

HTML

Server-Side Code

Server Config File

Other

Bug Report Study: Research Questions
}  RQ1: What types of JavaScript faults occur in web apps?

}  RQ2: What is the nature of failures stemming from JS
faults?

}  RQ3: What is the impact of JS faults ?

}  RQ4: What is the root cause of JS faults?

}  RQ5: How long does it take to fix a JS fault?

23

Bug Report Study: Triage and Fix Times
}  Triage Time: Time it took to assign/comment on bug
}  Fix Time: Time it took to fix the bug since it was triaged

24

0

10

20

30

40

50

60

70

80

90

100

Triage Time Fix Time

A
ve

ra
ge

 #
 o

f D
ay

s

All Faults

DOM-Related Only

Non-DOM-Related
Only

Bug Report Study: Summary
}  Bug report study of 12 applications: JS faults

}  Over 300 bug reports analyzed; only fixed bugs considered

}  DOM-related faults dominate JavaScript faults
}  Responsible for nearly two-thirds of all faults
}  Mostly lead to output errors (not exceptions)
}  Responsible for 80% of highest impact faults
}  Arise in the JavaScript code (not server/HTML)
}  Take 50% longer time to fix for developers

}  Need low-cost solutions for DOM-related faults

25

Talk Outline
}  Bug Report Study of twelve open source JS applications

}  To understand bug characteristics [ESEM’13]

}  AutoFlox: Localizing DOM-related faults in JS applications
}  Based on dynamic backward slice [ICST’12 best paper

nominee]

}  Vejovis: Automatically fixing JavaScript Faults [in
preparation]

}  Future Directions & Other Work

26

AutoFlox: Fault Localization

}  What to do after we find errors? Need to fix them
}  Fault localization: Find the root cause of the error

}  Focus on DOM-related JavaScript errors

27

element = $(“elem”);

b = element.getAttribute(“badAttr”)

element.innerHTML = “text”;

b.value = “newValue”;

AutoFlox: Scope of Technique
}  Types of DOM-related JS errors

28

Code-terminating DOM-related JS errors

exception

Output DOM-related JS errors
function changeToBlue(elem) {

 elem.style.color = “red”;

}
Wrong colour change

1 function changeBanner(bannerID) {

2 clearTimeout(changeTimer);

3 changeTimer = setTimeout(changeBanner, 5000);

4

5 prefix = “banner_”;

6 currBannerElem = document.getElementById(prefix+currentBannerID);

7 bannerToChange = document.getElementById(prefix + bannerID);

8 currBannerElem.removeClassName(“active”);

9 bannerToChange.addClassName(“active”);

10 currentBannerID = bannerID;

11 }

12 currentBannerID = 1;

13 changeTimer = setTimeout(changeBanner, 5000);

AutoFlox: Running Example

29

1 function changeBanner(bannerID) {

2 clearTimeout(changeTimer);

3 changeTimer = setTimeout(changeBanner, 5000);

4

5 prefix = “banner_”;

6 currBannerElem = document.getElementById(prefix+currentBannerID);

7 bannerToChange = document.getElementById(prefix + bannerID);

8 currBannerElem.removeClassName(“active”);

9 bannerToChange.addClassName(“active”);

10 currentBannerID = bannerID;

11 }

12 currentBannerID = 1;

13 changeTimer = setTimeout(changeBanner, 5000);

}  Show a banner that cycles through four images every 5s

Passed with no argument
(even though
changeBanner needs one
argument)

bannerID will be set to
undefined

Would return null

NULL
EXCEPTION! asynchronous call

AutoFlox: Block Diagram

30

Instrument JS
Code

Run Web
Application

Generate
Traces

Analyze
backward slice

Extract
Relevant

Sequence

Partition into
Sequences

Trace file

Web Application

direct DOM access

Trace
Collection

Phase

Trace
Analysis
Phase

31

Instrument JS
Code

Run Web
Application

Generate
Traces

Trace file

Web Application

AutoFlox: Trace Collection

1 function changeBanner(bannerID) {

2 clearTimeout(changeTimer); trace();

3 changeTimer = setTimeout(changeBanner, 5000); trace();

4

5 prefix = “banner_”; trace();

6 currBannerElem = document.getElementById(prefix
+currentBannerID);trace();

7 bannerToChange = document.getElementById(prefix + bannerID); trace();

8 currBannerElem.removeClassName(“active”); trace();

9 bannerToChange.addClassName(“active”); trace();

10 currentBannerID = bannerID; trace();

