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Abstract—Hardware errors are on the rise with reducing
feature sizes, however tolerating them in hardware is expensive.
Researchers have explored software-based techniques for build-
ing error resilient applications. Many of these techniques leverage
application-specific resilience characteristics to keep overheads
low. Understanding application-specific resilience characteristics
requires software fault-injection mechanisms that are both accu-
rate and capable of operating at a high-level of abstraction to
allow developers to reason about error resilience.

In this paper, we quantify the accuracy of high-level software
fault injection mechanisms vis-a-vis those that operate at the
assembly or machine code levels. To represent high-level injection
mechanisms, we built a fault injector tool based on the LLVM
compiler, called LLFI. LLFI performs fault injection at the
LLVM intermediate code level of the application, which is close to
the source code. We quantitatively evaluate the accuracy of LLFI
with respect to assembly level fault injection, and understand the
reasons for the differences.
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I. INTRODUCTION

Hardware faults are increasing due to shrinking feature
sizes and manufacturing variations. Simultaneously, dimin-
ishing design margins and stringent power constraints are
making it harder to provide sufficient redundancy for masking
faults from software. Researchers have predicted that computer
systems in the future will expose (some) hardware faults to
the software layer, and will expect the software to tolerate
such faults [1], [2], [3], [4], [5]. Thus, there is a compelling
need to build error resilient software that can tolerate hardware
faults. To build error resilient software however, one needs
to understand the effects of hardware faults on software and
provide customized error detection and recovery support. This
is because generic error resilience techniques such as full
duplication, which duplicates every instruction in the program,
incur very high performance and power overheads [6].

To evaluate the error resilience of a program, one would
typically inject faults into the program, and observe the
program’s behaviour under the fault. Hardware faults can be
injected either by modifying the hardware, or by emulating
them in software. Because hardware modifications are often
costly and impractical, researchers have emulated hardware
faults through Software-Implemented Fault Injection (SWiFI)
techniques [7], [8], [9]. SWiFI techniques typically operate at
the assembly or machine code levels of the program as it is
easier to emulate hardware faults at that level. However, it
is challenging to map the results of the injection back to the
program’s source code, which is needed for understanding and
improving the error resilience of programs.

To alleviate the difficulty associated with mapping fault-
injection results from the assembly code to the source code, re-
searchers have proposed high level fault-injection mechanisms
that operate at, or close to the source code [10], [5], [11], [2],

[12]. These techniques allow faults to be injected directly into
program variables or statements. The main advantage of high-
level fault-injection mechanisms is that the mapping from the
fault injection results to the code is straightforward. Further,
these mechanisms allow programmers fine grained control
over where to inject faults in the program.

However, an open question with high-level fault injection
techniques is how accurate they are in representing hardware
errors. This is because hardware errors can occur anywhere
in the program, and in any part of its state. Unfortunately,
many elements of the program state are not represented at the
source level (e.g., code for stack pointer manipulation), and
hence high level techniques will not be able to inject faults into
these elements. Furthermore, instructions (or data) at the high
levels may correspond to multiple instructions (data) at the low
levels, and hence a single fault in a high-level instruction(data),
may correspond to multiple faults at the low level. Finally,
there may be some operations in the high level that have no
counterpart at the low levels (e.g., type cast operations), and
hence a high level technique may inject spurious faults that
do not occur at the low levels.

In this paper, we quantify the accuracy of high-level SWiFI
mechanisms vis-a-vis low level mechanisms for hardware
faults. We build a SWiFI mechanism at the LLVM compiler’s
intermediate code level, LLFI 1 to represent high-level injec-
tors. LLVM is a widely used, open source compiler infrastruc-
ture, that supports a wide variety of program languages and
features [13]. Most prior work on high-level fault injection also
uses the LLVM compiler [5], [11], [2], [12] (see Section VIII),
and hence we choose LLVM for building LLFI to represent
high-level injectors.

To represent low level injectors, we build PINFI 2, a fault
injector at the assembly code level using the PIN tool from
Intel [14]. PIN is a dynamic binary instrumentation and analy-
sis framework for tracing and modifying the behaviour of x86
binaries. We then compare these two injectors through fault-
injection experiments on a set of six benchmark applications.
We also attempt to understand the reasons for the differences,
to improve the accuracy of high-level injectors.

