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Soft Errors

Bauman, T-DMR[1]
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Traditional Checkpoint

Roll Back to Checkpoint

iTO *

A >
v
T1 T2
Every 2 days / \ Time

Fault Occurrence Failure

|



Checkpoint at High Frequency

ReVive[2]
SafetyNet[3]
System is unrecoverable!
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Fault Model

* Transient errors occurred in computation components
* Memory and cache protected with ECC
* Single-bit flip

* Crash-causing faults



Checkpoint

* Periodic checkpoint system

e Saves all architectural states
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Checkpoint Corruption

Checkpoint Checkpoint
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Traditional Method: DMR

' Dual Modular Redundancy (DMR)
.
* Run 2 copies in program

* Compare for divergence

Too much energy consumption!



Traditional Method: Dual-checkpoint Scheme

Wang et.al. at TDSC [4]
Aupy et.al. at PRDC [5]

* Checkpoints still corrupted at high frequency
* Takes additional memory space
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Our Goal

* Keep single checkpoint

* Minimize checkpoint corruptions



Challenges

* Fault propagations are application-specific

* Difficult to reason about error propagation (Huge state space)



Our Approach

Static & Dynamic
analysis to identify
patterns of crashes
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Crashes Leading to Checkpoint Corruptions
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SLC Leading to Checkpoint Corruption

Loop




LLC Leading to Checkpoint Corruption

Our work at DSN[4]

static unsigned int state[N+1);
static unsigned int s«next;

unsigned int reloadMT (void)
{

register unsigned int +pl = state;
next = state+l;

SO NEWN-

.pOoo = «pM++ B

12 1) reloadMt()
131...

14 |unsigned int randomMT (void)

15| {

16 unsigned int y;

8 Yy = snext++;

21:-- [From sjeng program]
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Our Approach

Strategically place
checkpoints at

& Quiescent States

Static & Dynamic
analysis to identify
patterns of crashes

Use low-cost
duplication technique
to protect
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Quiescent States for SLCs
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What We Do

Static & Dynamic
analysis to identify
patterns of crashes
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Protection of LLCs

Duplicate backward slices of chosen instructions and
insert a checker at the end
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ReCov

Download: https://github.com/DependableSystemsLab/ReCov

Static & Dynamic |Identification of

Duplication of LLCs

Analysis Quiescent States

Program Source Code Program Executable
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Research Questions

RQ1:
How much does ReCov reduce the checkpoint corruption?

RQ2:
What are the performance overheads incurred by ReCov?

RQ3:
How much reduction in unavailability does ReCov provide?



Experiment

Benchmarks
» 8 applications from 4 suites: Parsec, Parboil, SPLESH-2 & SPEC

e 2 open source applications: PureMD and Hercules
5 applications for our initial study, 10 in total for evaluation
Periodic single checkpoint scheme as baseline
3000 Fault Injections per checkpoint interval(Error Bar: 0.06% - 0.6%)

LLVM Fault Injector (LLFI) -> https://github.com/DependableSystemsLab/LLFI



ReCov: Minimize Checkpoint Corruption

Checkpoint Checkpoint

Corruption Corruption d
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SLC Coverage: 87% on average
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RQsS

RQ1:
How much does ReCov reduce the checkpoint corruption?

RQ2:
What are the performance overheads incurred by ReCov?

RQ3:
How much reduction in unavailability does ReCov provide?



Protection of LLCs

Amount of dynamic instructions protected: 9.44% on average

Average Runtime Overhead: 5.03%
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RQsS

RQ1:
How much does ReCov reduce the checkpoint corruption?

RQ2:
What are the performance overheads incurred by ReCov?

RQ3:
How much reduction in unavailability does ReCov provide?
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Unavailability

Availability = - MITE___

Unavailability = 1 - Availability

e 8.25 times reduction compared to baseline
* 6.2 times reduction compared to dual-checkpoint



Summary

e Checkpoint corruptions are non-negligible at high-frequency

checkpointing
e 2 patterns leading to checkpoint corruptions: SLC & LLC
* Quiescent states to place SLC to avoid checkpoint corruptions
* Protection of LLCs: ~5% overhead

e ReCov: Single checkpoint scheme that reduces ~8 times unavailability

gpli@ece.ubc.ca
https://github.com/DependableSystemsLab/ReCov




