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Understanding JavaScript Event-Based Interactions with Clematis
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Web applications have become one of the fastest growing types of software systems today. Despite their
popularity, understanding the behaviour of modern web applications is still a challenging endeavour for de-
velopers during development and maintenance tasks. The challenges mainly stem from the dynamic, event-
driven, and asynchronous nature of the JavaScript language. We propose a generic technique for capturing
low-level event-based interactions in a web application and mapping those to a higher-level behavioural
model. This model is then transformed into an interactive visualization, representing episodes of triggered
causal and temporal events, related JavaScript code executions, and their impact on the dynamic DOM
state. Our approach, implemented in a tool called CLEMATIS, allows developers to easily understand the
complex dynamic behaviour of their application at three different semantic levels of granularity. Further-
more, CLEMATIS helps developers bridge the gap between test cases and program code by localizing the
fault related to a test assertion. The results of our industrial controlled experiment show that CLEMATIS is
capable of improving the comprehension task accuracy by 157%, while reducing the task completion time by
47%. A follow up experiment reveals that CLEMATIS improves the fault localization accuracy of developers
by a factor of two.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging; D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and Enhancement

General Terms: Design, Algorithms, Experimentation

Additional Key Words and Phrases: Program comprehension, event-based interactions, JavaScript, web ap-
plications, fault localization

1. INTRODUCTION
JavaScript is widely used today to create interactive modern web applications that re-
place many traditional desktop applications. However, understanding the behaviour
of web applications is a challenging endeavour for developers [Oney and Myers 2009;
Zaidman et al. 2013]. Program comprehension is known to be an essential step in soft-
ware engineering, consuming up to 50% [Corbi 1989] of the effort in software mainte-
nance and analysis activities.

First, the weakly-typed and highly-dynamic nature of JavaScript makes it a par-
ticularly difficult language to analyze. Second, JavaScript code is extensively used to
seamlessly mutate the Document Object Model (DOM) at runtime. This dynamic in-
terplay between two separate entities, namely JavaScript and the DOM, can become
quite complex to follow [Ocariza et al. 2013]. Third, JavaScript is an event-driven lan-
guage allowing developers to register various event listeners on DOM nodes. While
most events are triggered by user actions, timing events and asynchronous callbacks
can be fired with no direct input from the user. To make things even more complex, a
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single event can propagate on the DOM tree and trigger multiple listeners according
to the event capturing and bubbling properties of the event model [W3C 2000].

Unfortunately, despite its importance and challenges, there is currently not much
research dedicated to supporting program comprehension for web applications [Cor-
nelissen et al. 2009]. Popular tools, such as Firebug and Chrome DevTools, are limited
in their capabilities to support web developers effectively.

In this paper, we present a generic, non-intrusive technique, called CLEMATIS,
for supporting web application comprehension. Through a combination of automated
JavaScript code instrumentation and transformation, we capture a detailed trace of
a web application’s behaviour during a particular user session. Our technique trans-
forms the trace into an abstract behavioural model, preserving temporal and causal
relations within and between involved components. The model is then presented to
the developers as an interactive visualization that depicts the creation and flow of
triggered events, the corresponding executed JavaScript functions, and the mutated
DOM nodes.

We then apply our approach to further aid developers in understanding root causes
of test failures. Fault localization has been found to be one of the most difficult phases
of debugging [Vessey 1985], and has been an active topic of research in the past
[Agrawal et al. 1995; Cleve and Zeller 2005a; Jones and Harrold 2005; Zeller 2002a].
Although testing of modern web applications has received increasing attention in the
recent past [Artzi et al. 2011; Mesbah et al. 2012; Thummalapenta et al. 2013], there
has been limited work on what happens after a test reveals an error.

To the best of our knowledge, we are the first to provide a generic technique for
capturing low-level event-based interactions in a JavaScript application, and map-
ping and visualizing those interactions as higher-level behavioural models. This pa-
per builds upon our previous work, where we proposed CLEMATIS and evaluated it
through two user experiments [?]. In this paper, we extend the approach and evalua-
tion of CLEMATIS, as we propose a novel test failures comprehension unit and evaluate
its effectiveness through a user experiment. Overall, our work makes the following key
contributions:

— We propose a generic technique for capturing and presenting the complex dynamic
behaviour of web applications. In particular, our technique:
— Captures the consequences of JavaScript and DOM events in terms of the exe-

cuted JavaScript code, including the functions that are called indirectly through
event propagation on the DOM tree.

— Extracts the source-and-target relations for asynchronous events, i.e., timing
events and XMLHttpRequest requests/callbacks.

— Identifies and tracks mutations to the DOM resulting from each event.
— We build a novel model for capturing the event-driven interactions as well as an

interactive, visual interface supporting the comprehension of the program through
three different semantic levels of zooming granularity.

— We implement our technique in a generic open source tool called CLEMATIS, which
(1) does not modify the web browser, (2) is independent of the server technology, and
(3) requires no extra effort from the developer to use.

— We extend CLEMATIS to automatically connect test assertion failures to faulty Java-
Script code considering the involved DOM elements.

— We empirically evaluate CLEMATIS through three controlled experiments compris-
ing 48 users in total. The first two studies investigate the code comprehension ca-
pabilities of CLEMATIS. One of these studies is carried out in a lab environment,
while the other is carried out in an industrial setting. The results of the industrial
experiment show that CLEMATIS can reduce the task completion time by 47%, while
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1 <BODY>
2 <FIELDSET class="registration">
3 Email: <INPUT type="text" id="email"/>
4 <BUTTON id="submitBtn">Submit </BUTTON >
5 <DIV id="regMsg"></DIV>
6 </FIELDSET >
7 </BODY>

Fig. 1: Initial DOM state of the running example.

improving the accuracy by 157%. We evaluate the test failure comprehension unit
of CLEMATIS through a third user experiment. The results show that CLEMATIS
improves the fault localization accuracy of developers by a factor of two.

2. CHALLENGES AND MOTIVATION
Modern web applications are largely event-driven. Their client-side execution is nor-
mally initiated in response to a user-action triggered event, a timing event, or the
receipt of an asynchronous callback message from the server. As a result, web devel-
opers encounter many program comprehension challenges in their daily development
and maintenance activities. We use an example, presented in Figures 1–2, to illustrate
these challenges.

Furthermore, developers often write test cases that assert the behaviour of a web
application from an end-user’s perspective. However, when such test cases fail, it is
difficult to relate the assertion failure to the faulty line of code. The challenges mainly
stem from the existing disconnect between front-end test cases that assert the DOM
and the application’s underlying JavaScript code. We use another example, illustrated
in Figure 3, to demonstrate these challenges. A different example was chosen to allow
us focus on challenges in understanding test failures.

Note that these are simple examples and these challenges are much more potent in
large and complex web applications.

