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Abstract—As a consequence of increasing hardware fault rates,
HPC systems face significant challenges in terms of reliability.
Evaluating the error resilience of HPC applications is an essential
step for building efficient fault-tolerant mechanisms for these
applications. In this paper, we propose a methodology to char-
acterize the resilience of OpenMP programs using fault-injection
experiments. We find that the error resilience of OpenMP
applications depends on the program structure and thread model;
hence, these need to be taken into account while characterizing
error resilience. We also report preliminary results about the
correlation between the application’s error resilience and the
algorithm(s) used in the application.

I. INTRODUCTION

Prior studies [1]–[3] showed that fault rates experienced
by processors and memory likely will increase as chips get
denser. High-performance computing (HPC) systems usually
have high reliability, availability and serviceability (RAS)
requirements; thus, understanding the resilience characteristics
of HPC applications is important for hardware and system/ap-
plication designers to make sound decisions about how to
design and provision them for desired RAS levels.

Our previous work [4] on studying the fault resilience of
GPGPU applications suggests that the resilience of an applica-
tion correlates with its algorithmic characteristics. Among the
twelve CUDA benchmarks we studied, we observed correla-
tions between the algorithmic characteristic and the resilience
of the applications. If our hypothesis that error resilience and
algorithmic properties are correlated is true, then an analogous
trend also should be observable when using programming
models other than CUDA. This motivates us to continue to
explore this space by investigating parallel applications that
run on CPUs.

Several parallel-programming paradigms are used widely in
HPC applications on CPUs. POSIX thread (pthread) and Open
Multi-Processing (OpenMP) typically are used for shared-
memory systems, while Message Passing Interface (MPI)
typically is used for distributed-memory systems. Among these
programming models, OpenMP is particularly interesting due
to its strong emphasis on structured parallel programming [5].
Because OpenMP has gained a lot of attention in the HPC
community, our study focuses on evaluating the fault resilience
of OpenMP parallel applications.

However, characterizing the fault resilience of OpenMP
applications is challenging due to two challenges:

1) Any fault resilience characterization needs to consider
the underlying thread model of the application. Because
OpenMP programs contain two types of threads (master
and slave threads) that accomplish different types of
work, each thread’s fault resilience properties needs to
be characterized separately in addition to its overall
impact on application resilience;

2) Resilience characterization (e.g., through a fault-
injection study) usually works at the assembly/machine-
code instruction level, but we need source-code level
information to understand the program structure and
address the first challenge above.

To overcome these challenges, we perform static analysis
of OpenMP programs using a modified version of the LLVM
compiler [6]. We collect the necessary dynamic information
from a program at runtime to obtain the execution profile
of each of its OpenMP threads, thus addressing challenge 1.
Based on this information, we map information from source-
code level to the instruction level using LLVM, and conduct
fault-injection experiments on specific program regions, thus
addressing challenge 2.

This paper makes the following contributions:
1) Proposes a methodology to evaluate the resilience of

OpenMP applications using fault-injection experiments,
2) Extends an existing fault-injection tool, LLFI [7] to

support multi-threading programs (i.e. OpenMP),
3) Characterizes the error resilience of eight OpenMP par-

allel applications drawn from the Rodinia benchmark
suite [8],

4) Explores the hypothesis that the fault resilience of
OpenMP programs correlate with their algorithmic char-
acteristics

Our study’s main findings are:
1) We find that the fault resilience characterization of

OpenMP programs needs to take into account the thread
model and the program structure. Otherwise, the re-
silience characteristics could be biased (as shown in
Figure 4 and Figure 6). This is important as different
threads and structures of OpenMP programs show dif-
ferent level of resilience, which opens the opportunity to
use differentiated fault-detection and impact-mitigation
mechanisms to reduce the error detection overhead and
improve resilience. Our characterization mechanisms are



insightful for studying the fault tolerance of parallel
programs, and instructive to design future hardware fault
detection techniques.

2) We find preliminary support for our hypothesis that fault
resilience properties do correlate with the algorithmic
characteristics of parallel applications. If this hypothesis
is indeed true, then this opens an avenue to under-
stand application resilience at much lower cost with-
out conducting exhaustive and complex fault-injection
experiments. This can also provide useful information
on designing algorithmic specific error detection and
recovery mechanisms.

II. RELATED WORK

This section provides an overview of related work in the
areas of error resilience studies of parallel programs and
explains how our work differs.

