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* GPUs have traditionally been used for error-resilient workloads

= E.g. Image Processing

 GPUs are used in general-purpose applications, i.e. GPGPU
— Small errors can lead to completely incorrect outputs
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Hardware Errors: Hardware Solutions

* Guard-banding * Duplication
Guard-banding wastes Hardware duplication
power and performance (DMR) can result in 2X
as gap between average slowdown and/or energy
and worst-case widens consumption

due to variations

Guard-band

Average Worst-case




Why Software Solutions?

Errors get progressively filtered as we go up the system stack

Appl Level

Overheads

Impactful Errors



High-level Goal

Application-
specific,
software-
based, fault
tolerance
echanism

Investigate the

error-resilience Correlate error

resilience with
application
properties
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of GPGPU
applications




Vulnerability Vs. Resilience

= Vulnerability: Probability that the system experiences a fault
that causes a failure

Do not consider the behavior of applications

" Error Resilience: Given a fault in the application, what is the
probability that the application completes correctly ?

Error resilience
Application Level

Operating System Level

—
AVF studies
—

stop here,
Architectural Level while we
start here
Device/Circuit Level
Faults 5



Fault Model

* Transient faults (e.g., soft errors): Single bit-flips

* Faultsin
* Arithmetic and Logic Unit (ALU)
* Floating Point Unit (FPU)
 Load-Store Unit (LSU)

* Do not consider faults in memory elements or registers
e Assumes ECC protection (e.g., NVIDIA Fermi)



Software Fault Injection (SWiFl)

* Perturb the application state to emulate the effects
of errors, and measure its resilience to the errors

— Execute the application to completion under the
error to study the end-to-end effects of errors

— Studies the actual effects of the fault instead of
estimating the worst-case probabilities like AVF

 Many fault injectors for CPUs .
— NFTAPE, Goofi, Xception, FERRARI ,ﬁ“
— No fault injector for GPUs /@
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GPU Fault Injection: Challenges

* Challenge 1: Scale of GPGPU applications

— GPGPU applications consist of hundreds of
thousands of threads, and injecting sufficient
faults in each thread will be very time consuming

* Challenge 2: Representativeness

— Need to execute application on real GPU to get
hardware error detection

— Need to uniformly sample the execution of the
application to emulate randomly occurring faults
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Addressing Challenge 1: Scale

* Choose representative threads to inject faults into

* Group threads with similar numbers of instructions
into equivalence classes and sample from each class
(or from the most popular thread classes)

* Hypothesis: Threads that execute similar numbers of
instructions have similar behavior

: Equivalence
Equivalence class 1 T ) class 2 Equivalence
class 2
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Addressing Challenge 1: Scale

Most applications have a single class or less than 5 equivalence classes -> Random
sampling covers > 95% of the threads in these applications (Exception is BFS).

Category Benchmarks Groups to | % of threads
profile in picked
groups
Category |  AES,MRI- 1 1 100%
Q,MAT,Mergesort-kO,
Transpose
Category Il  SCAN, Stencil, Monte 2-10 1-4 95%-100%
Carlo, SAD, LBM,
HashGPU
Category Il  BFS 79 2 >60%
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Addressing Challenge 2: Representative

* Using architectural simulators for performing fault
injections is both time-consuming and inaccurate

— Cannot execute applications to completion
— Cannot model detection mechanisms accurately
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Addressing Challenge 2: Representative

 We use a source-level debugger for CUDA® GPGPU
applications called CUDA-gdb

— Advantage: Directly inject into the GPU hardware

— Disadvantage: Requires source-code information
to set breakpoints for injecting faults

* Our solution: Single-step the program using CUDA-
gdb and map dynamic instructions to source code
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Fault injection Methodology: GPU-Qin

* Uniformly choose a instruction to inject fault into from all
the dynamically executed instructions in the program

Breakpoint hit PC hit

Final result
| | | | |
Native I Single-step '*' Single-step I Native I
execution ‘1' execution ' I execution I execution :I,
¢ o ___]
I ki
: Activation
window
Fault
injection

* Only consider activated faults i.e., faults read by the system
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Experimental Setup

* NVIDIA® Tesla C 2070/2075

12 CUDA benchmarks comprising 15 kernels

Rodinia, Parboil and Cuda-SDK benchmark suites

e QOutcomes

Benign: correct output
Crash: hardware exceptions raised by the system

Silent Data Corruption (SDC): incorrect output, as
obtained by comparing with golden run of the application

Hang: did not finish in considerably longer time
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Overall Characterization Results - 1
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Overall Characterization Results - 2
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Results: Crash Causes and Latency

* Most crashes are caused by memory addresses going
out of bounds and being detected by the hardware

* Crash latencies vary depending on type of exception,
but are on the order of hundreds of milliseconds
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Hypothesis: Algorithmic Categories

* Resilience correlated with algorithmic properties

— Mapping to dwarves of parallelism [Berkeley’07]

Resilience Category | Benchmarks

Measured SDC

Dwarf(s) of

parallelism

Search-based

Bit-wise Operation

Average-out Effect

Graph Processing

Linear Algebra

31-Iviar-14

MergeSort 6%
HashGPU, AES 25% - 37%
Stencil, MONTE 1% - 5%
BFS 10%

Transpose, MAT, 15% - 25%
MRI-Q, SCAN-block,

LBM, SAD

Kartnik rattabliraman, ust

Backtrack and
Branch+Bound

Combinational
Logic

Structured Grids,
Monte Carlo

Graph Traversal

Dense Linear
Algebra, Sparse
Linear Algebra,
Structured Grids
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Implications of our Results

 Wide variation in SDC rates across GPGPU applications,
much more than CPU applications

— Need for application specific fault-tolerance

* Crash latencies on GPUs can be much higher than CPUs
— Need for faster error detection in hardware

* Correlation between algorithm and error resilience
— Can be used to obtain quick estimates without Fl
— Can be used to customize level of protection provided
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Conclusion and Future Work

* GPU-Qin: Fault Injection method to systematically
study GPGPU applications’ error resilience

— Understand correlations between application
properties and application’s error resilience

* Future Work
— Understand GPU hardware detection mechanisms
— Extend to OpenCL programs, other GPUs
— Software mechanisms to protect the application
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Thank you !

More details: Read our ISPASS’14 paper

“GPU-Qin: A Methodology for Evaluating the Error
Resilience of GPGPU Applications”, Bo Fang, Karthik
Pattabiraman, Matei Ripeanu, Sudhanva Gurumurthi,

IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS'14), Mar 23-25, 2014.

GPU-Qin is available for download (BSD style license)

https://github.com/DependableSystemsLab/GPU-Injector
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