2.1. Challenge 1: Event Propagation
The DOM event model [W3C 2000] makes it possible for a single event, fired on a
particular node, to propagate through the DOM tree hierarchy and indirectly trigger
a series of other event-handlers attached to other nodes. There are typically two types
of this event propagation in web applications; (1) with bubbling enabled, an event
first triggers the handler of the deepest child element on which the event was fired,
and then it bubbles up on the DOM tree and triggers the parents’ handlers. (2) When
capturing is enabled, the event is first captured by the parent element and then passed
to the event handlers of children, with the deepest child element being the last. Hence,
a series of lower-level event-handlers, executed during the capturing and bubbling
phases, may be triggered by a single user action. The existence or the ordering of these
handlers is often inferred manually by the developer, which becomes more challenging
as the size of the code/DOM tree increases.
Example. Consider the sample code shown in Figures 1–2. Figure 1 represents the ini-
tial DOM structure of the application. It mainly consists of a fieldset containing a
set of elements for the users to enter their email address to be registered for a service.
The JavaScript code in Figure 2 partly handles this submission. When the user clicks
the submit button, a message appears indicating that the submission was successful.
This message is displayed from within the event-handler submissionHandler() (line
7), which is attached to the button on line 2 of Figure 2. However, after a few seconds,
the developer observes that the message unexpectedly starts to fade out. In the case
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1 $(document).ready(function () {
2 $('#submitBtn ').click(submissionHandler);
3 $('fieldset.registration ').click(function () {
4 setTimeout(clearMsg , 3000);
5 }); });
6 ...
7 function submissionHandler(e) {
8 $('#regMsg ').html("Submitted!");
9 var email = $('#email').val();

10 if (isEmailValid(email)) {
11 informServer(email);
12 $('#submitBtn ').attr("disabled", true);
13 }
14 }
15 ...
16 function informServer(email) {
17 $.get('/register/', { 'email ': email }, function(data) {
18 $('#regMsg ').append(data);
19 });
20 return;
21 }
22 ...
23 function clearMsg () {$('#regMsg ').fadeOut (2000) ;}

Fig. 2: JavaScript code of the running example.

of this simple example, she can read the whole code and find out that the click on the
submit button has bubbled up to its parent element, namely fieldset. Closer inspec-
tion reveals that fieldset’s anonymous handler function is responsible for changing
the value of the same DOM element through a setTimeout function (lines 3–5 in Figure
2). In a more complex application, the developer may be unaware of the existence of the
parent element, its registered handlers, or the complex event propagation mechanisms
such as bubbling and capturing.

2.2. Challenge 2: Asynchronous Events
Web browsers provide a single thread for web application execution. To circumvent
this limitation and build rich responsive web applications, developers take advantage
of the asynchronous capabilities offered by modern browsers, such as timeouts and
XMLHttpRequest (XHR) calls. Asynchronous programming, however, introduces an ex-
tra layer of complexity in the control flow of the application and adversely influences
program comprehension.
Timeouts. Events can be registered to fire after a certain amount of time or at certain
intervals in JavaScript. These timeouts often have asynchronous callbacks that are
executed when triggered. In general, there is no easy way to link the callback of a
timeout to its source, which is important to understand the program’s flow of execution.
XHR Callbacks. XHR objects are used to exchange data asynchronously with the
server, without requiring a page reload. Each XHR goes through three main phases:
open, send, and response. These three phases can be scattered throughout the code.
Further, there is no guarantee on the timing and the order of XHR responses from
the server. As in the case of timeouts, mapping the functionality triggered by a server
response back to its source request is a challenging comprehension task for developers.
Example. Following the running example, the developer may wish to further investi-
gate the unexpected behaviour: the message has faded out without a direct action from
the developer. The questions that a developer might ask at this point include: “What
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exactly happened here?” and “What was the source of this behaviour?”. By reviewing
the code, she can find out that the source of this behaviour was the expiration of a time-
out that was set in line 4 of Figure 2 by the anonymous handler defined in lines 3–5.
However the callback function, defined on line 23 of Figure 2, executes asynchronously
and with a delay, long after the execution of the anonymous handler function has ter-
minated. While in this case, the timing behaviour can be traced by reading the code,
this approach is not practical for large applications. A similar problem exists for asyn-
chronous XHR calls. For instance, the anonymous callback function of the request sent
in the informServer function (line 17, Figure 2) updates the DOM (line 18).

2.3. Challenge 3: Implications of Events
Another challenge in understanding the flow of web applications lies in understanding
the consequences of (in)directly triggered events. Handlers for a (propagated) DOM
event, and callback functions of timeouts and XHR requests, are all JavaScript func-
tions. Any of these functions may change the observable state of the application by
modifying the DOM. Currently, developers need to read the code and make the connec-
tions mentally to see how an event affects the DOM state, which is quite challenging.
In addition, there is no easy way of pinpointing the dynamic changes made to the
DOM state as a result of event-based interactions. Inferring the implications of events
is, therefore, a significant challenge for developers.
Example. After the submitBtn button is clicked in the running example, a confirmation
message will appear on-screen and disappear shortly thereafter (lines 8&23, Figure
2). Additionally, the attributes of the button are altered to disable it (line 12). It can be
difficult to follow such DOM-altering features in an application’s code.

2.4. Challenge 4: Linking Test Failures to Faults
To test their web applications, developers often write test cases that check the appli-
cation’s behaviour from an end-user’s perspective using popular frameworks such as
Selenium1. Such test cases are agnostic of the JavaScript code and operate by simulat-
ing a series of user actions followed by assertions on the application’s runtime DOM.
As such, they can detect deviations in the expected behaviour as observed on the DOM.

However, when a web application test assertion fails, determining the faulty pro-
gram code responsible for the failure can be a challenging endeavour. The main chal-
lenge here is the implicit link between three different entities, namely, the test as-
sertion, the DOM elements on which the assertion fails (checked elements), and the
faulty JavaScript code responsible for modifying those DOM elements. To understand
the root cause of the assertion failure, the developer needs to manually infer a mental
model of these hidden links, which can be tedious. Further, unlike in traditional (e.g.,
Java) applications, there is no useful stack trace produced when a web test case fails
as the failure is on the DOM, and not on the application’s JavaScript code. This fur-
ther hinders debugging as the fault usually lies within the application’s code, and not
in its representative DOM state. To the best of our knowledge, there is currently no
tool support available to help developers in this test failure understanding and fault
localization process.
Example. The example in Figure 3 uses a small code snippet based on the open-source
WSO2 eStore application 2 to demonstrate the challenges involved and our solution.
The store allows clients to customize and deploy their own digital storefront. A partial
DOM representation of the page is shown in Figure 3c. Figure 3d shows a Selenium

1http://seleniumhq.org
2https://github.com/wso2/product-es
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1			<div	class="row-sort-assets">
2							<div	class="sort-assets"></div>
3							...
4			</div>
5			<div	id="assets-container"	data-pages="">
6							<div	class="asset-row">
7											<div	class="asset-icon"></div>
8											...
9							</div>
10		</div>