Fault injection has been well-explored on CPUs using run-
time debuggers. Examples are GOOFI [9] and NFTAPE [10].
However, they do not consider multi-threaded programs, nor
do they concern themselves with choosing different parts of
a program for injection. Other work [11] attempted to inject
faults in scientific applications using the PIN tool from Intel, a
dynamic binary instrumentation framework, but multi-threaded
fault injection was not their focus at that time.

Lu et al. [12] proposed a way to assess fault sensitivity in
MPI applications by injecting faults into registers, application
memory regions and messages at run-time. They showed that
registers and MPI messages are particularly vulnerable to
single-bit-flip faults and urge the MPI standard to redesign and
enhance the error-handling APIs in the context of hardware
faults. While their goals were similar to our study, their study
did not consider shared-memory parallel programs, which are
very different from MPI programs.

Wei et al. [13] focused on leveraging similarities between
threads in parallel programs to protect faults in program’s
control data. They used LLVM compiler infrastructure to
instrument a parallel program with fault-detecting code and the
PIN tool to conduct fault injections to evaluate its detectors.
Their methodology integrated software level instrumentation
and assembly-level evaluation. However, their study was based
on pthread programs, which differ from OpenMP in terms of
programming models and code structures. In addition, their
evaluation was about only the control data and did not study
end-to-end program vulnerability.

Sloan et al. proposed algorithmic approaches [14] to locate
errors during the execution and partially recompute the result
on parallel systems. They improved the performance of the
Conjugate Gradient solver in high-error scenarios by 3x-4x
and increased the probability that it completes successfully by
up to 60%. Their results showed that the application-specific
techniques help improve the fault tolerance of applications.
However, their techniques were based on mathematical meth-
ods, which can be applied only to linear algebra problems such
as matrix-vector multiplication. Our goal in contrast is to find
techniques for general-purpose parallel applications.

To the best of our knowledge, it the first to study experi-
mentally the error resilience of OpenMP programs, and discuss
the possibility of correlating the resilience of applications with
their algorithm characteristics.

III. METHODOLOGY

This section introduces our methodology. As we have dis-
cussed in Section I, two factors may have unequal impacts on
the resilience of OpenMP programs; faults in different types of
threads and faults in different parts of the program. Therefore,
it becomes important to study these factors separately.

Figure 1 shows the thread model of OpenMP programs.
An OpenMP application starts as a single thread, which is
the master thread. As the program executes, it may encounter
one or more parallel regions, at which point slave threads are
created by the master thread and run in parallel (including
the master thread). Therefore, the master thread and slave
threads differ from each other in terms of their behaviors
and amounts of work performed. Our methodology takes into
account the thread model of OpenMP programs. In addition
to the thread model, we need to identify the program structure
of the master thread. As shown in Figure 2, we partition the
entire execution of the master thread into five segments. Each
segment represents a task that the master thread does within
that part of the code. For example, pre-algorithm and post-
algorithm are segments that respectively contain the pre- and
post- processing of the input and output data for the parallel
region.

To make the preceding description more concrete, Figure 3
shows a code-snippet from the srad application, a diffusion
method for ultrasonic and radar- imaging applications based
on partial differential equations. The code snippet presents
the main stages of srad, namely (1) image reading, (2) pre-
processing (resizing, setting up and scaling down), (3) com-
putation, (4) scaling up, and (5) output. The figure also shows
how the stages correspond to the segments identified in the
preceding paragraph. We believe that understanding the impact
of each segment on the resilience of the program is important
for understanding its overall error resilience.
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Fig. 1: An example of the thread model of OpenMP programs
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Fig. 2: Program segments of the master thread

Begin:
    //read image
    read_graphics(image_orig);
    //resize the image
    resize(image_orig);
    //setup
    image = image_setup(image_orig);
    //image scale down
    for (i=0; i<Ne; i++){              
      image[i] = exp(image[i]/255);
    }
    //computation
    #pragma omp parallel for shared(var_list1) 
private(var_list2)
    for (j=0; j<Nc; j++){
    //directional derivatives,ICOV,diffusion coefficient
    }
    #pragma omp parallel for shared(var_list1) 
private(var_list2)
    for (j=0; j<Nc; j++){
      //divergence & image update
    }
    //image scale up
    for (i=0; i<Ne; i++){
      image[i] = log(image[i])*255;
    }
    //write image out
    write_graphics(image);
    free_memory()
End
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Fig. 3: An example of the partition of an OpenMP program

A. Fault model
Hardware faults can be classified broadly as transient or

permanent. Transient faults usually are ”one-off” events and
occur non-deterministically, while permanent faults persist at a
given location. Further, transient faults are caused by external
events such as cosmic rays and over-heated components, while
permanent hardware faults usually are caused by manufactur-
ing or design faults. We consider only transient faults in this
study. We use the single-bit-flip model in this study because
it is the de-facto fault model adopted in studies of transient
faults [13], [15], [16]. However, our fault injector can support
both single- and multiple-bit flips. We will consider multiple-
bit errors in future work.

