
Hardware-Software Integrated
Diagnosis for Intermittent

Hardware Faults

Majid Dadashi!
Layali Rashid!

Karthik Pattabiraman!
Sathish Gopalakrishnan

June 25, 2014

Electrical and Computer Engineering Department
University of British Columbia

Why Intermittent Faults?

2

!
• Intermittent faults are becoming more prominent with technology scaling

[Constantinescu 2008].
• One experiment has shown that intermittent faults were responsible for at

least 39% of processor failures [Nightingale et al. 2011].
• Large scale Microsoft study on a million consumer PCs based on

Windows Error Reporting process.

Transient Intermittent Permanent

Intermittent Fault

Why Online Fine-grained Diagnosis?

3

Design
Errors

Manufacturing
Errors

Aging/ 
wear out Temperature

!
• Intermittent faults can

occur after the chip is
shipped to the customer
and so they need online
diagnosis. 
 
!

• The faulty part of chip can
be disabled after
diagnosis. 
 
!

• The more fine-grained the
diagnosis is the less
slowdown will be imposed
after repair.

[Gupta et al. 2011]

Hardware/Software Co-Design

4

SCRIBE

SIED

Our Approach

memory

Processor

Running Software

SCRIBE

Software Layer

Hardware Layer

{
HW / SW 

Co-Design

SCRIBE: 
Providing Visibility through RUI Log

5

!
• Hardware layer collects the

resource usage information as the
instruction moves through the
pipeline.  
 
!

• RUI entry of an instruction is stored
in a buffer to be sent to memory
when the instruction is committed.

Example of an
RUI Entry:

SCRIBE: Logging RUI to Memory

6

RUI Entry

`

Superscalar Pipeline Regular Load/Stores

Fetch Dispatch Issue Write Back Commit

Priority Handling

Failure and Diagnosis Scenario

7

!
4. Deterministic replay on another

core (SIED)

!
1. Gather RUI and log to memory

(SCRIBE)

2. Failure due to intermittent fault

3. Log Program’s register and
memory state (core dump)

5. Construct replayed program’s
DDG (SIED)

7. Construct augmented DDG
and backtrack using analysis
heuristics (SIED)

6. Log replayed program’s
register and memory state
(SIED)

Diagnosis
Algorithm Replay S/W

H/WFailure

Process

Memory

DDG RUI

Program 
State

Program 
State

Non-Faulty  
Core

Faulty  
Core

1

2

3

4

5

6

7

8

S/W

H/W

Hardware/Software Co-Design:

8

SCRIBE

SIED

memory

Processor

Running Software SIED

Our Approach

Software Layer

Hardware Layer

{
HW / SW 

Co-Design

SIED: Software Layer

9

Dynamic Dependence GraphAugmented

!
 I1 : r3 <- r1 + r2 
!
 I2 : r4 <- r2 + $2 
!
 I3 : r5 <- r3 * mem[X]

r2r1

r3 r4

r5

mem[X]

RUI RUI

RUI RUI RUI

RUI

erroneous

erroneous

correct

++

0

!

SIED: Example of DDG Analysis

10

Simplified Example:

r2r1

r3 r4

r5

mem[X]

RUI RUI

RUI RUI RUI

RUI

erroneous

erroneous

correct

Resource Counter

Adder 1

Adder 2 0

ROB[3] 0

ROB[4] 0

ROB[5] 0

IFQ[2] 0

IFQ[3] 0

IFQ[5]

1

1

0

…

Resource Counters

++

++1

1 ++

1

1

01 ++

1

1

1

1

1

1

++

++

1

1

1

++

2

1

++The resources with the highest counter values are
most likely to be faulty.

Experimental Setup

11

Simulation Environment sim-mase from SimpleScalar package

Benchmarks SPEC 2006

Fault Model Stuck at 1/0 - Random duration - Random
starting cycle - in ROB, FU, RS, IFQ, LSQ

Simulated  
Processors {Narrow

Medium

Wide

Embedded/Desktop
Processors

High End Server Processors

{
Power Evaluation Wattch

Experimental Methodology

12

Run Application

Inject Fault

Crash Increment RN

Is RN
threshold
reached

Run SIED with
RUI Logs

Does
suggestions

contain the faulty
resource

Successful
Diagnosis Deconfiguration

Y NResult

YN

Y

Unsuccessful
Diagnosis

Reset

N

Diagnosis Accuracy

13

!
• Accuracy Definitions:

• Probability of the faulty resource being among
the resources suggested by SIED 
!

Average
Accuracy:!

