Design, Automation & Test in Europe
24-28 March, 2014 - Dresden, Germany

The European Event for Electronic
System Design & Test

Evaluating the Robustness of GPU
Applications through Fault Injection

UBC Karthik Pattabiraman, Bo Fang, Matei Ripeanu,
=77 University of British Columbia (UBC)

in collaboration with
AMD:' Sudhanva Gurumurthi (AMD Research)

* GPUs have traditionally been used for error-resilient workloads

= E.g. Image Processing

 GPUs are used in general-purpose applications, i.e. GPGPU
— Small errors can lead to completely incorrect outputs

ATATTTTTTCTTGTT
TTTTATATCCACAAA
CTCTTTTCGTACTTT
TACACAGTATATCGT
GT

Error >

ATATTTTTTCTTGT
TTTTATATCCACA
CTCTTTTCGTACTTT
TACACAGTATATCGT
GT

Hardware Errors: Hardware Solutions

* Guard-banding * Duplication
Guard-banding wastes Hardware duplication
power and performance (DMR) can result in 2X
as gap between average slowdown and/or energy
and worst-case widens consumption

due to variations

Guard-band

Average Worst-case

Why Software Solutions?

Errors get progressively filtered as we go up the system stack

Appl Level

Overheads

Impactful Errors

High-level Goal

Application-
specific,
software-
based, fault
tolerance
echanism

Investigate the

error-resilience Correlate error

resilience with
application
properties

characteristics
of GPGPU
applications

Vulnerability Vs. Resilience

= Vulnerability: Probability that the system experiences a fault
that causes a failure

Do not consider the behavior of applications

" Error Resilience: Given a fault in the application, what is the
probability that the application completes correctly ?

Error resilience
Application Level

Operating System Level

—
AVF studies
—

stop here,
Architectural Level while we
start here
Device/Circuit Level
Faults 5

Fault Model

* Transient faults (e.g., soft errors): Single bit-flips

* Faultsin
* Arithmetic and Logic Unit (ALU)
* Floating Point Unit (FPU)
 Load-Store Unit (LSU)

* Do not consider faults in memory elements or registers
e Assumes ECC protection (e.g., NVIDIA Fermi)

Software Fault Injection (SWiFl)

* Perturb the application state to emulate the effects
of errors, and measure its resilience to the errors

— Execute the application to completion under the
error to study the end-to-end effects of errors

— Studies the actual effects of the fault instead of
estimating the worst-case probabilities like AVF

 Many fault injectors for CPUs .
— NFTAPE, Goofi, Xception, FERRARI ,ﬁ“
— No fault injector for GPUs /@

31-Mar-14 Karthik Pattabiraman, UBC 7

GPU Fault Injection: Challenges

* Challenge 1: Scale of GPGPU applications

— GPGPU applications consist of hundreds of
thousands of threads, and injecting sufficient
faults in each thread will be very time consuming

* Challenge 2: Representativeness

— Need to execute application on real GPU to get
hardware error detection

— Need to uniformly sample the execution of the
application to emulate randomly occurring faults

31-Mar-14 Karthik Pattabiraman, UBC 8

Addressing Challenge 1: Scale

* Choose representative threads to inject faults into

* Group threads with similar numbers of instructions
into equivalence classes and sample from each class
(or from the most popular thread classes)

* Hypothesis: Threads that execute similar numbers of
instructions have similar behavior

: Equivalence
Equivalence class 1 T) class 2 Equivalence
class 2

31-Mar-14 Karthik Pattabiraman, UBC 9

Addressing Challenge 1: Scale

Most applications have a single class or less than 5 equivalence classes -> Random
sampling covers > 95% of the threads in these applications (Exception is BFS).

Category Benchmarks Groups to | % of threads
profile in picked
groups
Category | AES,MRI- 1 1 100%
Q,MAT,Mergesort-kO,
Transpose
Category Il SCAN, Stencil, Monte 2-10 1-4 95%-100%
Carlo, SAD, LBM,
HashGPU
Category Il BFS 79 2 >60%

31-Mar-14 Karthik Pattabiraman, UBC 10

Addressing Challenge 2: Representative

* Using architectural simulators for performing fault
injections is both time-consuming and inaccurate

— Cannot execute applications to completion
— Cannot model detection mechanisms accurately

Crash
Masked
SDC s

100%
80% -
60% .
40% §
20% -
O,
0 %o G Co G Go Go Go Go
& G & (&)Y & [&
% %, % 2 % % %
%, %, N