We consider faults in the CPU’s computational elements.
We inject faults into the destination register of the program’s
instructions to simulate an error in the processor’s compu-
tational units. For memory instructions, we inject faults into
address-calculation parts in load/store instructions. We assume
that the memory is error-correction-code (ECC)-protected, as
is typically the case in HPC systems, and so do not inject
faults into memory values.

An application may have four outcomes after a fault is
injected:

1) Throws an exception (crash)
2) Times out by going into an infinite loop (hang)
3) Completes with incorrect output (silent data dorruption

(SDC)) 1

4) Completes with correct output (benign).
These four outcomes are mutually exclusive and exhaustive.
Among the four outcomes, SDC is the most serious one
because there is no indication that the result is incorrect.
Therefore, we focus on SDC in our evaluation of a program’s
error resilience in this study.

B. Fault-injection tool
We extend the fault-injection tool called LLFI to inject faults

into OpenMP applications [7]. LLFI performs fault injection at
the LLVM compiler’s intermediate code level. It instruments
the original intermediate representation (IR) of an application
with fault-injection code, which performs the actual injection
at run-time. LLFI allows users to specify the kinds of faults
and locations (i.e., instructions, operands) to inject. Although
LLFI is a convenient tool for fault injection, it did not support
multi-threaded programs. We extended LLFI and redesign the
interface between its components to support multi-threading.

The operation of LLFI consists of three main phases, all of
which we modify for multi-threaded programs as follows:

1) Instrumentation phase adds callback functions after each
IR instruction. The instructions to be instrumented are
determined based on the configurations specified by
users. We add new configurations in this phase to allow
the user to specify individual regions and threads as
targets for instrumentation.

2) Profiling phase uses the callback functions added in the
first phase for counting and generating statistics, such as
the total number of dynamic instructions of the program.
We modify these functions to keep the statistics on a per-
thread basis. The statistics are used in the next phase to
choose a random instruction into which to inject .

3) Injection phase uses the callback functions added in the
first phase, and the statistics added in the second phase
to inject faults. To inject a fault, a random instruction
is chosen from the set of all dynamically executed
instructions in the program and a single bit is flipped
in its address operand (for memory instructions ) or
destination register (otherwise). Our modification to this
phase consists of performing the injections on a per-
thread basis using the per-thread statistics in the second
phase, and into specific program regions as described in
the first phase.

IV. ERROR RESILIENCE CHARACTERISTICS

We run our experiments on an Intel Xeon CPU X5650
multi-core processor running at 2.67GHz with 24 hardware
cores. The standard distribution of Clang, which is a compiler
frontend in the LLVM tool-chain, does not support OpenMP
directives, so we use an implementation of the OpenMP

1We define an SDC as an outcome that differs from the fault-free run.



C/C++ language extensions in Clang from [17]. We use eight
OpenMP programs from the Rodinia benchmark suite [8] in
our evaluation. We configure the OpenMP programs with 24
threads, which is equal to the number of cores. For each
benchmark, we conduct more than 10,000 fault-injection runs.
In each run, we inject a single random fault using our extended
version of LLFI.

A. Thread-level Differences on Error Resilience
We evaluate the effects of different kinds of threads on

the error resilience of the program. We perform two separate
experiments for injecting faults into the master and slave
threads respectively. In the first experiment, the master thread
(threadID = 0) is chosen and the locations to inject are
distributed over the entire execution of the program. In the
second experiment, a random slave thread is chosen and the
locations to inject are confined to the parallel segment of the
OpenMP program.