11 }

12 currentBannerID = 1; trace();

13 changeTimer = setTimeout(changeBanner, 5000); trace();

AutoFlox: Trace Collection

32

1 function changeBanner(bannerID) {

2 clearTimeout(changeTimer);

3 changeTimer = setTimeout(changeBanner, 5000);

4

5 prefix = “banner_”;

6 currBannerElem = document.getElementById(prefix+currentBannerID);

7 bannerToChange = document.getElementById(prefix + bannerID);

8 currBannerElem.removeClassName(“active”);

9 bannerToChange.addClassName(“active”);

10 currentBannerID = bannerID;

11 }

12 currentBannerID = 1;

13 changeTimer = setTimeout(changeBanner, 5000);

1 function changeBanner(bannerID) {

2 clearTimeout(changeTimer); trace();

3 changeTimer = setTimeout(changeBanner, 5000); trace();

4

5 prefix = “banner_”; trace();

6 currBannerElem = document.getElementById(prefix
+currentBannerID);trace();

7 bannerToChange = document.getElementById(prefix + bannerID); trace();

8 currBannerElem.removeClassName(“active”); trace();

9 bannerToChange.addClassName(“active”); trace();

10 currentBannerID = bannerID; trace();

11 }

12 currentBannerID = 1; trace();

13 changeTimer = setTimeout(changeBanner, 5000); trace();

Trace Record Prefix:

 changeBanner:::4

Variables:

 currentBannerID (global): 1

 changeTimer (global): 2

 bannerID (local): -11

 prefix (local): none

 currBannerElem (local): none

 bannerToChange (local): none

AutoFlox: Trace Analysis

33

Instrument JS
Code

Run Web
Application

Generate
Traces

Analyze
backward slice

Extract
Relevant

Sequence

Partition into
Sequences

Trace file

direct DOM access

Web Application

1 function changeBanner(bannerID) {

2 clearTimeout(changeTimer);

3 changeTimer = setTimeout(changeBanner, 5000);

4

5 prefix = “banner_”;

6 currBannerElem = document.getElementById(prefix+currentBannerID);

7 bannerToChange = document.getElementById(prefix + bannerID);

8 currBannerElem.removeClassName(“active”);

9 bannerToChange.addClassName(“active”);

10 currentBannerID = bannerID;

11 }

12 currentBannerID = 1;

13 changeTimer = setTimeout(changeBanner, 5000);

Sequences.: (1) line2 -> line3 -> line5 -> line6 -> line7 -> line8 -> line9

 (2) line12 -> line13

AutoFlox: Trace Analysis
1 function changeBanner(bannerID) {

2 clearTimeout(changeTimer);

3 changeTimer = setTimeout(changeBanner, 5000);

4

5 prefix = “banner_”;

6 currBannerElem = document.getElementById(prefix+currentBannerID);

7 bannerToChange = document.getElementById(prefix + bannerID);

8 currBannerElem.removeClassName(“active”);

9 bannerToChange.addClassName(“active”);

10 currentBannerID = bannerID;

11 }

12 currentBannerID = 1;

13 changeTimer = setTimeout(changeBanner, 5000);

34

Relevant Seq.: line12 -> line13 -> line2 -> line3 -> line5 -> line6 -> line7 -> line8 -> line9

1 function changeBanner(bannerID) {

2 clearTimeout(changeTimer);

3 changeTimer = setTimeout(changeBanner, 5000);

4

5 prefix = “banner_”;

6 currBannerElem = document.getElementById(prefix+currentBannerID);

7 bannerToChange = document.getElementById(prefix + bannerID);

8 currBannerElem.removeClassName(“active”);

9 bannerToChange.addClassName(“active”);

10 currentBannerID = bannerID;

11 }

12 currentBannerID = 1;

13 changeTimer = setTimeout(changeBanner, 5000);

1 function changeBanner(bannerID) {

2 clearTimeout(changeTimer);

3 changeTimer = setTimeout(changeBanner, 5000);

4

5 prefix = “banner_”;

6 currBannerElem = document.getElementById(prefix+currentBannerID);

7 bannerToChange = document.getElementById(prefix + bannerID);

8 currBannerElem.removeClassName(“active”);

9 bannerToChange.addClassName(“active”);

10 currentBannerID = bannerID;

11 }

12 currentBannerID = 1;

13 changeTimer = setTimeout(changeBanner, 5000);

bannerToChange
being assigned
return value of
DOM access
function

Error
Marker

AutoFlox outputs this line as
direct DOM access

Last variable to
take on null value

AutoFLox: Implementation
}  Trace Collection: Modified versions of existing tools

}  InvarScope [Groeneveld et al.]
}  Crawljax [Mesbah et al.]