1		public	void	testSortByDefaults()	{
2						driver.get("http://localhost:9763/store/assets/gadget");
3						driver.findElement(By.css("i.icon-star")).click();
4						int	s1	=	driver.findElements(By.css(".asset-icon")).size();
5						assertEquals(12,	s1);
6
7						scrollWindowDown();
8						int	s2	=	driver.findElements(By.css(".asset-icon")).size();
9						assertEquals(4,	s2	-	s1);
10		}	

1			var	currentPage	=	1;
2			var	sortType	=	'default';
3			var	gridSize	=	8;
4			var	infiniteScroll	=	false;
5			
6			var	renderAssets	=	function(url,	size)	{
7							var	data	=	assetsFromServer(url);
8			
9							var	temp	=	'<div	class="asset-row">';
10						for	(i	=	0;	i	<	size;	i++)	{
11										temp	+=	'		<div	class="asset-icon">';	
12										...	//	Reading	from	variable	'data'
13										temp	+=	'		</div>';
14						}
15						temp	+=	'</div>';
16							
17						return	$('#assets-container').append(temp);
18		};
19			
20		$(document).on('click',	'#sort-assets',	function(){
21						$('#sort-assets').removeClass('selected-type')
22						$(this).addClass('selected-type');
23						currentPage	=	1;
24						sortType	=		$(this).attr('type');
25						gridSize	=	12;
26						renderAssets(url	+	sortType	+	currentPage,	gridSize)
27						infiniteScroll	=	true;
28		});
29			
30		var	scroll	=	function()	{
31						if(infiniteScroll)	{
32										currentPage++;
33										renderAssets(url	+sortType	+	currentPage,	gridSize/2)
34						}
35		};
36		$(window).bind('scroll',	scroll);

(a)

(d)

(c)

(b)

(e)

AAll CategoriesAll Categories

Bar Chart Bubble Chart Date Time Directions by Google

assertEquals(4,	s2	-	s1),	AssertionFailure:	expected	<4>	but	was:	<6>

1

3

2

4

Fig. 3: Test assertion understanding example (a) JavaScript code, (b) Portion
of DOM-based UI, (c) Partial DOM, (d) DOM-based (Selenium) test case, (e)
Test case assertion failure. The dotted lines show the links between the dif-
ferent entities that must be inferred.

test case, written by the developers of the application for verifying the application’s
functionality in regards to “sorting” and “viewing” the existing assets. The JavaScript
code responsible for implementing the functionality is shown in Figure 3a.

After setting the environment, the test case performs a click to sort the assets. Then,
an assertion is made to check whether the expected assets are present on the DOM
of the page (line 5 of Figure 3d). The second portion of the test case involves scrolling
down the webpage and asserting the existence of four additional assets on the DOM
(lines 7–9).

While the mapping between the test case and related JavaScript code may seem
trivial to find for this small example, challenges arise as the JavaScript code-base and
the DOM increase in size. As a result, it can be difficult to understand the reason for a
test case failure or even which features are being tested by a given test case.

When a test case fails, first one needs to identify the dependencies of the test case.
Based on the fail message in our example (Figure 3e), it is almost impossible to deter-
mine the cause of failure. Closer examination reveals the dependencies of assertions
on variables s1 and s2, which in turn depend on DOM elements with class asset-icon
(link ∂ in Figure 3).

Next, the developer/tester is forced to find the points of contact between the DOM
elements and the JavaScript code. Finding the JavaScript code responsible for modify-
ing this subset of DOM elements is not easy. In the context of our example, a developer
would eventually conclude that line 17 of Figure 3a is actually responsible for append-
ing elements to the DOM. Discovering such implicit links (∑ and ∏ in Figure 3) needs
tedious examination in smaller programs, and may not be feasible in larger applica-
tions.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2015.



Understanding JavaScript Event-Based Interactions with Clematis A:7

ProxyServer Browser

JavaScript Transformation

Transformation
to Java data 

structure

Episodes 
& Story 
Creation

Linking DOM
Mutations

Behavioural
Model 

Generation
Visualization

DOM events

Timeouts

XHR callbacks

Function calls

DOM mutations

JSON

Trace Collection

1

2

3

4

567

Fig. 4: A processing overview of our approach.

In JavaScript, events can trigger code execution and must be taken into account
for finding the source of the fault. The renderAssets() function in our example (Fig-
ure 3) can be called from within two event handlers (lines 26 and 33, respectively,
shown as π). While in our example it may be straight-forward to link the call to
scrollWindowDown() (line 7 of Figure 3d) to the execution of event handler scroll (line
30–35 of Figure 3a) due to the similarity in naming convention, such a linear mapping
is neither possible in all cases nor easily inferable.

Finally, to fully understand an assertion and its possible cause of failure, the data
and control dependencies for the DOM-altering statements must be determined and
examined by the developer in order to identify all possible points of failure. In the case
of eStore, the modification of the DOM within renderAssets() depends on the argu-
ments passed into the function (lines 7 & 10). Dotted line 4 shows possible invocations
of renderAssets(), revealing dependencies on global variables such as gridSize. Trac-
ing the dependencies reveals that an update to gridSize on line 25 of Figure 3a is the
root cause of the unusual behaviour.

3. APPROACH
In this section, we describe our approach for addressing the challenges mentioned in
the previous section. An overview of the overall process is depicted in Figure 4, which
consists of the following main steps:

— First, our technique captures a fine-grained trace of all semantically related event-
based interactions within a web application’s execution, in a particular user ses-
sion. The collection of this detailed trace is enabled through a series of automated
JavaScript transformations (Section 3.1).

— Next, a behavioural model is extracted from the information contained within the
trace. The model structures the captured trace and identifies the implicit causal and
temporal relationships between various event-based interactions (Section 3.2).

— Then, the model is extended through a combination of selective code instrumenta-
tion and dynamic backward slicing to bridge the gap between test cases and pro-
gram code (Section 3.3).

— Finally, based on the inferred behavioural model, our approach generates an inter-
active (web-based) user interface, visualizing and connecting all the pieces together.
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This interactive visualization assists developers during their web application com-
prehension and maintenance tasks (Section 3.4).

We describe each step further below.

3.1. JavaScript Transformation and Tracing
To automatically trace semantically related event-based interactions and their impact,
we transform the JavaScript code on-the-fly. Our approach generates a trace compris-
ing multiple trace units. A trace unit contains information acquired through the in-
terception of a particular event-based interaction type, namely, DOM events, timing
events, XHR calls and callbacks, function calls, and DOM mutations. The obtained
trace is used to build a behavioural model (as described in subsection 3.2).
Interposing on DOM Events. There are two ways event listeners can be bound to
a DOM element in JavaScript. The first method is programatically using the DOM
Level 1 (e.click=handler) or DOM Level 2 (e.addEventListener) methods W3C [2000]
in JavaScript code. To record the occurrence of such events, our technique replaces
the default registration of these JavaScript methods such that all event listeners are
wrapped within a tracing function that logs the occurring event’s time, type, and tar-
get.

