Evaluating the Error Resilience of
Parallel Programs

Bo Fang, Karthik Pattabiraman, Matei Ripeanu,
The University of British Columbia
Sudhanva Gurumurthi
AMD Research

Reliability trends

» The soft error rate per chip will continue to increase
[Constantinescu, Micro 03; Shivakumar, DSN o02]

= ASCQ Supercomputer at LANL encountered 27.7 CPU
failures per week [Michalak, IEEE transactions on
device and materials reliability ox5]

Goal

Investigate the
error-resilience
characteristics
of applications

’
I' between error

l resilience

characteristics

. -/ . .

VL, S R, ‘. and application

N _ properties
-~

-

o —

" 4

Application-
specific, software-
based, fault
tolerance
mechanisms

———~
- ~
”’ ~

Find correlation \\

\

aplace of mind

GPU v

Previous Study on GPUs

* Understand the error resilience of GPU
applications by building a methodology and
tool called GPU-Qin [Fang, ISPASS 14]

50%

40% I I I
2
& 30%
Q 1 I I
2 20% 1 — 1
5
10% ‘ I
T I
0% =
S ¥ > O L e QO Y Y Y LN &N
PRI I R R T ARG N
& &£ & F T Ny
» N o &%
3 S <

Benchmarks

Operations and Resilience of

GPU Applications
Operations Benchmarks
Comparison-based MergeSort
Bit-wise Operation HashGPU, AES

Average-out Effect
Graph Processing

Linear Algebra

Stencil, MONTE
BFS

Transpose, MAT,
MRI-Q, SCAN-block,
LBM, SAD

Measured SDC
6%

25% - 37%

1% - 5%

10%

15% - 38%

This paper: OpenMP programs

= Thread model

Master /

thread 0

\ NS /
Master thread SW
Master
thread *

* Program structure

Begin:
Input read_graphics(image_orig);
processing image =
image_setup(image_oriq);
Pre scale_down(image)
algorithm
#pragma omp parallel for
Parallel ¥ :
_ shared(var_lista)
region
Post scale_up(image)
algorithm i
write_qgraphics(image);
Output drap image)
processing

End

Evaluate the error resilience

= Naive approach:
= Randomly choose thread and instruction to
Inject
= NOT working: biasing the FT design
= Challenges:
= (a: exposing the thread model
= (2:exposing the program structure

Methodology

= Controlled fault injection: fault injection in
master and slave threads separately (Ca)

= Integrate with the thread ID

= |dentify the boundaries of segments (c2)

= |dentify the range of the instructions for each
segment by using source-code to instruction-
level mapping
* LLVMIR level (assembly-like, yet captures
the program structure)

NC

€

BC aplace of mind

LLFI and our extension

Instrument IR code
of the program
with function calls

Fault iz
Start INg
regit

Compile time

Custom fault Next
injector instruction

Runtime 9

Fault Model

Transient faults

Single-bit flip

= No cost to extend to multiple-bit flip
Faults in arithmetic and logic unit(ALU),

floating point Unit (FPU) and the load-store
unit(LSU, memory-address computation only).

Assume memory and cache are ECC protected;
do not consider control logic of processor (e.g.
instruction scheduling mechanism)

10

Characterization study
" Intel Xeon CPU X5650 @2.67GHz

= 24 hardware cores

= Qutcomes of experiment:
= Benign: correct output
» Crash: exceptions from the system or application
= Silent Data Corruption (SDC): incorrect output
" Hang: finish in considerably long time

= 10,000 faultinjection runs for each
benchmark (to achieve < 1% error bar)

11

Details about benchmarks

= 8 Applications from Rodinia benchmark suite

Benchmark
Bread-first-search
LU Decomposition
K-nearest neighbor
Hotspot
Needleman-Wunsch
Pathfinder

SRAD

Kmeans

Acronym
bfs

lud

nn
hotspot
nw
pathfinder
srad

kmeans

12

Difference of SDC rates

n C('
= |t shows the importance of differentiating
gg between the master and slave threads
40 = For correct characterization
30 . .
20 » For selective fault tolerance mechanisms
10
0
\QQ\?Y (b%é\\Y = \&"&U

= Master threads have higher SDC rates than slave
threads (except for lud)

= Biggest: 16% in pathfinder; Average: 7.8%

Differentiating between program
segments

» Faults occur in each of the program

segments
Input processing Pre-algorithm Parallel region
00% Post-algorithm Output processing
50%
40%
30%
20%
10%
0% 2 X X X x x S ¢ o X x

bfs lud hotspot nw pathfinder srad kmeans

SDC rates for each segment

Segment Input Pre- Parallel Post- Output
Processing algorithm Segment algorithm processing

Numberof 6 2 7 2 5
applications

Mean 28.6% 20.3% 16.1% 27% 42.4%
Standard 11% 23% 14% 13% 5%
Deviation

* Qutput processing has the highest mean SDC
rate, and also the lowest standard deviation

15

Grouping by operations

Operations Benchmarks Measured SDC Operations Measured SDC

Comparlson_ NN N\A/ lace than 404 — - “6

based

Grid - % - 37%
cOMpULation w Comparison-based and average-out

Average-out operations show the lowest SDC rates in b - c%
Effect both cases

Sl = Linearalgebraand grid computation, ”
Processing which are reqular computation patterns,

give the highest SDC rates
Linear Algebra % - 38%

16

UBC aplace of mind

3

Future work

Operations Benchmarks Measured SDC Operations Measured SDC
Comparison- nn, nw less than 1% Comparison- 6%

based based

Grid hotspot, srad 23% Bit-wise 25% - 37%
computation Operation

Average-out kmeans 4.2% Average-out 1% - 5%

Effect Effect

Graph bfs, pathfinder| 9% ~ 10% Graph Processing 10%
Processing

Linear Algebra lud 4,4,%0 Linear Algebra 15% - 38%

= Understand variance and investigate more applications
= Compare CPUs and GPUs
= Same applications
= Same level of abstraction -

Conclusion

» Errorresilience characterization of OpenMP
programs needs to take into account the thread
model and the program structure.

= Preliminary support for our hypothesis that error
resilience properties do correlate with the
algorithmic characteristics of parallel applications.

Project website:
http://netsyslab.ece.ubc.ca/wiki/index.php/FTHPC

18

Backup slide

SDC rates converge

€=
[*7]
MO

aplace of mind

50%

45%

40%

35%

30%

25%

20%

15%

10%

5%

0%

== AES =t==MAT =r=MergeSort-k0 =>=HASHGPU-md5 =#=HASHGPU-shal =@=LBM ==t=Transpose === BFS
w====SCAN =0=MRI-Q ={=Stencil “~==SAD-k1 SAD-k2 SAD-k3 MONTE
»; T ——
— (6]

= = A
i i |
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