This set-up is based on the following hypothesis: threads
within the parallel segment resemble each other in OpenMP
programs, and so choosing a random thread into which to
inject is sufficient. We test our hypothesis by counting the
number of dynamic instructions in each thread as a way to
represent the behaviors of threads. Other possible solutions
to determine the similarity of threads are still under-explored.
We report the mean value and the standard deviation of the
number of instructions in all threads of each benchmark in
Table I. Our results indicate that most of the benchmarks show
similar behaviors across threads within the parallel segment,
as demonstrated by the relatively low standard deviation. The
one exception is the nn (k-nearest neighbours) benchmark,
which exhibits high standard deviation (SD). This is because
the 24 threads of nn are clustered into two groups (one with
10 threads and the other with 14) according to the number
of instructions they execute. The probability of choosing a
thread from the second group is higher by roughly 8% (1/12).
We disregard this difference for simplicity.

Figure 4 presents the SDC rates for two sets of experiments.
In most of the benchmarks, the master thread has a higher SDC
rate than slave threads except for lud. This is lud’s master
thread spends most of its time in the parallel segment, and
hence it makes no difference whether we inject into the master
thread or into slave threads. The average deviation of the SDC
rate between threads is 7.8%, with the biggest deviation of
16% in pathfinder. This suggests that performing a naive fault
injection without taking thread-level differences into account
can grossly misestimate the error resilience of applications.

To add to this point, we profile an OpenMP version of
matrix multiplication (mm), which is not included in Rodinia
benchmark suite. Of a total of 24 threads, only five of them
(on average, executing 89476 dynamic instructions) perform
significant amount of work, while the other 19 finish rather
quickly (after executing 22 instructions). A random thread
fault injection on mm without considering thread deviation
leads to about 5% SDC rate, compared to performing fault
injection on the master thread, which has an SDC rate of 28%.
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Fig. 4: Differences in the SDC rates of applications between injections in the
master thread and slave threads

B. Segment-level Differences on Error Resilience
Our solution for evaluating the resilience of OpenMP pro-

grams more accurately is to consider the resilience of the
master thread and slave thread separately. For slave threads,
we need to consider only the parallel segment in which slave
threads are spawned. However, the master thread consists of
multiple segments, and hence we need to consider the error
resilience of each segment separately. To do that, we first
manually split the each benchmark into segments and measure
the time spent in each segment. We intend to automate this
process in the future. Figure 5 shows the execution time of
each segment of the benchmarks. As we can see, the parallel
segment dominates the execution time in six of the programs,
while I/O operations (output processing in these cases) take
longer time than the other segments in two programs (bfs and
srad).
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Input processing Pre-algorithm Parallel Region Post-algorithm Output processing 

Fig. 5: Execution time profile of the OpenMP benchmarks

Ideally, fault injection should be based on the execution time
of each segment as measured by a consistent metric such as
in cycles. Because we are limited by the LLFI infrastructure,
which lacks information about the underlying execution of
the program, our fault injection is based on the number of
dynamic instructions executed in each segment. Our injection
proceeds as follows. First, we manually map each segment
in the source code to IR code, and find the corresponding
instructions that represent the boundaries in the IR code. We
use this information to find the IR instruction range for each
segment. Knowing these boundaries, when we inject a fault
using LLFI at the IR code level, we can tell when the fault
is injected and which segment the program is executing at the
time of the injection.

Figure 6 shows the SDC rate of each segment in seven
of the eight benchmarks. We did not show nn because the
overall SDC rate of nn is quite small compared to other
benchmarks (less than 1%). We also skip the output segments



TABLE I: Mean and the standard deviation of the number of dynamic instructions of threads

Benchmark bfs lud nn pathfinder hotspot nw srad kmeans
Mean 42,505 3,568,024 327,652 31,320 14,275 6,540,148 1,993,166 4,150,695
Standard deviation 796 292,682 178,752 364 2,568 44,123 29,487 383,953

TABLE II: Mean and standard deviation of SDC rate in each segment of the
programs

Segment Input
processing

Pre-
algorithm

Parallel
segment

Post-
algorithm

Output
processing

Number of
applications

6 2 7 2 5

Mean 28.59% 20.32% 16.13% 27% 42.42%
Standard
deviation

11% 23% 14% 13.2% 5.1%

a The first row shows the count of number of applications that contain the
segment

of the nw and pathfinder applications, because the time spent
in those segment is less than 1% of the total time, which
means that the chance that faults happen during the execution
of those segments is small. We quantify the mean and standard
deviation for each segment as shown in Table II.