!
84%

accuracy =
of Successful Diagnoses

Total # Diagnoses

⇥ 100

Diagnosis Accuracy

14

!
• Inaccuracy Reason:

• SIED only knows about correctness of final
data 
!

• Backtracking:
• Resources used in correct instructions in

the backward slice of erroneous
instructions will also be counted.

!
!

Maximum Accuracy:  
LSQ - 95%  

 
!

Minimum Accuracy:  
IFQ - 71%

Deconfiguration Granularity

15

!
Trade-off:

Number of  
Deconfigured Units

Higher
Diagnosis
Accuracy

Slowdown
after

Repair

Ndeconf = 5 
Slowdown = 1.6%

Failure Recurrence

16

• Intermittent faults are non-deterministic but recurrent.  
!

• Every diagnosis of a recurrent failure provides more information.  
!

• Resource counters are the average of the resources counters among
multiple recurrences. 
!

• We report the accuracy after the 4th recurrence.  

Performance and Power Overhead

17

!
• Online performance overheads:

• Narrow: 11.53%
• Medium: 11.88%
• Wide: 23.21% 
!

• More Pipeline Stalls => Less Scribe Overhead
• RUI entries keep being sent even when the  

processor is stalled.  
!

• Largest source of power overhead:
• D-Cache accesses

Average
Performance

Overhead:!
!

14.7%

Average Power
Overhead:!

!
9%

Performance Power

Related Work

18

!
• Diagnosis:

• [Bower et al. 2005] - Duke University
• Hardware only approach
• Based on resource counters
• Relies on DIVA fault detector
!

• [Li et al. 2008] - University of Illinois at Urbana-Champaign
• Hybrid
• For permanent faults (relying on determinism)  
!

• [Carretero et al. 2011] - Intel
• Hybrid
• Only for Load Store Unit
• Goal: diagnose design faults

None of the previous works has studied the  
fine grained  
diagnosis of  

intermittent faults.

Summary

19

!
• Introduced a Hybrid Hardware-Software technique for intermittent

hardware fault diagnosis
• SCRIBE: Provide resource usage visibility to SW layer

• Performance Overhead : 14.7%
• Power Overhead : 9%

• SIED: Use the information provided by SCRIBE for diagnosis
• Accuracy: 84%  
!

• Diagnosis with such a fine granularity enables chip repair using
deconfiguration with less than 2% slowdown. 
!

• First framework to decouple
• diagnosis information and
• diagnosis algorithms 
!

• Building block for other diagnosis algorithms

Oracle Mode

20

!
 I1 : r3 <- r1 + r2 
!
 I2 : r4 <- r2 + $2 
!
 I3 : r5 <- r3 * mem[X]

r2r1

r3 r4

r5

mem[X]

RUI RUI

RUI RUI RUI

RUI

erroneous

erroneous

correct

!
• Only correctness of final

data is known. 
!

• Option: Save output of
every instruction along with
its RUI.

• Correctness of all data
in the DDG will be
known.

correct

erroneouscorrect

2 to 3 times the overhead of sending only RUI

Our !
Technique

References

21

!
• [Nightingale et al. 2011] E. B. Nightingale, J. R. Douceur, and V. Orgovan,

“Cycles, cells and platters: An empirical analysis of hardware failures on a
million consumer PCs,” ser. EuroSys, 2011, pp. 343–356.

• [Bower et al. 2005] Fred A. Bower, Daniel J. Sorin, and Sule Ozev. 2005. A
Mechanism for Online Diagnosis of Hard Faults in Microprocessors (MICRO). 197–
208.

• [Li et al. 2008] Man-Lap Li, P. Ramachandran, S.K. Sahoo, S.V. Adve, V.S. Adve,
and Yuanyuan Zhou. 2008. Trace-based microarchitecture- level diagnosis of
permanent hardware faults (DSN). 22–31.

• [Carretero et al. 2011] J. Carretero, X. Vera, J. Abella, T. Ramirez, M. Monchiero,
and A. Gonzalez. 2011. Hardware/software-based diagnosis of load-store queues
using expandable activity logs (HPCA). 321–331.

• [Constantinescu 2008] C. Constantinescu, “Intermittent faults and effects on
reliability of integrated circuits,” ser. RAMS, 2008, pp. 370–374.

• [Rashid et al. 2012] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan,
“Intermittent hardware errors recovery: Modeling and evaluation,” ser. QEST, 2012,
pp. 220–229.

• [Gupta et al. 2011] Gupta, Shantanu, et al. "Stagenet: A reconfigurable fabric for
constructing dependable cmps." Computers, IEEE Transactions on 60.1 (2011):
5-19.

!

Configurations

22