The second and more traditional way to register an event listener is inline in
the HTML code (e.g., <DIV onclick=‘handler();’>). The effect of this inline as-
signment is semantically the same as the first method. Our technique interposes
on inline-registered listeners by removing them from their associated HTML ele-
ments, annotating the HTML elements, and re-registering them using the substituted
addEventListener function. This way we can handle them similarly to the program-
matically registered event handlers.
Capturing Timeouts and XHRs. For tracing timeouts, we replace the browser’s
setTimeout() method and the callback function of each timeout with wrapper func-
tions, which allow us to track the instantiation and resolution of each timeout. A time-
out callback usually happens later and triggers new behaviour, and thus we consider
it as a separate component than a setTimeout(). We link these together through a
timeout_id and represent them as a causal connection later. In our model, we distin-
guish between three different components for the open, send, and response phases of
each XHR object. We intercept each component by replacing the XMLHttpRequest object
of the browser. The new object captures the information about each component while
preserving its functionality.
Recording Function Traces. To track the flow of execution within a JavaScript-
based application, we instrument three code constructs, namely function declarations,
return statements, and function calls. Each of these code constructs are instrumented
differently, as explained below.

Function Declarations: Tracing code is automatically added to each function dec-
laration allowing us to track the flow of control between developer-defined functions
by logging the subroutine’s name, arguments, and line number. In case of anonymous
functions, the line number and source file of the subroutine are used as supplementary
information to identify the executed code.

As this communication is done each time a function is executed, argument values
are recorded dynamically at the cost of a small overhead. Figure 5 contains the simple
clearMsg() JavaScript function from the running example shown in Figure 2 (line 22),
which has been instrumented to record both the beginning and end of its execution
(lines 2 and 4).

Return Statements: Apart from reaching the end of a subroutine, control can be re-
turned back to a calling function through a return statement. There are two reasons
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1 function clearMsg () {
2 send(JSON.stringify ({ messageType: "FUNCTION_ENTER", fnName: "clearMsg", -

args: null , ...}));
3 $('#submissionMsg ').fadeOut (2000);
4 send(JSON.stringify ({ messageType: "FUNCTION_EXIT", fnName: "clearMsg",  -

...}));
5 }

Fig. 5: Instrumented JavaScript function declaration.

1 function informServer(email) {
2 $.get('/register/', { email }, function(data) {
3 $('#regMsg ').append(data);
4 });
5 return RSW(null , 5);
6 }

Fig. 6: Instrumented JavaScript return statement.

1 function submissionHandler(e) {
2 $('#regMsg ')[FCW("html")]("Submitted!");
3 var email = $('#email ')[FCW("value")]();
4 if (FCW(isEmailValid)(email)) {
5 FCW(informServer)(email);
6 $('#submitBtn ')[FCW("attr")]("disabled", true);
7 }
8 }
9 function clearMsg () {

10 $('#regMsg ')[FCW("fadeOut")](2000);
11 }
12 function FCW(fnName) { // Function Call Wrapper
13 send(JSON.stringify ({ messageType: "FUNCTION_CALL" ,..., targetFunction: -

fnName }));
14 return fnName;
15 }

Fig. 7: Instrumented JavaScript function calls.

for instrumenting return statements: (1) to accurately track nested function calls, and
(2) to provide users with the line numbers of the executed return statements. Without
recording the execution of return statements, it would be difficult to accurately track
nested function calls. Furthermore, by recording return values and the line number of
each return statement, CLEMATIS is able to provide users with contextual information
that can be useful during the debugging process.

Figure 6 illustrates the instrumentation for the return statement of informServer(),
a function originally shown in the running example (Figure 2, lines 16-21). The wrap-
per function RSW receives the return value of the function and the line number of the
return statement and is responsible for recording this information before execution of
the application’s JavaScript is resumed.

Function Calls: In order to report the source of a function invocation, our approach
also instruments function calls. When instrumenting function calls, it is important
to preserve both the order and context of each dynamic call. To accurately capture
the function call hierarchy, we modify function calls with an inline wrapper function.
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1 Before Instrumentation:
2 getRegistrationDate(getStudentNumber(document.getElementById('username ' -

).value));

4 After Clematis Instrumentation:
5 FCW(getRegistrationDate)(FCW(getStudentNumber)(document -

FCW("getElementById")('username ').value));

7 Alternative Instrumentation:
8 FCW(getRegistrationDate);
9 FCW(getStudentNumber);

10 FCW(getElementById);
11 getRegistrationDate(getStudentNumber(document.getElementById('username ' -

).value));

Fig. 8: Comparison of instrumention techniques for JavaScript function calls.

This allows us to elegantly deal with two challenging scenarios. First, when multiple
function calls are executed from within a single line of JavaScript code, it allows us
to infer the order of these calls without the need for complex static analysis. Second,
inline instrumentation enables us to capture nested function calls. Figure 7 depicts the
instrumentation of function calls for two methods from Figure 1, submissionHandler()
and clearMsg().

Once instrumented using our technique, the function calls to isEmailValid() and
informServer() are wrapped by function FCW (lines 4 and 5). The interposing function
FCW() executes immediately before each of the original function calls and interlaces
our function logging with the application’s original behaviour. Class methods html(),
value(), attr(), and fadeOut() are also instrumented in a similar way (lines 2, 3, 6,
and 10 respectively).

For comparison, an alternative instrumentation technique is shown on lines 8 – 10
of figure 8. While such a technique might be sufficient for measuring function cover-
age, it does not capture the order of execution accurately for nested function calls or
when multiple function calls are made from a single line. Doing so would require more
complex static analysis.
DOM Mutations. Information about DOM mutations can help developers relate the
observable changes of an application to the corresponding events and JavaScript code.
To capture this important information, we introduce an observer module into the sys-
tem. This information is interleaved with the logged information about events and
functions, enabling us to link DOM changes with the JavaScript code that is responsi-
ble for these mutations.

3.2. Capturing a Behavioural Model
We use a graph-based model to capture and represent a web application’s event-based
interactions. The graph is multi-edge and directed. It contains an ordered set of nodes,
called episodes, linked through edges that preserve the chronological order of event
executions.3 In addition, causal edges between the nodes represent asynchronous even-
ts. We describe the components of the graph below.
Episode Nodes. An episode is a semantically meaningful part of the application be-
haviour, initiated by a synchronous or an asynchronous event. An event may lead to
the execution of JavaScript code, and may change the DOM state of the application.

3Because JavaScript is single-threaded on all browsers, the events are totally ordered in time.
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An episode node contains information about the static and dynamic characteristics of
the application, and consists of three main parts:

(1) Source: This is the event that started the episode, and its contextual information.
This source event is either a DOM event, a timeout callback, or a response to an
XHR request, and often causes a part of the JavaScript code to be executed.

(2) Trace: This includes all the functions that are executed either directly or indirectly
after the source event occurs. A direct execution corresponds to functions that are
called from within an event handler on a DOM element. An indirect execution cor-
responds to functions that get called due to the bubbling and capturing propagation
of DOM events. The trace also includes all (a)synchronous events that were created
within the episode. All the invoked functions and initiated events are captured in
the trace part, and their original order of execution and dependency relations are
preserved.