Prior work has compared the accuracy of assembly code
level fault injection to that of high-level fault injection for
software faults [15], [16]. Unlike our work which focuses on
emulating hardware errors, they focus on emulating software
faults at the assembly/machine code levels and quantifying
the inaccuracy. Other work has emphasized the importance
of modelling hardware faults at the assembly code level to
capture corner cases in safety-critical applications [17], [18].

1LLFI is available at https://github.com/DependableSystemsLab/LLFI
2PINFI is available at https://github.com/DependableSystemsLab/PINFI



However, they do not quantify the inaccuracy in modelling
hardware faults at the high-level for non-safety critical ap-
plications. To the best of our knowledge, we are the first to
quantitatively compare the accuracy of fault-injection at the
assembly code level with that of fault injection at the high
level, for hardware faults.

In summary, this paper makes the following contributions:
• Builds a LLVM-based fault injector, LLFI, that is capable

of injecting faults at the LLVM compiler’s intermediate
code level, to represent high-level injectors,

• Builds a PIN-based fault injector, PINFI, that is capable
of injecting faults at the x86 assembly code level, to
represent low-level injectors,

• Compares the results of injecting faults with both LLFI
and PINFI on a set of standard benchmark programs to
quantify the differences between them,

• Identifies the sources of discrepancy between the two
injectors, and suggests directions for improving the ac-
curacy of high-level fault injectors.

Our results show that LLFI is accurate for emulating
hardware errors that cause Silent Data Corruptions (SDCs),
but not crashes. When compared to PINFI which does fault in-
jections at the assembly code level, LLFI has nearly the same
SDC percentages for the benchmarks programs considered.
This result holds for fault injections across all instructions,
and also for specific instruction types. For crashes however,
the differences between LLFI and PINFI are as much as
40%, showing that fault-injections at the high level does not
accurately emulate crash causing errors.

II. FAULT MODEL AND BACKGROUND

In this section, we first describe our fault model and the
general notion of error resilience. We then briefly describe the
two systems, LLVM and PIN, that are used in this paper.

A. Fault Model
We consider transient hardware faults that occur in the

processor. These are usually caused by cosmic ray or alpha
particle strikes affecting flip flops and logic elements. We
consider faults that occur in the processor’s computation units,
i.e., the ALU and the address computation for loads and stores.
However, faults in the memory components such as caches are
not considered, since these components are usually protected at
the architectural level using ECC or parity. We do not consider
faults in the control logic of the processor as this is a small
portion of the processor area, nor do we consider faults in
the instructions’ encoding, as these can be handled through
control-flow checking techniques [19]. Related work has made
similar assumptions [2], [20], [12], [5], [11].

B. Error Resilience
We define the resilience of an application as its ability

to withstand hardware faults if they occur, without leading
to an incorrect output. Incorrect outputs are also known as
Silent Data Corruptions (SDCs) and are among the most
insidious of failures to recover from, as there is no external
indication that the application has malfunctioned (unlike a
crash or a hang, where either an exception is raised or a
timeout occurs). We are primarily interested in evaluating the
resilience of applications using Software Implemented Fault
Injection (SWiFI). Therefore, we only inject faults into the
program’s data or instructions that are visible at the assembly

code or higher levels, rather than into the micro-architectural
structures where the faults will occur. Further, we consider
only activated faults (i.e., faults that are read by the program),
as we are not interested in fault masking at the hardware level.

C. LLVM
LLVM [13] is a compiler infrastructure for lifelong program

analysis and optimization. Like most compilers, LLVM con-
sists of a front-end to translate code from a high-level language
such as C/C++ to an intermediate representation (IR), and a
backend to translate the IR code to machine code for specific
platforms such as x86 processors, ARM etc. The IR code is
transformed by multiple optimization passes, including user-
written ones, before being converted to the machine code by
the backend.

The LLVM IR is a typed language, in which source-level
constructs can be easily represented. In particular, it preserves
the variable and function names, making source mapping
feasible. Further, LLVM has extensive support for program
analysis and transformations which makes it easier to study
the effect of fault injection at a higher level than the assembly
language.

D. PIN
PIN is a dynamic binary instrumentation and analysis

framework from Intel used for tracing and modifying the
behaviour of x86 binaries. PIN performs instrumentation at
runtime on x86 binaries, and hence requires no recompilation
of the program [14]. PIN consists of three parts: (1) a virtual
machine to perform dynamic binary translation, (2) code cache
to keep translated code and use it for speeding up the analysis,
and (3) Rich API that third-party tools (such as ours) can tap
into to analyze and instrument the translated binary. The API
abstracts away the details of the platform and architecture and
allows tool developers to focus on the core logic of their tools.
Further, PIN takes care of saving and restoring the register
state whenever the third-party tool is invoked.

