A Model-Based Intrusion Detection System for Smart Meters

Farid Molazem Tabrizi Karthik Pattabiraman

Dependable Systems Lab
University of British Columbia

Smart Meters

Global usage

Security is a concern

Goal

Goal: Make smart meters secure

Build a host-based intrusion detection system (IDS)

Why is it a new challenge?

- Smart meters have constraints that make them different from other computing devices
- These constraints preclude existing IDS systems from running on them

Constraints of smart meters

- Memory & Performance constraints
- No false positives
- No software modification
- Low cost (no special hardware)
- Coverage of known attacks
- Coverage of unknown attacks

Prior Work on Intrusion Detection

System	Perfor mance	False Positives	Software Modifica tion	Low Cost	Known attacks	Unknown attacks
Dyck		X			X	X
NDPDA		X		X	X	X
HMM/NN/ SVM	X		X	X	X	X
Statistical Techniques	X		X	X	X	X

No existing IDS can satisfy all six constraints:

Need for new IDS

Threat model

 Adversary: wants to change the execution path of the software (maybe in a subtle way)

Our Approach

Build the IDS based on model of smart meter

Abstract model: Based on Specification [WRAITS'12]

Concrete model: Based on Implementation

Building the concrete model

- Use a tagging system
- Tags defined based on abstract model

```
// <network, serial, b2>
SerialHandler()
{
...
}
```

- Features:
 - Ease of use
 - Flexibility

System call selection

- Generate the set of all system calls of the meter
- Traverse the attack database
- Map the attacks to specific blocks of the concrete model
- Pick system calls that cover the chosen blocks until all blocks are covered
- Generate the state machine of the system calls based on the resulting graph

IDS Implementation

- Offiline: Generate state machine of system calls
 - Input: system call patterns
 - Output: state machine
- Online: Two components
 - Logger: Attaches strace to the process being monitored and logs system call traces
 - Checker: Runs every 'T' second, parses the generated system calls, checks the logged trace with the model

Evaluation

SEGMeter

- Arduino board
 - ATMEGA 32x series
 - Sensors

Gateway board

- Broadcom BCM 3302 240MHz CPU
- 16 MB RAM
- OpenWRT Linux
- IDS runs on Gateway board

Results: Performance

Performance

 The ratio of the time taken to check the syscall trace, to the time taken to produce the trace

Memory available	12 MB	9 MB	6 MB
Full-trace IDS	165.2%	214.6%	315.1%
Our Model-based IDS	4.0%	4.0%	4.0%

Full-trace IDS cannot keep up with the software, while our model-based IDS incurs low overheads

Results: Coverage (Unknown Attacks)

Detection (Unknown attacks)

- Code injection
 - Select a procedure to inject in the smart meter
 - Mutate the procedure by copying and pasting 1-8 lines of code from some other part of it (makes it harder to detect)

coverage as t	ased IDS he full-t	rachieve race IDS		su ne a for a	rly th fracti	e•sar on•o	1e Maximum
Server communication and							
Storage and retrieval the random a					7		78
Serial communication	42	28	ı	88	67	72	74
Total	29.3	36.0		88.0	67.4	69.6	71.7

Results: Coverage (Known Attacks)

Detection (Known attacks)

- Implemented four different attacks [WRAITS'12]
 - Communication interface attack
 - Physical memory attack
 - Buffer filling attack
 - Data omission attack

Our Model-Based IDS detects all four attacks

• If undetected, the attacks lead to severe consequences

Results: Monitoring Latency

- Monitoring latency
 - Smaller T: Faster detection, higher performance overhead
 - We pick *T*= 10s
 - Low performance overhead: 4%
 - Fast detection

Conclusion

- Smart meters have special constraints that cannot be met with existing IDSes
- Our model-based IDS: Based on smart meter's requirements and high-level model of operation
 - Low performance overhead under memory constraints
 - Good detection coverage of known and unknown attacks

Future work:

- Generalize to other smart meters
- Formalize model and IDS specifications