(3) Result: This is a section in each episode summarizing the changes to the DOM state
of the application. These changes are caused by the execution of the episode trace
and are usually observable by the end-user.

Edges. In our model, edges represent a progression of time and are used to connect
episode nodes. Two types of edges are present in the model:

(1) Temporal: The temporal edges connect one episode node to another, indicating that
an episode succeeded the previous one in time.

(2) Causal: These edges are used to connect different components of an asynchronous
event, e.g., timeouts and XHRs. A causal edge from episode s to d indicates episode
s was caused by episode d in the past.

Story. The term story refers to an arrangement of episode nodes encapsulating a se-
quence of interactions with a web application. Different stories can be captured ac-
cording to different features, goals, or use-cases that need investigation.

Algorithm 1 takes the trace collected from a web application as input and outputs a
story with episodes and the edges between them. First, the trace units are extracted
and sorted based on the timestamp of their occurrence (line 3). Next, the algorithm
iteratively forms new episodes and assigns trace units to the source, trace, and the re-
sult fields of individual episodes. If it encounters a trace unit that could be an episode
source (i.e., an event handler, a timeout, or an XHR callback), a new episode is created
(lines 5–6) and added to the list of nodes in the story graph (line 8). The encoun-
tered trace unit is added to the episode as its source (line 7). Line 9 shows different
types of trace units that could be added to the trace field of the episode. This trace
is later processed to form the complete function call hierarchy as well as each func-
tion’s relation with the events inside that episode. Next, DOM mutation units that
were interleaved with other trace units are organized and linked to their respective
episode (lines 11–12). An episode terminates semantically when the execution of the
JavaScript code related to that episode is finished. The algorithm also waits for a time
interval ⌧ to ensure that the execution of immediate asynchronous callbacks is com-
pleted (line 13). When all of the trace units associated with the source, trace, and result
of the episode are assigned and the episode termination criteria are met, a temporal
edge is added to connect the recently created episode node to the previous one (line
14). The same process is repeated for all episodes by proceeding to the next episode
captured in the trace (line 15). After all episodes have been formed, the linkages be-
tween distant asynchronous callbacks – those that did not complete immediately – are
extracted and added to the graph as causal edges (lines 16–18). Finally, the story is
created based on the whole graph and returned (lines 19–20).
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ALGORITHM 1: Story Creation
input : trace
output: story
Procedure CREATEMODEL() begin

1 G < V,E > story ;
2 ecurr, eprev  ;
3 ⌃tu EXTRACTANDSORTTRACEUNITS(trace)
4 foreach tu 2 ⌃tu do
5 if eprev ⌘ ;||eprev .ended()&&

tu.type ⌘ episodeSource then
6 ecurr  CREATEEPISODE()
7 ecurr.source SETEPISODESOURCE(tu)
8 V  V [ ecurr

9 else if (tu.type ⌘ FunctionTrace||EventHandler) ||
(tu.type ⌘ XHRCallback||T imeoutCallback
&& ¬episodeEndCriteria) then

10 ecurr.trace ecurr.trace [ tu

11 else if tu.type ⌘ DOMMutation then
12 ecurr.results ecurr.results [ tu

13 if episodeEndCriteriaSatisfied then
14 E  E [ CREATETEMPORALLINK(eprev , ecurr)
15 eprev  ecurr

16 timeoutMap<TimeoutSet, TimeoutCallback> MAPTIMEOUTTRACEUNITS(⌃tu)
17 XHRMap<XHROpen, XHRSend, XHRCallback> MAPXHRTRACEUNITS(⌃tu)
18 E  E [ EXTRACTCAUSALLINKS(TIMEOUTMAP, XHRMAP)
19 story BUILDSTORY(G < V,E >)
20 return story

3.3. Understanding Test Assertion Failures
In this section, we extend CLEMATIS to further assist developers in the comprehension
process. We add a test case comprehension strategy to CLEMATIS, to help developers
understand the root cause of a test failure. Our technique automatically links a test
assertion failure to the checked DOM elements, and subsequently to the related state-
ments in the JavaScript code. The following subsections describe our strategies for
fulfilling the aforementioned requirements of JavaScript test failure comprehension.

Relating Test Assertions to DOM Elements. The DOM acts as the interface be-
tween a front-end test case and the JavaScript code. Therefore, the first step to under-
standing the cause for a test case failure is to determine the DOM dependencies for
each test assertion. While this seems simple in theory, in practice, assertions and ele-
ment accesses are often intertwined within a single test case, convoluting the mapping
between the two.

Going back to the test case of our example in Figure 3d, the first assertion on Line
5 is dependent on the DOM elements returned by the access on the previous line. The
last assertion on Line 9 is more complex as it compares two snapshots of the DOM and
therefore has dependencies on 2 DOM accesses (Lines 4 and 8). Figure 9 summarizes
the test case’s execution and captures the temporal and causal relations between each
assertion and DOM access.

To accurately determine the DOM dependencies of each assertion (∂ in Figure 3),
we apply dynamic backward slicing to each test case assertion. In addition, we track
the runtime properties of those DOM elements accessed by the test case. This runtime
information is later used in our analysis of the DOM dependencies of each assertion.
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Assertion 1 Assertion 2
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Fig. 9: Relating assertions to DOM accesses for the test case of Figure 3d.

Contextualizing Test Case Assertion. In the second step, our approach aims to (1)
help developers understand the context of their assertions by monitoring test-related
JavaScript execution, asynchronous events, and DOM mutations; (2) determine the
initial link between JavaScript code and the checked DOM elements (∑ in Figure 3).

In order to monitor JavaScript events, we leverage the tracing technique outlined
in subsection 3.1, which tracks the occurrence of JavaScript events, function invoca-
tions, and DOM mutations. We utilize the tracked mutations in order to focus on the
segments of JavaScript execution most relevant to the assertions in a test case. As we
are only interested in the subset of the DOM relevant to each test case, our approach
focuses on the JavaScript code that interacts with this subset.

The previous step yields the set of DOM elements relevant to each assertion. We
cross reference these sets with the timestamped DOM mutations in our execution trace
extracted from CLEMATIS to determine the JavaScript functions and events (DOM,
timing, or XHR) relevant to each assertion.

Once the relevant events and JavaScript functions have been identified for each
assertion, we introduce wrapper functions for the native JavaScript functions used
by developers to retrieve DOM elements. Specifically, we redefine methods such as
getElementById and getElementsByClassName to track DOM accesses within the web
application itself so that we know exactly where in our collected execution trace the
mutation originated. The objects returned by these methods are used by the applica-
tion later to update the DOM. Therefore, we compute the forward slice of these objects
to determine the exact JavaScript lines responsible for updating the DOM. Hence-
forth, we refer to the references returned by these native methods as JavaScript DOM
accesses.