III. LLVM FAULT INJECTOR: LLFI
LLFI is a fault injection tool that works at the LLVM

compiler’s IR level, and allows fault-injections to be performed
at specific program points, and into specific instructions. LLFI
supports various fault injection customizations, and enables
tracing the propagation of the fault among instructions in the
program.

Figure 1 shows the working of LLFI, which consists of
three steps. In Step 1, LLFI takes the program IR as input,
and applies custom fault injection instruction and operand(s)
selector to determine which instructions/operands are fault
injection candidates. In Step 2, LLFI instruments the fault
injection instructions/operands with calls to fault injection
functions. The fault injection functions are designed to perturb
the specific instruction operand according to the specified
fault type at runtime (e.g. flip one bit of the operand for
bit-flip faults). In Step 3, the compiled program is executed
at runtime, and LLFI randomly selects one runtime instance
of the instrumented instructions to trigger the fault injection
function and inject into the selected instruction operand value.

Because hardware faults occur randomly at runtime, LLFI
picks a random instruction from the set of all dynamically
executed instructions at runtime to inject into. This is possible
because the fault injection function is invoked at runtime, and
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Fig. 1: LLFI work flow

can hence choose which invocation of an instruction to inject
into (this is done by first profiling the program to obtain the
total count of executed instructions). Further, by instrumenting
the program once with the set of all fault-injection functions,
and injecting the fault at runtime, LLFI ensures that the same
executable file (with the instrumentation in it) is used in all the
fault injection runs. Finally, this method makes it unnecessary
recompile the code for each fault injection. Other work on
high-level fault injection has followed a similar approach [10],
[11], [12].

Customizability and Analysis: LLFI has features for easy
customization and for analyzing error propagation. We do
not consider these features further in this paper as we are
primarily interested in the accuracy of LLFI, rather than ease
of customization or use. However, these features are the main
reason one would prefer to use higher-level fault injection
techniques [10].

Accuracy of LLFI: One of the main reasons for the
inaccuracy of LLFI is that it operates at the LLVM IR code
level, which does not correspond one-to-one with assembly
code. In this section, we qualitatively assess the correspon-
dence between the LLVM IR code and the assembly code
for fault-injection purposes. We quantify the effect of these
differences in Section VI. The differences are presented in
Table I, along with the mapping between them. We partially
mitigate the effects of these differences by injecting only into
type-cast instructions that correspond to integer and floating
point conversion (row 5 of Table I).

IV. PIN FAULT INJECTOR: PINFI

To evaluate the accuracy of LLFI compared with assembly-
level fault injection, we develop PINFI. PINFI is built with
Intel Pin [14], an assembly-level instrumentation tool for
X86-architecture processors. PINFI is built as a PIN tool
and uses the API exposed by Pin to inject faults. The work
flow of PINFI is similar to LLFI except: (1) LLFI performs
instrumentation at compile time, while PINFI does the instru-
mentation at runtime (when the program is loaded), and (2)
LLFI performs the fault injection (instrumentation) at IR code
level, while PINFI does the injection at the assembly code
level.

To ensure a fair comparison between LLFI and PINFI, we
need to ensure that all injected faults are activated. In the case

TABLE I: Difference between LLVM IR code and Assembly Lan-
guage, and the mapping between them

LLVM Instruction Assembly Language
Instruction

Mapping (if possible)

The GetElementPtr
(GEP) instruction does
address computation
which is supplied
to the load and
store instructions for
memory access.

A set of add and mul-
tiply instructions that
computes the address,
and offset memory ac-
cess in computation.

GEP instructions translate
multiple add or multiply
instructions, but some GEP
instructions cannot be mapped
to an assembly instruction if
they are translated to offset
memory access.

The PHINode instruc-
tion is inserted when
choosing between val-
ues merging from dif-
ferent basic blocks.

Some value merging
operations at assembly
level introduces regis-
ter spilling, there will
be register to stack and
stack to memory data
movement instructions.

Some PHINode instructions
can be translated to memory
data movement if they intro-
duce register spilling.

Function call PUSH/POP
instructions for
Caller/Callee saved
registers before and
after a function call,
and Stack pointer
stores return address

None, since these instructions
do not exist in the LLVM IR
code.