}  Trace Analysis: Written from scratch

}  Evaluated on three applications
}  Tudu
}  TaskFreak
}  Wordpress

35

AutoFlox: Accuracy
}  Approach: Fault injection into TUDU, TaskFreak, and

WordPress to emulate DOM-related JS faults

36

Web App Total Number
of Mutations

Number of
direct DOM
accesses
identified

Percentage
identified

TaskFreak 29 29 100%

TUDU 24 24 100%

WordPress 13 7 53.8%

Overall 66 60 90.9%

AutoFlox: Performance

}  Approach: Measure trace collection overhead
}  Tumblr website to localize example fault
}  Successfully localized the fault

}  Results
}  Trace collection incurred 35% overhead
}  Trace analysis took 0.115 seconds to complete

37

AutoFlox: Summary
}  Fault localization for DOM-related JS errors

}  Errors due to interaction of DOM and JS
}  Assumes code-terminating faults that result in exceptions

}  AutoFlox uses dynamic backward slicing to
successfully isolate > 90% of injected faults

38

Talk Outline
}  Bug Report Study of twelve open source JS applications

}  To understand bug characteristics [ESEM’13]

}  AutoFlox: Localizing DOM-related faults in JS applications
}  Based on dynamic backward slice [ICST’12 best paper

nominee]

}  Vejovis: Automatically fixing JavaScript Faults [in
preparation]

}  Future Directions & Other work

39

Vejovis: Motivation
}  Automatically “fix” DOM-related faults

}  Starts from DOM interaction point (i.e.,
AutoFLox’s output)

}  Finds symptoms to determine “possible

sicknesses”
}  Suggests workarounds to get rid of these

symptoms and, hopefully, the actual error.
}  Workaround patterns based on “common

fixes” applied to DOM-related errors

40

Vejovis: Example

41

JavaScript Code:
!
1 var cls = “pre”;!
2 for (var i = 0; i <= 3; i++) {!
3 !cls = cls + i;!
4 !var elem = $(“p.” + cls);!
5 !elem[0].style.display = “block”;!
6 }!

DOM State: DIV

P
class=“pre0”

P
class=“pre01”

P
class=“pre012”

SPAN
class=“pre0”

SPAN
class=“pre01”

SPAN
class=“pre012”

SPAN
class=“pre0123”

Set up the class
name of element
being retrieved

Retrieve element using $().
In last iteration of loop, code
tries to retrieve p element with
class “pre0123”. This does not
exist in the DOM. UNDEFINED EXCEPTION!

Vejovis: Example

42

JavaScript Code:
!
1 var cls = “pre”;!
2 for (var i = 0; i <= 3; i++) {!
3 !cls = cls + i;!
4 !var elem = $(“p.” + cls);!
5 !elem[0].style.display = “block”;!
6 }!

DOM State: DIV

P
class=“pre0”

P
class=“pre01”

P
class=“pre012”

SPAN
class=“pre0”

SPAN
class=“pre01”

SPAN
class=“pre012”

SPAN
class=“pre0123”

Vejovis
Step 1: Assume CSS
selector is wrong. Divide the
selector into components.

e.g., Selector is “p.pre0123”.
Components:
-  Tag name p
-  “Has class” indicator .!
-  Id name pre0123

Vejovis: Example

43

JavaScript Code:
!
1 var cls = “pre”;!
2 for (var i = 0; i <= 3; i++) {!
3 !cls = cls + i;!
4 !var elem = $(“p.” + cls);!
5 !elem[0].style.display = “block”;!
6 }!

DOM State: DIV

P
class=“pre0”

P
class=“pre01”

P
class=“pre012”

SPAN
class=“pre0”

SPAN
class=“pre01”

SPAN
class=“pre012”

SPAN
class=“pre0123”

Vejovis
Step 2: Divide each component into
string set.

e.g., String set of “pre0123”
-  “pre” (Line 1)
-  “0” (Line 3, Iteration 1)!
-  “1” (Line 3, Iteration 2)
-  “2” (Line 3, Iteration 3)
-  “3” (Line 3, Iteration 4)

Vejovis: Example

44

JavaScript Code:
!
1 var cls = “pre”;!
2 for (var i = 0; i <= 3; i++) {!
3 !cls = cls + i;!
4 !var elem = $(“p.” + cls);!
5 !elem[0].style.display = “block”;!
6 }!

