Experience Report: An Application-specific
Checkpointing Technique for Minimizing
Checkpoint Corruption

Guanpeng Li, Karthik Pattabiraman, Chen-Yong Cher and Pradip Bose

U Research

Soft Errors

Bauman, T-DMR[1]

a-particle

- - diffusion
+

substrate

>
>

M = 0001 M =0101

ot
N |&
Ve

v
v

Traditional Checkpoint

Roll Back to Checkpoint

iTO *

A >
v
T1 T2
Every 2 days / \ Time

Fault Occurrence Failure

|

Checkpoint at High Frequency

ReVive[2]
SafetyNet[3]
System is unrecoverable!
i i i +T1 *TZ
Every tens of thousand instructions [} Time

Fault Occurrence Failure

Fault Model

* Transient errors occurred in computation components
* Memory and cache protected with ECC
* Single-bit flip

* Crash-causing faults

Checkpoint

* Periodic checkpoint system

e Saves all architectural states

—
[{ Program Execution

Fault Injection Crash

Checkpoint Corruption

Checkpoint Checkpoint

coruprin - OCEAN coruption puremd
2.50% 10.00%
2.00% - 8_00%; +* .
1.50% 4 6.00% - *
1.00% * ° 4.00% -
0.50% ¢ 2.00% -
0-00% | ol 0.00% | ol
1,000 100,000 (# of dynamic Instructions) 1,000 100,000 (* of dynmiac Instructions)

7

Traditional Method: DMR

' Dual Modular Redundancy (DMR)
.
* Run 2 copies in program

* Compare for divergence

Too much energy consumption!

Traditional Method: Dual-checkpoint Scheme

Wang et.al. at TDSC [4]
Aupy et.al. at PRDC [5]

* Checkpoints still corrupted at high frequency
* Takes additional memory space

I = — ‘

U 8 ¥, |

Every tens of thousand instructions \ T Time
Failure

Fault Occurrence

Our Goal

* Keep single checkpoint

* Minimize checkpoint corruptions

Challenges

* Fault propagations are application-specific

* Difficult to reason about error propagation (Huge state space)

Our Approach

Static & Dynamic
analysis to identify
patterns of crashes

&
A’

Strategically place
checkpoints at
Quiescent States

Use low-cost
duplication technique
to protect

12

Crashes Leading to Checkpoint Corruptions

Propagation
Latency 4

Q Long-latency

Crashes
@QQ (LLC)

1000 DYNAMIC = o o o i o o o o i o o o i i i o o i o o o o o o o o o o o o o o o o e e e o
Instructions Short-latency

Crashes
\¢ @

> Execution
Frequency

SLC Leading to Checkpoint Corruption

Loop

LLC Leading to Checkpoint Corruption

Our work at DSN[4]

static unsigned int state[N+1);
static unsigned int s«next;

unsigned int reloadMT (void)
{

register unsigned int +pl = state;
next = state+l;

SO NEWN-

.pOoo = «pM++ B

12 1) reloadMt()
131...

14 |unsigned int randomMT (void)

15| {

16 unsigned int y;

8 Yy = snext++;

21:-- [From sjeng program]

15

Our Approach

Strategically place
checkpoints at

& Quiescent States

Static & Dynamic
analysis to identify
patterns of crashes

Use low-cost
duplication technique
to protect

16

Quiescent States for SLCs
|

%] 2@ = calc_addrindex, 1

l

B e =

17

What We Do

Static & Dynamic
analysis to identify
patterns of crashes

& Quiescent States ’

N

Strategically place
checkpoints at

.
Use low-cost
duplication technique
to protect

o

18

Protection of LLCs

Duplicate backward slices of chosen instructions and
insert a checker at the end

o -
@

19

ReCov

Download: https://github.com/DependableSystemsLab/ReCov

Static & Dynamic |Identification of

Duplication of LLCs

Analysis Quiescent States

Program Source Code Program Executable

20

Research Questions

RQ1:
How much does ReCov reduce the checkpoint corruption?

RQ2:
What are the performance overheads incurred by ReCov?

RQ3:
How much reduction in unavailability does ReCov provide?

Experiment

Benchmarks
» 8 applications from 4 suites: Parsec, Parboil, SPLESH-2 & SPEC

e 2 open source applications: PureMD and Hercules
5 applications for our initial study, 10 in total for evaluation
Periodic single checkpoint scheme as baseline
3000 Fault Injections per checkpoint interval(Error Bar: 0.06% - 0.6%)

LLVM Fault Injector (LLFI) -> https://github.com/DependableSystemsLab/LLFI

ReCov: Minimize Checkpoint Corruption

Checkpoint Checkpoint

Corruption Corruption d
Rate Ocea n Rate pu rem

SLC Coverage: 87% on average

Baseline

Y LLC Coverage: 96% on average

0.50% 2 .00% Hﬂ\‘%wv

ReCov Checkpoint

‘ ‘ ‘ Checkpoint 0.00% eope

Interval

#ofd icl : # of dynamic Instructions)
1,000 100,000 ¥ 1 000 100,000

RQsS

RQ1:
How much does ReCov reduce the checkpoint corruption?

RQ2:
What are the performance overheads incurred by ReCov?

RQ3:
How much reduction in unavailability does ReCov provide?

Protection of LLCs

Amount of dynamic instructions protected: 9.44% on average

Average Runtime Overhead: 5.03%

25

RQsS

RQ1:
How much does ReCov reduce the checkpoint corruption?

RQ2:
What are the performance overheads incurred by ReCov?

RQ3:
How much reduction in unavailability does ReCov provide?

26

Unavailability

Availability = - MITE___

Unavailability = 1 - Availability

e 8.25 times reduction compared to baseline
* 6.2 times reduction compared to dual-checkpoint

Summary

e Checkpoint corruptions are non-negligible at high-frequency

checkpointing
e 2 patterns leading to checkpoint corruptions: SLC & LLC
* Quiescent states to place SLC to avoid checkpoint corruptions
* Protection of LLCs: ~5% overhead

e ReCov: Single checkpoint scheme that reduces ~8 times unavailability

gpli@ece.ubc.ca
https://github.com/DependableSystemsLab/ReCov