Conditional branch in-
structions

Jump instructions
where the target is
specified in a register

None, since branch targets are
basic block labels in LLVM

There are many type
cast instructions since
LLVM IR is strictly
typed.

There are also type
cast instructions, but
far less than LLVM IR.

type-cast instructions for in-
teger/floating point conversion
correspond to assembly code
level instructions, but not for
other types

of LLFI, the LLVM compiler will automatically identify the
def-use chain of an instruction, and so we can avoid injecting
faults into instructions whose value is not used. However, this
analysis is much more complicated at the assembly language
level where PINFI operates. In particular, we did the following
to ensure high fault activation in PINFI.

• In X86 assembly, branch condition instructions set the
flag register, and different conditional jump instructions
read different bits in the flag register to decide their
branch target (Figure 2(a)). To ensure fault activation,
we first find the dependent flag register bit(s) of the
conditional jumps, and only inject faults into the de-
pendent bit(s) before the conditional jump instructions.
For example, in Figure 2(a), the cmp instruction sets
the flag register, while the jl instruction only reads the
OF (bit 11) of flag register to decide the branch target.
So we only inject into this bit.

• For floating point operations, X86 instructions usually use
XMM registers as the destination register, and hence all
128 bits of XMM register are fault injection candidate
bits. However, double-precision floating-point operations
only use the lower 64 bits for computation (Figure 2(b)),
and hence we prune the target injection space to the lower
64 bits for double-precision floating point operations.

(a) Flag register

(b) Floating point operation

Fig. 2: Examples of PINFI heuristics to increase fault activation

V. EXPERIMENTAL SETUP

We perform fault injection experiments to compare the
accuracy of LLFI vis-a-vis PINFI for different failure types,
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and different instruction categories. In this section, we first
introduce the benchmarks we use for the evaluation, and then
we describe the experimental procedure.

Benchmarks: We choose six programs to evaluate the
high-level injector, LLFI against the assembly fault injector,
PINFI. Four of the benchmarks are from the SPEC CPU 2006
suite [21], and two are from the SPLASH-2 suite [22]. The
benchmark characteristics are presented in Table II. We choose
these benchmarks to represent a wide range of commodity and
scientific applications. We run each benchmark to completion
with a test or default input that comes with the benchmark
suite 3.

In both cases, we compile the programs with the LLVM
compiler, with the same standard optimizations enabled, to
enable a fair comparison. We feed the produced IR code to
LLFI, and produce an executable file. We then compile the
IR file without passing it to LLFI, and feed the produced
executable file to PINFI after linking.

TABLE II: Characteristics of Benchmark Programs

Benchmark Benchmark
Suite

Description Lines
of
Code

Input

bzip2 SPEC File compression and de-
compression program

8293 test

libquantum SPEC A library for the simula-
tion of a quantum com-
puter

4358 test

ocean SPLASH-2 Large-scale ocean move-
ments simulation based
on eddy and boundary
currents

5329 default

hmmer SPEC Uses statistical descrip-
tion of a sequence fam-
ily’s consensus to do sen-
sitive database searching

35992 test

mcf SPEC Solves single-depot vehi-
cle scheduling problems
planning transportation

2685 test

raytrace SPLASH-2 Renders a three-
dimensional scene
using ray tracing

10861 default

System: The experiments were carried out on a Intel core i7
based machine, with 8 GB of RAM and 400 GB Hard drive.
The machine was running Debian Linux Version 6.0.

Research Questions: To compare the accuracies of LLFI
and PINFI, we are interested both in injecting faults in the
aggregate (i.e., across all instructions), and in specific instruc-
tion categories (e.g., arithmetic operations). By injecting faults
into specific instruction categories, we can obtain insights into
which classes of instructions contribute most to the inaccuracy
(if any), and how to mitigate the inaccuracies. Therefore, it
is important to calibrate the accuracy of LLFI both in the
aggregate and for specific instruction categories.

We attempt to answer the following research questions in
comparing LLFI and PINFI.

• RQ1 How many instructions of each category do LLFI
and PINFI consider as injection targets at the LLVM IR
code and assembly code levels respectively ?

• RQ2 How accurate is LLFI compared to PINFI for
measuring the SDC rate of applications, both in the
aggregate and for specific instruction categories ?