DOM State: DIV

P
class=“pre0”

P
class=“pre01”

P
class=“pre012”

SPAN
class=“pre0”

SPAN
class=“pre01”

SPAN
class=“pre012”

SPAN
class=“pre0123”

Vejovis
Step 3: Find valid replacements
for each component of the selector,
based on the current DOM state.

e.g., Valid replacements for the ID
component pre0123 in the
original selector “p.pre0123” are
-  “p.pre0”!
-  “p.pre01”!
-  “p.pre012”

Vejovis: Example

45

JavaScript Code:
!
1 var cls = “pre”;!
2 for (var i = 0; i <= 3; i++) {!
3 !cls = cls + i;!
4 !var elem = $(“p.” + cls);!
5 !elem[0].style.display = “block”;!
6 }!

DOM State: DIV

P
class=“pre0”

P
class=“pre01”

P
class=“pre012”

SPAN
class=“pre0”

SPAN
class=“pre01”

SPAN
class=“pre012”

SPAN
class=“pre0123”

Vejovis
Step 4: For each string set part,
assume that part is wrong.
Use string constraint solver to find
suitable replacements based on
valid selectors found earlier.

Example: Let’s say the “3” part of
“pre0123” is assumed wrong.
Hence, we must find a valid
selector such that “3” has been
replaced – i.e., a valid selector of
the form “p.pre012<s>”,
where <s> may be empty string.

Vejovis: Example

46

JavaScript Code:
!
1 var cls = “pre”;!
2 for (var i = 0; i <= 3; i++) {!
3 !cls = cls + i;!
4 !var elem = $(“p.” + cls);!
5 !elem[0].style.display = “block”;!
6 }!

DOM State: DIV

P
class=“pre0”

P
class=“pre01”

P
class=“pre012”

SPAN
class=“pre0”

SPAN
class=“pre01”

SPAN
class=“pre012”

SPAN
class=“pre0123”

Example: To replace “p.pre0123”!
with “p.pre012”, the following
suggestion is displayed:

“Off by one. Modify the upper bound
of the for loop that contains Line 3”

}  Crawljax used to crawl web application [Mesbah’09]
}  User specifies “clickables” to reproduce bug

}  Rhino used to instrument JS code (for retrieving traces
and supplementary information)
}  Instrumentation done at AST level

}  Hampi used to perform string constraint solving when
finding potential replacement selectors [Kiezun’09]
}  Valid selectors used when defining “Context Free Grammar”

Vejovis: Implementation

47

Talk Outline
}  Bug Report Study of twelve open source JS applications

}  To understand bug characteristics [ESEM’13]

}  AutoFlox: Localizing DOM-related faults in JS applications
}  Based on dynamic backward slice [ICST’12 best paper

nominee]

}  Vejovis: Automatically fixing JavaScript Faults [in
preparation]

}  Future Directions & Other work

48

Future Directions
}  Integrating multiple techniques into a single IDE

}  Allow programmers to reason about DOM interactions
}  Automated code synthesis for DOM-JS interactions

}  Support for HTML5 primitives and features
}  Canvas interactions, local storage etc.

49

Mutandis [Mirshokraie - ICST 2013]
}  Mutates original program to test quality of test suites
}  Problem: Equivalent mutants obscure the value
}  Generate only a few equivalent mutants – FunctionRank
}  Introduced DOM-specific and JS-specific mutations

50

Pythia [Mirshokraie – ASE 2013]
}  Automated unit test and oracle generation for web apps.
}  First, crawls application to generate event sequences
}  Extracts unit tests from sequences with high coverage
}  Creates Oracles for unit tests using mutation testing

51

Clematis [Alimadi – under preparation]
}  Challenge: Web applications are complex, and consist of

DOM interactions, AJAX messages and timeouts
}  Difficult to trace the links between events and JS code
}  Clematis allows users to visualize causal dependencies

between events and code, and between asynchrous events

52

Conclusions

}  Modern web applications growing in importance
}  Reliability is a significant challenge for these applications

}  Characterized the reliability of modern web
applications [ESEM’13]
}  Majority of errors are DOM-related (66%)
}  Majority of highest impact errors are DOM-related (80%)

}  Techniques to address DOM-related faults
}  AutoFlox: To localize DOM-related faults [ICST’12]
}  Vejovis: To automatically fix DOM-related faults [in prep.]

53

Questions ?

karthikp@ece.ubc.ca

54

DOM

http://blogs.ubc.ca/karthik/Software

