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Why Intermittent Faults?
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!
• Intermittent faults are becoming more prominent with technology scaling 

[Constantinescu 2008]. 
• One experiment has shown that intermittent faults were responsible for at 

least 39% of processor failures [Nightingale et al. 2011]. 
• Large scale Microsoft study on a million consumer PCs based on 

Windows Error Reporting process.

Transient Intermittent Permanent



Intermittent Fault

Why Online Fine-grained Diagnosis?

3

Design 
Errors

Manufacturing 
Errors

Aging/ 
wear out Temperature

!
• Intermittent faults can 

occur after the chip is 
shipped to the customer 
and so they need online 
diagnosis. 
 
!

• The faulty part of chip can 
be disabled after 
diagnosis. 
 
!

• The more fine-grained the 
diagnosis is the less 
slowdown will be imposed 
after repair.

[Gupta et al. 2011] 



Hardware/Software Co-Design 
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SCRIBE: 
Providing Visibility through RUI Log
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!
• Hardware layer collects the 

resource usage information as the 
instruction moves through the 
pipeline.  
 
!

• RUI entry of an instruction is stored 
in a buffer to be sent to memory 
when the instruction is committed.

Example of an 
RUI Entry:



SCRIBE: Logging RUI to Memory
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Failure and Diagnosis Scenario
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!
4. Deterministic replay on another 

core (SIED)

!
1. Gather RUI and log to memory 

(SCRIBE)

2. Failure due to intermittent fault 

3. Log Program’s register and 
memory state (core dump) 

5. Construct replayed program’s 
DDG (SIED)

7. Construct augmented DDG 
and backtrack using analysis 
heuristics (SIED)

6. Log replayed program’s 
register and memory state 
(SIED)
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Hardware/Software Co-Design: 
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SIED: Software Layer
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Dynamic Dependence GraphAugmented

!
 I1 : r3 <- r1 + r2 
!
 I2 : r4 <- r2 + $2 
!
 I3 :  r5 <- r3 * mem[X]

r2r1

r3 r4
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SIED: Example of DDG Analysis
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Simplified Example:
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++The resources with the highest counter values are 
most likely to be faulty.



Experimental Setup
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Simulation Environment sim-mase from SimpleScalar package

Benchmarks SPEC 2006

Fault Model Stuck at 1/0 - Random duration - Random 
starting cycle - in ROB, FU, RS, IFQ, LSQ

Simulated  
Processors {Narrow

Medium

Wide

Embedded/Desktop
Processors

High End Server Processors

{
Power Evaluation Wattch



Experimental Methodology
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Run Application
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Crash Increment RN

Is RN 
threshold 
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Run SIED with 
RUI Logs

Does 
suggestions 
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Diagnosis Deconfiguration

Y NResult
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Diagnosis

Reset
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Diagnosis Accuracy
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!
• Accuracy Definitions: 

• Probability of the faulty resource being among 
the resources suggested by SIED 
!

Average 
Accuracy:!

!
84%

accuracy =
# of Successful Diagnoses

Total # Diagnoses

⇥ 100



Diagnosis Accuracy
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!
• Inaccuracy Reason: 

• SIED only knows about correctness of final 
data 
!

• Backtracking: 
• Resources used in correct instructions in 

the backward slice of erroneous 
instructions will also be counted.

!
!

Maximum Accuracy:  
LSQ - 95%  

 
!

Minimum Accuracy:  
IFQ - 71%



Deconfiguration Granularity
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!
Trade-off: 

Number of  
Deconfigured Units

Higher 
Diagnosis  
Accuracy

Slowdown  
after  

Repair

Ndeconf = 5 
Slowdown = 1.6%



Failure Recurrence
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• Intermittent faults are non-deterministic but recurrent.  
!

• Every diagnosis of a recurrent failure provides more information.  
!

• Resource counters are the average of the resources counters among 
multiple recurrences. 
!

• We report the accuracy after the 4th recurrence.  



Performance and Power Overhead
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!
• Online performance overheads: 

• Narrow: 11.53% 
• Medium: 11.88% 
• Wide: 23.21% 
!

• More Pipeline Stalls => Less Scribe Overhead 
• RUI entries keep being sent even when the  

processor is stalled.  
!

• Largest source of power overhead: 
• D-Cache accesses

Average 
Performance 

Overhead:!
!

14.7%

Average Power 
Overhead:!

!
9%

Performance Power



Related Work
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!
• Diagnosis:  

• [Bower et al. 2005] - Duke University 
• Hardware only approach 
• Based on resource counters 
• Relies on DIVA fault detector 
!

• [Li et al. 2008] - University of Illinois at Urbana-Champaign 
• Hybrid 
• For permanent faults (relying on determinism)  
!

• [Carretero et al. 2011] - Intel 
• Hybrid  
• Only for Load Store Unit 
• Goal: diagnose design faults 

None of the previous works has studied the  
fine grained  
diagnosis of  

intermittent faults.



Summary
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!
• Introduced a Hybrid Hardware-Software technique for intermittent 

hardware fault diagnosis 
• SCRIBE: Provide resource usage visibility to SW layer 

• Performance Overhead : 14.7% 
• Power Overhead : 9% 

• SIED: Use the information provided by SCRIBE for diagnosis 
• Accuracy: 84%  
!

• Diagnosis with such a fine granularity enables chip repair using 
deconfiguration with less than 2% slowdown. 
!

• First framework to decouple  
• diagnosis information and  
• diagnosis algorithms 
!

• Building block for other diagnosis algorithms



Oracle Mode
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!
 I1 : r3 <- r1 + r2 
!
 I2 : r4 <- r2 + $2 
!
 I3 :  r5 <- r3 * mem[X]

r2r1

r3 r4

r5

mem[X]

RUI RUI

RUI RUI RUI

RUI

erroneous

erroneous

correct

!
• Only correctness of final 

data is known. 
!

• Option: Save output of 
every instruction along with 
its RUI. 

• Correctness of all data 
in the DDG will be 
known. 

correct

erroneouscorrect

2 to 3 times the overhead of sending only RUI

Our !
Technique
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