• RQ3 How accurate is LLFI compared to PINFI in
measuring the crash rate of applications, both in the
aggregate and for specific instruction categories ?

3We cannot use the SPEC ref inputs as we need to run each benchmark to
completion thousands of times, and the ref inputs take a long time to complete.

We do not consider hangs as the percentage of hangs observed
in our experiments was negligible.

Experimental procedure: First, we run LLFI or PINFI on
the program, and select specific instructions as fault injection
targets. However, the instructions in the LLVM IR (which is
used by LLFI) do not correspond one on one to instructions in
the assembly code used by PIN. To enable a fair comparison
between LLFI and PINFI, we divide both the IR instructions
and assembly language instructions into five broad categories
based on the types of operation they perform. The five cat-
egories are described in Table III. We do not consider store
instruction here because we compare LLFI and PINFI through
fault injection into destination registers of instructions, and
store instructions do not have destination registers.

Second, for each category in Table III, LLFI (or PINFI)
profiles the number of dynamic instances of the selected
instruction category, say N . For LLFI, N represents the
number of LLVM IR instructions executed under the chosen
category, while for PINFI, it represents the number of assem-
bly instructions executed under the category.

Third, for each program, we perform 1000 fault injections,
into the instruction category chosen for the experiment using
both LLFI and PINFI. As we have a total of five categories
and two tools, this represents a total of 10, 000 fault injections
per benchmark program.

For each fault injection run, LLFI and PINFI randomly
choose one of the N instructions belonging to a specific
category, and each inject a single bit-flip into the target register
or memory location of the chosen instruction. We choose
target registers or memory locations as our injection targets
as our fault model considers transient errors in the processor’s
computational elements (Section II-A). In other words, we
assume that any error in the computation/data paths of the
processor shows up in the result of the executed instruction,
and hence we corrupt its target. This is similar to what prior
work has done [12], [23], [2], [11], [5].

TABLE III: Fault injection instruction categories

Instruction
category

Description LLFI
selection
criteria

PINFI selection cri-
teria

arithmetic arithmetic
and logic
operations

instructions
that perform
arithmetic
or logical
operations

instructions that
perform arithmetic or
logical operations

cast type cast
operations

instructions
with ‘cast’
opcode

instructions with
‘convert’ category

cmp branch
condition
instruc-
tions

‘cmp’ instruc-
tions

instructions whose
next instruction is
conditional branch

load memory
load
operations

‘load’ instruc-
tions

‘mov’ instructions
with memory as the
source and register as
the destination

all all in-
structions

‘all’ in the con-
figuration

‘all’ in the configura-
tion

Failure categorization: As mentioned earlier, we consider
only activated faults in the results. For a fault to be activated,
the injected location or register must be read by another
instruction in the program. This is because we are interested
in the behaviour of the program given that a fault has occurred
in it, as our goal is to study error resilience (Section II-B).
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We classify the outcome of activated faults based on the
program’s behaviour. If the program is terminated by the OS
due to an exception, it is classified as a crash. We also obtain
the golden run of the program when no fault is injected to
compare the output with the program’s output after injecting
the fault. Any deviation is classified as an SDC. Hangs are
detected through a timeout mechanism if the program takes
substantially longer than the golden run.

VI. RESULTS

In this section, we present the fault injection results of
LLFI and PINFI across six benchmarks. We first present
the aggregate fault injection results in Section VI-A. Then
Section VI-B to Section VI-D presents results to answer the
three research question in Section V.

A. Aggregate Fault Injection Results
Figure 3 shows the breakdown of the fault injection outcome

(i.e. crash, SDC and benign) for each benchmark, with both
LLFI and PINFI injecting faults to ‘all’ instructions. x axis
represents the benchmark and average value, and y axis
represents the percentages observed in each fault injection
outcome category.

Fig. 3: Aggregated fault injection results with LLFI and PINFI

From Figure 3, we find that on average for both tools, the
crash percentage is around 30%, and the SDC percentage is
around 10%, and the remaining are benign faults (i.e. hang
results are negligible). This is consistent with previous fault
injection studies [11], [12]. We also find that the difference in
the fault injection results between LLFI and PINFI for SDCs
is very small. This will be analyzed in detail in the following
sections.