We find that output processing segments exhibit much
higher average SDC rates than other segments. This is intuitive
because output processing is close to the end of the execution,
and so faults are more likely to affect the final output. We
also find that the standard deviations of SDC of the pre-
algorithm, post-algorithm and parallel segments are higher
than the corresponding standard deviations of SDCs in the
input processing and output processing segments. This shows
that the resilience of the input and output processing segments
is more stable than the algorithm-related segments across the
applications.
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Fig. 6: Differences in the SDC rates in different segments of the benchmarks

Finally, to estimate the overall resilience, we propose two
approaches depending on the goal of the resilience character-
ization. In the first approach, we consider the SDC rate of
each segment separately and combine it with its time profile,
to obtain the overall SDC rate. In the second approach, we
consider only the algorithm-related segments, (i.e., pre- and
post- algorithm and parallel segments). The results for both
cases are shown in Figure 7. For the first case, the average
SDC rate is 20%; for the second case, it is 14%. In both
cases, the highest SDC rate is from lud and the lowest is from
nn.
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Fig. 7: SDC rates estimated in two approaches. Top: End-to-end SDC rates
considering all segments Bottom: SDC rates when considering only algorithm-
related segments excluding the input and output processing segments

V. DISCUSSION

Our previous study on the error resilience of GPGPU
applications [4] suggests that the algorithmic characteristics of
the application influence its error resilience. The algorithmic
operations we consider are described in Table III. For example,
comparison-based operations, such as those used for searching
for keys or in min/max value computation, have much higher
error resilience than other operators. As another example,
”average-out” operations in which the final result is based on
iterative computation over the previous results similarly have
high resilience.

TABLE III: Operations that may affect resilience of GPGPU applications

Operations Description
Comparison-based Comparing two values,

High resilience as the likelihood
of maintaining the correct value is
high

Average-out The final state is a product of
multiple temporary states, usually
including iteration and merging

Graph processing Graph-related algorithms such as
breadth-first search

Linear algebra Combination of basic linear alge-
bra computation

Bit-wise operation Input data are chunked based on
certain length in bits

One of the goals of this work is to test the hypothesis
that the error resilience of an application is correlated with



its algorithmic operations. If the hypothesis is true, then we
should observe a trend in OpenMP programs similar to the
tread we observed in GPGPU programs. To this end, we
analyze the algorithms of eight benchmarks to identify the
algorithmic operations performed. Table IV lists the high-
level classification (dwarf) of these benchmarks from the
Rodinia homepage, and the operations that we found in each
benchmark.

We identify a total of five operations that may affect the
error resilience of the application, four of which are also found
in GPGPU applications: comparison-based, graph processing,
linear algebra and average out. The fifth operation we intro-
duce is grid-structured computation, which consists of regular
or irregular grid calculations such as stencil computations.

TABLE IV: Operations of OpenMP benchmarks and the estimation of the
resilience

Operations Benchmarks Observed SDC Application dwarfs
Comparison-
based

nn, nw 0.07% ⇠ 1% Dynamic program-
ming, dense linear
algebra

Grid computa-
tion

hotspot, srad 23% Structured grid

Graph process-
ing

bfs,pathfinder 9% ⇠ 10% Graph traversal, dy-
namic programming

Average-out kmeans 4.2% Dense linear algebra
Linear algebra lud 44% Dense linear algebra

Table IV shows the observed SDC rates for the OpenMP
applications grouped by the algorithmic operations. Among the
five operations we considered, comparison-based and average-
out operations are the most resilient and linear algebra oper-
ations are the least resilient. This matches what we found in
GPGPU applications for the four shared categories, suggesting
that algorithmic operations may be an important factor in
understanding the error resilience of parallel programs on both
CPUs and GPUs. Based on our preliminary study, we intend
to explore this space more systematically in the future.

VI. SUMMARY

This paper presents a methodology to investigate the end-
to-end error resilience characteristics of OpenMP applications
through fault injection. This methodology overcomes the chal-
lenges in building a fault injector for OpenMP applications by
taking into account the thread model and program structure of
OpenMP applications. We extend an existing fault-injection
tool, LLFI, to support multi-threading and inject faults into
eight OpenMP programs from the Rodinia benchmark suite.

Our experiments show that, on average, 14% of the injected
faults result in SDC when only the algorithm-related parts of
the code are considered, while 20% of the injected faults result
in SDC when the entire program (including input and output
processing) is considered. We also find significant variations
in SDC rates depending on the thread and program segment
into which the fault is injected. Finally, we find preliminary
evidence that the algorithmic characteristics of an application
are correlated with its observed SDC rates. While these results
are preliminary, they corroborate with our earlier results for

GPGPU applications, which showed that these correlations
might not be platform-specific.
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