We compare the recorded JavaScript DOM accesses with the DOM dependencies of
each test case assertion to find the equivalent JavaScript DOM accesses within the
application’s code. Moreover, the ancestors of those elements accessed by each asser-
tion are also compared with the recorded JavaScript DOM accesses. This is important
because in many cases a direct link might not exist between them. For instance, in the
case of our example (Figure 3d), a group of assets are compiled and appended to the
DOM after a scroll event. We compare the properties of those DOM elements accessed
by the final assertion (assets on Lines 4 and 8 of Figure 3d), as well as the properties
of those elements’ ancestors, with the recorded JavaScript DOM accesses and conclude
that the assets were added to the DOM via the parent element assets container on Line
17 of Figure 3a (∑).
Slicing the JavaScript Code. At this point, our approach yields the set of JavaScript
statements responsible for updating the DOM dependencies of our test case. However,
the set in isolation seldom contains the cause of a test failure. We compute a backwards
slice for these DOM-mutating statements to find the entire set of statements that
perform the DOM mutation.

In our approach, we have opted for dynamic slicing, which enables us to produce
thinner slices that are representative of each test execution, thus reducing noise dur-
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ing the debugging process. The slices incorporate data and control dependencies de-
rived from the application. Moreover, by using dynamic analysis we are able to present
the user with valuable runtime information that would not be available through static
analysis of JavaScript code.

Selective Instrumentation. An ideal test case would minimize setup by exercising
only the relevant JavaScript code related to its assertions. However, developers are
often unaware of the complete inner workings of the application under test. As a re-
sult, it is possible for a test case to execute JavaScript code that is unrelated to any
of its contained assertions. In such a case, instrumenting an entire web application’s
JavaScript code base would yield a large trace with unnecessary information. This can
incur high performance overheads, which may change the web application’s behaviour.
Therefore, instead of instrumenting the entirety of the code for dynamic slicing, our
approach intercepts and statically analyzes all JavaScript code sent from the server to
the client to determine which statements may influence the asserted DOM elements.
Then, this subset of the application’s code is instrumented. This approach has two
advantages. First, it minimizes the impact our code instrumentation has on the ap-
plication’s performance. Second, selective instrumentation yields a more relevant and
concise execution trace, which in turn lowers the processing time required to compute
a backward slice.

Our approach first converts the code into an abstract syntax tree (AST). This tree
is traversed in search of a node matching the initial slicing criteria. Once found,
the function containing the initial definition of the variable-in-question is also found,
henceforth referred to as the parent closure. Based on this information, the algorithm
searches this parent closure for all references to the variable of interest. This is done
in order to find all locations in the JavaScript code where the variable may be updated,
or where a new alias may be created for the variable. Moreover, for each variable up-
date pertaining to the variable of interest, we also track the data dependencies for such
an operation. Repeating these described steps for each of the detected dependencies al-
lows us to iteratively determine the subset of code statements to efficiently instrument
for a given initial slicing criteria.

Once all possible data and control dependencies have been determined through
static analysis, each variable and its parent closure are forwarded to our code trans-
formation module, which instruments the application code in order to collect a concise
trace. The instrumented code keeps track of all updates and accesses to all relevant
data and control dependencies, hereby referred to as write and read operations, respec-
tively. This trace is later used to extract a dynamic backwards slice.

Figure 10 shows an example of our code instrumentation technique’s output when
applied to the JavaScript code in Figure 3a with slicing criteria <10, size>. By acting
as a control dependency for variable temp, size determines the number of displayed
assets for the example. For each relevant write operation, our instrumentation code
logs information such as the name of the variable being written to, the line number of
the executed statement, and the type of value being assigned to the variable. Moreover,
the data dependencies for such a write operation are also logged. Likewise, for each
read operation we record the name of the variable being read, the type of value read,
and the line number of the statement. Information about variable type is important
when performing alias analysis during the computation of a slice.

Computing a Backwards Slice Once a trace is collected from the selectively instru-
mented application by running the test case, we run our dynamic slicing algorithm.
We use dynamic slicing as it is much more accurate than static slicing at capturing the
exact set of dependencies exercised by the test case.

The task of slicing is complicated by the presence of aliases in JavaScript. When
computing the slice of a variable that has been assigned a non-primitive value, we
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1			var	currentPage	=	1;
2			var	sortType	=	'default';
3			var	gridSize	=	_write("gridSize",	8,	3);
4			var	infiniteScroll	=	false;
5			
6			var	renderAssets	=	function(url,	size)	{
7							var	data	=	assetsFromServer(url);
8			
9							var	temp	=	'<div	class="asset-row">';
10						for	(i	=	0;	i	<	_read("size",	size,	10);	i++)	{
11										temp	+=	'		<div	class="asset-icon">';	
12										...	//	Reading	from	variable	'data'
13										temp	+=	'		</div>';
14						}
15						temp	+=	'</div>';
16							
17						return	$('#assets-container').append(temp);
18		};
19			
20		$(document).on('click',	'#sort-assets',	function(){
21						$('#sort-assets').removeClass('selected-type')
22						$(this).addClass('selected-type');
23						currentPage	=	1;
24						sortType	=		$(this).attr('type');
25						gridSize	=	_write("gridSize",	12,	25);
26						renderAssets(url	+	sortType	+	currentPage,	_readAsArg("gridSize",	gridSize,	26));
27						infiniteScroll	=	true;
28		});
29			
30		var	scroll	=	function()	{
31						if(infiniteScroll)	{
32										currentPage++;
33										renderAssets(url	+sortType	+currentPage,	_readAsArg("gridSize",	gridSize,	33)/2);
34						}
35		};
36		$(window).bind('scroll',	scroll);

Fig. 10: Example JavaScript code after our selective instrumentation is ap-
plied. Slicing criteria: <10, size>

need to consider possible aliases that may refer to the same object in memory. This
also occurs in other languages such as C and Java, however, specific to JavaScript is
the use of the dot notation, which can be used to seamlessly modify objects at runtime.
The prevalent use of aliases and the dot notation in web applications often complicates
the issue of code comprehension. Static analysis techniques often ignore addressing
this issue [Feldthaus et al. 2013].

To remedy this issue, we incorporate dynamic analysis in our slicing method. If a
reference to an object of interest is saved to a second object’s property, possibly through
the use of the dot notation, the object of interest may also be altered via aliases of
the second object. For example, after executing statement a.b.c = objOfInterest;,
updates to objOfInterest may be possible through a, a.b, or a.b.c. To deal with this
and other similar scenarios, our slicing algorithm searches through the collected trace
and adds the forward slice for each detected alias to the current slice for our variable
of interest (e.g. objOfInterest).
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Fig. 11: Overview of all captured stories.

Fig. 12: Top: menu of CLEMATIS. Bottom: overview of a captured story.

The line numbers for each of the identified relevant statements in the computed slice
are collected and used during the visualization step, as shown in the subsection 3.4.