B. RQ 1: Number of dynamic instructions
Table IV shows the numbers of executed instructions in each

benchmark, for each category in Table III, that are encountered
by LLFI and PINFI. From Table IV, we find that:

• LLFI encounters more runtime instructions for the ‘all’
category than PINFI. This is because assembly code is
often more packed than LLVM IR code. For example,
a memory load from an array usually consists of two
instructions in LLVM IR (getelementptr instruction
for getting the address, and load instruction for load
operation), while it consists of a single instruction at the

x86 assembly level (mov instruction with offset memory
access). Thus, LLFI has more instructions to inject than
PINFI.

• For arithmetic operation (‘arithmetic’), LLFI has fewer
instructions to inject than PINFI for most programs.
The reason is that arithmetic operations are used for
data and address computation at the assembly level,
while the getelementptr instruction is used for address
computation at the LLVM IR level. This instruction is not
considered as an arithmetic operation in LLVM’s IR code,
and hence LLFI does not inject into it when considering
arithmetic operations.

• The number of type cast instructions (‘cast’) is negligible
for both LLFI and PINFI. LLFI and PINFI have similar
number of compare instructions (‘cmp’) for all bench-
marks.

C. RQ2: SDC results of LLFI and PINFI
Figure 4 shows the percentage of SDCs (among the acti-

vated faults) incurred by the six programs after fault injection
using LLFI and PINFI. Sub-figures 4(a) to 4(d) correspond
to the results of injecting into each of the five instruction
categories in Table III. In each graph, the x axis represents
the benchmark, and y axis represents the percentage of SDCs
incurred among all activated faults. The error bars represent
the 95% confidence interval of SDCs for 1000 injections for
either PINFI or LLFI.

From Figure 4 it can be inferred that the difference between
LLFI and PINFI is within the measurement error threshold
for most programs, regardless of whether we consider all
instructions together or only instructions from a particular
category. This means that for injecting errors that cause SDCs,
LLFI is at least as accurate as assembly level fault injection
for most of the programs considered, across all instructions
and instruction categories. We examine individual deviations
from this norm below:

• For arithmetic operation instructions (‘arithmetic’), LLFI
has slightly higher SDCs for bzip2. This is because
bzip2 has a lot of memory address computation, and as
described in Section V, address computation operations
are not classified as arithmetic operations in LLVM IR.
However, at the assembly code level, address computa-
tion is performed using arithmetic operations, which are
classified as arithmetic operations by PINFI, and a fault in
these operations is likely to crash the program. Therefore,
PINFI experiences a higher percentage or crashes than
LLFI (Table V), which lowers its SDC rate.

• For type cast instructions (‘cast’), LLFI exhibits a higher
percentage of SDCs for bzip2. This is because bzip2 has
only six type cast instructions, and all six instructions
operate on pointer values. Therefore, any fault in these in-
structions has a high probability of crashing the program
(the crash rate for this program is 96% as is shown in
Table V), which in turn lowers its probability of resulting
in an SDC.

• For compare instructions (‘cmp’), both LLFI and PINFI
exhibit nearly the same SDC rate. This is because both
LLFI and PINFI have similar number of compare in-
structions.

• For load instructions. LLFI exhibits a much higher SDC
rate than PINFI for the libquantum program. This is
because libquantum consists of many data movement
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TABLE IV: Runtime instructions of the benchmark programs for LLFI and PINFI

Programs All Arithmetic Cast Cmp Load
LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI

bzip2 487081311 345535913 18530760
(4%)

50433646
(14%)

30606431
(6%)

6 (0%) 38540680
(8%)

38227320
(11%)

335748373
(69%)

243088790
(70%)

mcf 7162446297 3800867922 482659382
(7%)

532203970
(14%)

6 (0%) 6 (0%) 836141657
(12%)

827164028
(22%)

3833040057
(54%)

2155207386
(57%)

hmmer 4077115017 2292170072 482968327
(12%)

369334397
(16%)

10506166
(0%)

17426657
(1%)

268007691
(7%)

268007694
(12%)

2489538548
(61%)

1495918948
(65%)

libquantum 716159246 445866958 37728075
(5%)

38531240
(9%)

110944
(0%)

110616
(0%)

56928497
(8%)

57166980
(13%)

357370593
(50%)

242788525
(54%)

ocean 1056629348 566050809 215580829
(20%)

187358712
(33%)

1236605
(0%)

1238928
(0%)

31542955
(3%)

31542560
(6%)

638292229
(60%)

328446760
(58%)

raytrace 13370543488 6229897840 1660765146
(12%)

1706697298
(27%)

2327664
(0%)