T

T

T

T

G
A),;I
%

Matrix Multiplication Transpose Merge Sort AES

31-Mar-14 Karthik Pattabiraman, UBC 11

Addressing Challenge 2: Representative

 We use a source-level debugger for CUDA® GPGPU
applications called CUDA-gdb

— Advantage: Directly inject into the GPU hardware

— Disadvantage: Requires source-code information
to set breakpoints for injecting faults

* Our solution: Single-step the program using CUDA-
gdb and map dynamic instructions to source code

31-Mar-14 Karthik Pattabiraman, UBC 12

Fault injection Methodology: GPU-Qin

* Uniformly choose a instruction to inject fault into from all
the dynamically executed instructions in the program

Breakpoint hit PC hit

Final result
| | | | |
Native I Single-step '*' Single-step I Native I
execution ‘1' execution ' I execution I execution :I,
¢ o ___]
I ki
: Activation
window
Fault
injection

* Only consider activated faults i.e., faults read by the system

13

Experimental Setup

* NVIDIA® Tesla C 2070/2075

12 CUDA benchmarks comprising 15 kernels

Rodinia, Parboil and Cuda-SDK benchmark suites

e QOutcomes

Benign: correct output
Crash: hardware exceptions raised by the system

Silent Data Corruption (SDC): incorrect output, as
obtained by comparing with golden run of the application

Hang: did not finish in considerably longer time

14

Overall Characterization Results - 1

50%

o 40%
© 30%
2 20%
[7,]
10%
0%
v & O O
& Oé& & & \37@
NN
<8
K\

Benchmarks

15

Overall Characterization Results - 2

Benchmarks

80%

o 70%
+= 60%
C 50%
< 40%
© 30%
o 20%
10%
0%

Benchmarks

16

Results: Crash Causes and Latency

* Most crashes are caused by memory addresses going
out of bounds and being detected by the hardware

* Crash latencies vary depending on type of exception,
but are on the order of hundreds of milliseconds

1%

100%
“Lane User Stack 0%
Overflow 2
33% = 80%
)
£ Warp out-of-range ES 0%
Address < 60%
S 50%4
Warp Misaligned L: 40% -
Address o 30%L —6— Warp out—of—range address
% 20%1 —&— Warp misaligned address
0T e N
“ Device Illegal Q 0%k Device illegal address
Address 4
(B | | | | |
0 200 400 600 800 1000

Crash latency in milliseconds

31-Mar-14 Karthik Pattabiraman, UBC 17

Hypothesis: Algorithmic Categories

* Resilience correlated with algorithmic properties

— Mapping to dwarves of parallelism [Berkeley’07]

Resilience Category | Benchmarks

Measured SDC

Dwarf(s) of

parallelism

Search-based

Bit-wise Operation

Average-out Effect

Graph Processing

Linear Algebra

31-Iviar-14

MergeSort 6%
HashGPU, AES 25% - 37%
Stencil, MONTE 1% - 5%
BFS 10%

Transpose, MAT, 15% - 25%
MRI-Q, SCAN-block,

LBM, SAD

Kartnik rattabliraman, ust

Backtrack and
Branch+Bound

Combinational
Logic

Structured Grids,
Monte Carlo

Graph Traversal

Dense Linear
Algebra, Sparse
Linear Algebra,
Structured Grids

18

Implications of our Results

 Wide variation in SDC rates across GPGPU applications,
much more than CPU applications

— Need for application specific fault-tolerance

* Crash latencies on GPUs can be much higher than CPUs
— Need for faster error detection in hardware

* Correlation between algorithm and error resilience
— Can be used to obtain quick estimates without Fl
— Can be used to customize level of protection provided

31-Mar-14 Karthik Pattabiraman, UBC 19

Conclusion and Future Work

* GPU-Qin: Fault Injection method to systematically
study GPGPU applications’ error resilience

— Understand correlations between application
properties and application’s error resilience

* Future Work
— Understand GPU hardware detection mechanisms
— Extend to OpenCL programs, other GPUs
— Software mechanisms to protect the application

31-Mar-14 Karthik Pattabiraman, UBC 20

Thank you !

More details: Read our ISPASS’14 paper

“GPU-Qin: A Methodology for Evaluating the Error
Resilience of GPGPU Applications”, Bo Fang, Karthik
Pattabiraman, Matei Ripeanu, Sudhanva Gurumurthi,

IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS'14), Mar 23-25, 2014.

GPU-Qin is available for download (BSD style license)

https://github.com/DependableSystemsLab/GPU-Injector

31-Mar-14 Karthik Pattabiraman, UBC 21