3.4. Visualizing the Captured Model
In the final step, our technique produces an interactive visualization of the generated
model, which can be used by developers to understand the behaviour of the applica-
tion. The main challenge in the visualization is to provide a way to display the model
without overwhelming the developer with the details. To this end, our visualization fol-
lows a focus+context [Cockburn et al. 2009] technique that provides the details based
on a user’s demand. The idea is to start with an overview of the captured story, let the
users determine which episode they are interested in, and provide an easy means to
drill down to the episode of interest. With integration of focus within the context, de-
velopers can semantically zoom into each episode to gain more details regarding that
episode, while preserving the contextual information about the story.
Multiple Sessions, Multiple Stories. The user can capture multiple sessions that
leads to creation of multiple stories. After each story is recorded, it will be added to the
list of captured stories. The name of each story is the date and time at which it was
captured. Figure 11 shows a screenshot of sample captured stories in the visualization
of Clematis. Once the users select their desired story, the browser opens a new page
dedicated to that story. The initial view of a story contains a menu bar that helps
the user navigate the visualization (Figure 12, top). It also displays an overview of all
captured episodes inside the story (Figure 12, bottom).
Story Map, Queries, and Bookmarking. A menu bar is designed for the visualiza-
tion that contains two main parts: the story map and the query mechanism (Figure 12,
top). The story map represents a general overview of the whole story as a roadmap.
Panning and (semantic) zooming are available for all episodes and may cause users to
lose the general overview of the story. Hence, based on the user’s interaction with the
story (e.g., episode selection), the episodes of interest are highlighted on the roadmap
to guide the user. The query section enables users to search and filter the information
visualized on the screen. Users can filter the episodes displayed on the screen by the
episode types (i.e., Event, Timeout, or XHR). They can also search the textual content
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of the events as well as the actual code. Moreover, they have the option to bookmark
one or more episodes while interacting with the target web application. Those episodes
are marked with a star in the visualization to help users to narrow the scope and spot
related episodes (e.g., episode #6 in Figure 12 is bookmarked). The episodes’ timing
information is also shown.
Semantic Zoom Levels. The visualization provides 3 semantic zoom levels.

Zoom Level 0. The first level displays all of the episodes in an abstracted manner,
showing only the type and the timestamp of each episode (Figure 12, bottom). The
type of each episode is displayed by the text of the episode as well as its background
color. The horizontal axis is dedicated to time and episodes are sorted from left to
right according to the time of their occurrence (temporal relations). The causal edges
between different sections of each timeout or XHR object are shown by additional edges
under the episodes.

Zoom Level 1. When an episode is selected, the view transitions into the second zoom
level, which presents an outline of the selected episode, providing more information
about the source event as well as a high-level trace (Figure 13, middle). The trace at
this level contains only the names of the (1) invoked functions, (2) triggered events, and
(3) DOM mutations, caused directly or indirectly by the source event. At this level, the
user can view multiple episodes to have a side-by-side comparison.

Zoom Level 2. The final zoom level exhibits all the information embedded in each
episode (Figure 13, bottom). Clicking on the “Event” tab will display the type of the
event that started the episode (DOM, timeout or XHR event). The contextual informa-
tion of the event are displayed based on its type. Choosing the “DOM mutations” tab
will list all the changes that were made to the DOM after the execution of this episode.
For each DOM element that was added, removed or modified, an item is added to the
list of mutations that identifies the modified element, the type of the change and ad-
ditional information about the change. The third and final tab depicts a detailed trace
of the episode. The trace at this level includes a customized sequence diagram of the
dynamic flow of all the invoked JavaScript functions and events within that episode.
When the user clicks on any of the functions or events in the diagram, the JavaScript
code of each executed function is displayed and highlighted (Figure 13, bottom).
Inferred Mappings between Test Failures and Code. The test case comprehen-
sion unit extends the interactive visualization to depict the inferred mappings for
the test failure. The visualization helps to understand (1) the client-side JavaScript
code related to the assertion failure, (2) the test case’s relations to DOM changes and
JavaScript execution, and/or (3) any deviations in the expected behaviour with respect
to a previous version where the test passed. Figure 14 depicts an example of the high-
level view provided by our visualization for a test case.

In the high-level view, the progress of an executed test case over time is depicted
on the horizontal axis where the earliest assertions are shown on the left-hand side of
the high-level view and the most recent JavaScript events and assertions are shown
closer to the right-hand side. The top of Figure 14b shows the high-level visualization
produced by running the same test case from Figure 14a on a faulty version of the ap-
plication. Passing assertions for a test case are represented as grey nodes, and failures
are shown in red. In the case of an assertion, causal links relate the assertion to prior
events that may have influenced its outcome. These are events that altered portions of
the DOM relevant to the assertion. DOM events, timing events, and network-related
JavaScript events are visualized alongside the assertions as green, purple and blue
nodes, respectively.

Clicking on a failed assertion node reveals additional details about it (Figure 14b).
Details include related (1) DOM dependencies, (2) failure messages, and (3) related
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Fig. 13: Three semantic zoom levels in CLEMATIS. Top: overview. Middle:
zoomed one level into an episode, while preserving the context of the story.
Bottom: drilled down into the selected episode.
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JavaScript functions. The final zoom level of an assertion node displays all the infor-
mation captured for the assertion including the captured slice, and the line numbers
of the failing test case assertions.

When displaying the code slice for an assertion, each line of JavaScript code that
may have influenced the assertion’s outcome is highlighted in the context of the source
code (Figure 14b, lower-right). The user can further explore the captured slice by step-
ping through its recorded execution using a provided control panel, shown in green
on Figure 14b. By doing so, the user is able to take a post-mortem approach to fault
localization whereby the faulty behaviour is studied deterministically offine after exe-
cution has completed. Further, the user can also examine the captured runtime values
of relevant JavaScript variables.
RESTful API. We deployed a RESTful API that provides access to details about cap-
tured stories and allows the approach to remain portable and scalable. This architec-
tural decision enables all users, independent of their environments, to take advantage
of the behavioural model. By invoking authorized calls to the API, one can represent
the model as a custom visualization, or use it as a service in the logic of a separate
application.

3.5. Tool Implementation: Clematis
We implemented our approach in a tool called CLEMATIS, which is freely available4.
We use a proxy server to automatically intercept and inspect HTTP responses destined
for the client’s browser. When a response contains JavaScript code, it is transformed
by CLEMATIS. We also use the proxy to inject a JavaScript-based toolbar into the web
application, which allows the user to start/stop capturing their interactions with the
application. We used a proxy since it leads to a non-intrusive instrumentation of the
code. A browser plugin would be a suitable alternative. However, unlike browser plu-
gins, a proxy-based approach does not require installing a plugin, is not dependent on
the type of the browser, and does not need to be maintained and updated based on
browser updates. The trace data collected is periodically transmitted from the browser
to the proxy server in JSON format. To observe low-level DOM mutations, we build
on and extend the JavaScript Mutation Summary library5. The model is automatically
visualized as a web-based interactive interface. Our current implementation does not
capture the execution of JavaScript code that is evaluated using eval. CLEMATIS pro-
vides access to details of captured stories through a RESTful API.

4. CONTROLLED EXPERIMENTS
To assess the efficacy of our program comprehension approach, we conducted two con-
trolled experiments, following guidelines by Wohlin et al. [2000], one in a research lab
setting and the other in an industrial environment. In addition, to assess the test fail-
ure comprehension extension of CLEMATIS, we conduct a third controlled experiment.