2870179
(0%)

539958621
(4%)

539804535
(9%)

5686126390
(43%)

3409330274
(55%)

(a) Arithmetic operation instructions (b) Cast instructions

(c) Compare instructions (d) Load instructions

(e) All instructions

Fig. 4: SDC Results for LLFI and PINFI. Subfigures (a) to (d) represent the SDC results for different instruction categories; and subfigure
(e) represented all instructions.
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operations, which are translated to load instructions in
LLVM IR, and are considered as injection targets by
LLFI. However, assembly code moves the data directly
from one location to another using a mov instruction,
and does not have a corresponding load instruction.
Therefore, LLFI injects into more data operations and
hence has a higher SDC rate compared to PINFI.

D. RQ3: Crash results of LLFI and PINFI
Table V shows the percentage of crashes incurred by the

benchmark programs for LLFI and PINFI. From Table V,
we find that LLFI and PINFI have similar crash percentages
for compare instructions. However, for the other categories
of instructions, there are considerable differences in the per-
centage of crashes. The maximum differences between the
two tools are as follows: 17% in the ‘all’ category (ocean),
40% in the ‘arithmetic’ category (bzip2), 32% in the ‘cast’
category (hmmer), and 21% in the ‘load’ category (hmmer).
In Section VII, we explain the reasons for the difference in
crash rates.

VII. DISCUSSION

The results of the fault injection experiments in Section VI
illustrate that the SDC rates obtained with LLFI closely
match those obtained with PINFI for the benchmarks. This
shows that LLFI is a good choice if one’s interest is in SDC
causing errors, as ours is (recall that our goal is to study error
resilience, which is the ability of a program to prevent an
error from becoming an SDC). However, as far as crashes are
concerned, there are substantial differences between the two
injectors. We examine the reasons for the differences, and how
to resolve them (future work).

1) GetElementPtr instructions: As mentioned earlier,
LLVM IR uses the getelementptr instruction to per-
form pointer address computations. However, at the
assembly code level, pointer computations are performed
with regular arithmetic add/subtract/multiply instruc-
tions. On the face of it, it seems like this problem can
be solved by treating all getelementptr instructions
as equivalent to arithmetic operations at the LLVM
IR level. However, not all getelementptr instructions
are translated to arithmetic operations - some address
computations are compressed in the memory offset
computation part of the assembly language instruction.
To remove this discrepancy, we will need a heuristic to
decide when to treat a getelementptr instruction as an
arithmetic instruction and inject faults into only such
instructions.

2) Cast instructions: These contribute to inaccuracies when
they deal with pointer conversion as in the bzip2 bench-
mark. To remove this discrepancy, we will need to
identify such cases, and not inject faults into them at
the LLVM IR level.

3) Mov instructions: In assembly code, mov instructions
are used to move data both between registers and be-
tween registers and memory. In LLVM IR however, there
are separate instructions for these two operations, and
hence there are many more instructions corresponding
to mov instructions in the assembly code. To remove
this discrepancy, we need to inject into only those
instructions that have a corresponding analogue at the
assembly code level.

VIII. RELATED WORK

We classify related work on fault injection into three broad
categories: (1) Program-level fault injection for hardware
faults, (2) Assembly code level fault injection for hardware
faults, and (3) Fault injection for software faults.

Program-level fault injection for hardware faults: There
have been many attempts to build a fault injector for hardware
faults at the program level. Propane [10] is perhaps the first
tool that injects faults at the program level and traces their
propagation in the program. Propane allows injection of both
hardware faults (data errors) and software faults. However, to
the best of our knowledge, the accuracy of Propane has not
been measured with regard to hardware fault injection.

Pattabiraman et al. [24] present an approach to selectively
protect critical data in a program by duplicating its back-
ward slice. Relax [2] is a code transformation technique to
tolerate soft errors in programs through structured blocks
and exception handling. Cong et al [5] use static analysis
to identify instructions that must be duplicated for protecting
soft-computing applications, or applications with relaxed cor-
rectness properties. Similar to LLFI, the authors of the above
papers develop fault injectors based on the LLVM compiler
to validate their technique. However, none of them validate
the fault injector itself with regard to its accuracy in injecting
hardware faults.

Thomas et al. [12] also build a static analysis technique
for identifying critical data in soft-computing applications to
protect against significant deviations in the correct output, or
what they call Egregious Data Corruption (EDC). They also
perform fault injection at the LLVM compiler level. Unlike
the above papers, however, they provide a limited validation
of their injector with regard to EDC causing errors. However,
EDCs are only a (small) subset of Silent Data Corruptions
(SDCs), and their evaluation is confined to soft-computing
applications. In contrast, we evaluate the accuracy of LLFI
for general-purpose applications, and for the full set of SDC
and crash causing errors.

Finally, in recent work, Sharma et al. present KULFI [11],
which stands for “Configurable Injector”. Like LLFI, KULFI
is built using the LLVM compiler infrastructure, and operates
on the IR code. To the best of our knowledge, KULFI has
not been validated with regard to assembly code level fault
injection. Further, the authors of KULFI use it to compare the
error resilience of algorithms for both SDC and crash causing
errors. However, as we have seen in this paper, performing
fault injections at the LLVM level may not be accurate for
crash causing errors, though we have not directly validated
KULFI’s accuracy for such faults.

Note that five of the six papers above use the LLVM com-
piler and its infrastructure for performing their experiments.
This is also why we use LLVM for building LLFI.

Assembly code level fault injection: There has been
substantial amount of work in fault-injection at the assembly
language level for emulating hardware faults. Examples of this
approach are NFTAPE [7], GOOFI-2 [8] and Xception [9].
NFTAPE uses break-point based injection at the machine code
level. GOOFI-2 supports three methods of fault injection,
namely instrumentation-based, exception-based and Nexus-
based. All three methods operate at the assembly code (or
lower levels). Xception uses debug registers and features found
in many modern processors to inject faults at runtime. While
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TABLE V: Crash percentage of the benchmark programs for LLFI and PINFI

Programs All arithmetic Cast Cmp Load
LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI LLFI PINFI

bzip2 60% 64% 23% 63% 66% 96% 3% 2% 64% 74%
mcf 37% 32% 22% 19% 0% 0% 3% 2% 33% 47%
hmmer 38% 41% 20% 13% 12% 44% 2% 2% 36% 57%
libquantum 38% 25% 2% 4% 0% 1% 1% 0% 36% 50%
ocean 33% 23% 11% 2% 0% 0% 0% 0% 37% 43%
raytrace 44% 27% 1% 1% 22% 39% 3% 4% 37% 44%

Xception allows a high degree of configurability for the fault
injector, it also operates at the assembly language level.

A recent paper by Cho et al [25] evaluates the accuracy
of assembly code level fault injection versus injections at the
Register Transfer Language (RTL) level. They find that single
bit flips at the RTL level may manifest as multiple bit flips
at the assembly code level. Unlike our work which attempts
to calibrate the accuracy of higher levels of fault injection
with respect to assembly language level injection, they are
interested in benchmarking the accuracy of the assembly level
injectors. Thus, their study is complementary to ours.

Fault injection for software faults: Techniques for inject-
ing software faults in programs typically operate at the source-
code level, or at levels close to the source code (e.g., on the
abstract syntax tree). G-SWiFT is a technique that attempts
to emulate software faults at the machine code level [15], by
identifying patterns of assembly code instructions correspond-
ing to high-level software constructs and injecting faults in
them to emulate software bugs. Because software bugs occur
primarily at the source code level, it is important to calibrate
the accuracy of assembly-code level injection techniques with
respect to the source code level. Cotroneo [16] perform one
such characterization and find that injecting software faults at
the machine code level may not be representative of residual
software faults. Unlike software faults, hardware faults occur
within the microprocessor or memory and affect the program’s
execution. Because the executable file is in assembly/machine
language, hardware faults are easier to emulate at that level.
Thus, when injecting hardware faults at high level, it is
important to calibrate their accuracy with assembly code level
injections. This is the inverse of the problem that the above
software-fault injection papers face.

IX. CONCLUSION

In this paper, we quantitatively compare the accuracy of
high-level fault injection techniques with assembly code level
fault injection techniques for hardware faults. We develop two
fault injectors, LLFI to represent a high-level fault injector,
and PINFI, to represent a low-level fault injector. We compare
the accuracy of LLFI with PINFI with regard to crashes and
SDCs through fault-injection experiments on six benchmark
applications. Our results show that LLFI is highly accurate for
injecting SDC-causing errors, but not for crash causing errors,
compared to PINFI. Therefore, higher-level fault injection
techniques are suitable for studying SDC-causing errors, but
not for studying crash-causing errors in programs.
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