Common design elements of all experiments are described in this section. Sections
5–7 are dedicated to describing the specific characteristics and results of each experi-
ment, separately.

Our evaluation aims at addressing the following research questions. The first four
research questions are designed to evaluate the main code comprehension unit of
CLEMATIS. These questions are investigated in the first two experiments (Section 5–
6). RQ5, however, assesses the extended test failure comprehension unit of CLEMATIS

4http://salt.ece.ubc.ca/software/clematis/
5http://code.google.com/p/mutation-summary/
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	public	void	testSortByDefaults()	{
				driver.get(	"http://localhost:9763/store/assets/gadget");
					driver.findElement(By.css("i.icon-star")).click();
					int	s1	=	driver.findElements(By.css(".asset-icon")).size();
					assertEquals(12,	s1);

					scrollWindowDown();
					int	s2	=	driver.findElements(By.css(".asset-icon")).size();
					assertEquals(4,	s2	-	s1);
	}	
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var	currentPage	=	1;
var	sortType	=	'default';
var	gridSize	=	8;
var	infiniteScroll	=	false;

var	renderAssets	=	function(url,	size)	{
				var	data	=	assetsFromServer(url);

				var	temp	=	'<div	class="asset-row">';
				for	(i	=	0;	i	<	size;	i++)	{
								temp	+=	'		<div	class="asset-icon">';	
								...	//	Reading	from	variable	'data'
								temp	+=	'		</div>';
				}
				temp	+=	'</div>';

				return	$('#assets-container').append(temp);
};

				$(document).on('click',	'#sort-assets',	function(){
								$('#sort-assets').removeClass('selected-type')
								$(this).addClass('selected-type');
								currentPage	=	1;
								sortType	=		$(this).attr('type');
								gridSize	=	12;
								renderAssets(url	+	sortType	+	currentPage,	gridSize)
								infiniteScroll	=	true;
				});

				var	scroll	=	function()	{
								if(infiniteScroll)	{
												currentPage++;
												renderAssets(url	+sortType	+	currentPage,	gridSize/2)
								}
				};
				$(window).bind('scroll',	scroll);
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Fig. 14: Visualization for a test case. (a) Overview of the passing test case, (b)
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(section 7). In order to be able to maintain the duration of experiment sessions reason-
able, we decided to evaluate the test comprehension unit separately.
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Table I: Adopted and adapted comprehension activities.
Activity Description
A1 Investigating the functionality of (a part of) the system
A2 Adding to / changing the system’s functionality
A3 Investigating the internal structure of an artifact
A4 Investigating the dependencies between two artifacts
A5 Investigating the run-time interaction in the system
A6 Investigating how much an artifact is used
A7 Investigating the asynchronous aspects of JavaScript
A8 Investigate the hidden control flow of event handling

RQ1. Does CLEMATIS decrease the task completion duration for common tasks in web
application comprehension?

RQ2. Does CLEMATIS increase the task completion accuracy for common tasks in web
application comprehension?

RQ3. For what types of tasks is CLEMATIS most effective?
RQ4. What is the performance overhead of using CLEMATIS? Is the overall perfor-

mance acceptable?
RQ5. Is the test failure comprehension unit helpful in localizing (and repairing) Java-

Script faults detected by test cases?

4.1. Experimental Design
The experiments had a “between-subject” design; i.e., the subjects were divided into
two groups: experimental group using CLEMATIS and control group using other tools.
The assignment of participants to groups was done manually, based on the level of their
expertise in web development. We used a 5-point Likert scale in a pre-questionnaire
to collect this information, and distributed the level of expertise in a balanced manner
between the two groups. None of the participants had any previous experience with
CLEMATIS and all of them volunteered for the study.

Task Design. The subjects were required to perform a set of tasks during the experi-
ment, representing tasks normally used in software comprehension and maintenance
efforts. We adapted the activities proposed by Pacione et al. [2004], which cover cate-
gories of common tasks in program comprehension, to web applications by replacing
two items. The revised activities are shown in Table I. We designed a set of tasks for
each experiment to cover these activities. Tables II and III show the tasks for studies
1 and 2 accordingly. Because study 2 was conducted in an industrial setting, partici-
pants had limited time. Therefore, we designed fewer tasks for this study compared to
study 1. Table IV depicts the tasks used in study 3, which aims the fault localization
capabilities of CLEMATIS.

Independent Variable (IV). This is the tool used for performing the tasks, and has
two levels: CLEMATIS represents one level, and other tools used in the experiment rep-
resent the other level (e.g., Chrome developer tools, Firefox developer tools, Firebug).

Dependent Variables (DV). These are (1) task completion duration, which is a con-
tinuous variable, and (2) accuracy of task completion, which is a discrete variable.

Data Analysis. For analyzing the results of each study, we use two types of statisti-
cal tests to compare dependent variables across the control and experimental groups.
Independent-samples t-tests with unequal variances are used for duration and accu-
racy in study 1, and for duration in study 2. However, the accuracy data in study 2 was
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Table II: Comprehension tasks used in study 1.
Task Description Activity
T1 Locating the implementation of a feature modifying the DOM A1, A4
T2 Finding the functions called after a DOM event (nested calls) A1, A4, A5
T3.a Locating the place to add a new functionality to a function A2, A3
T3.b Finding the caller of a function A4, A5
T4.a Finding the functions called after a DOM event (nested calls + bubbling) A1, A4, A5
T4.b Locating the implementation of a UI behavior A1, A3, A4
T5.a Finding the functions called after a DOM event (bubbling + capturing) A1, A5, A8
T5.b Finding the changes to DOM resulting from a user action A4, A5
T6.a Finding the total number of sent XHRs A6, A7
T6.b Finding if there exists an un-responded XHR A4, A5, A7

not normally distributed, and hence we use a Mann-Whitney U test for the analysis of
accuracy in this study. We use the statistical analysis package R6 for the analysis.

4.2. Experimental Procedure
All experiments consisted of four main phases. First, the subjects were asked to fill a
pre-questionnaire regarding their expertise in the fields related to this study.

In the next phase, the participants in the experimental group were given a tutorial
on CLEMATIS. They were then given a few minutes to familiarize themselves with the
tool after the tutorial.

In the third phase, each subject performed a set of tasks, as outlined in Tables II
and III. Each task was given to a participant on a separate sheet of paper, which
included instructions for the task and had room for the participant’s answer. Once
completed, the form was to be returned immediately and the subject was given the
next task sheet. This allowed us to measure each task’s completion time accurately,
to answer RQ1 and RQ3. To address RQ2 and RQ3, the accuracy of each task was
later evaluated and marked from 0 to 100 according to a rubric that we had created
prior to conducting the experiment. The design of the tasks allowed the accuracy of the
results to be quantified numerically. The tasks and sample rubrics are available in our
technical report Alimadadi et al. [2014].

In the final phase, participants filled out a post-questionnaire form providing feed-
back on their experience with the tool used (e.g., limitations, strength, usability).

5. EXPERIMENT 1: LAB ENVIRONMENT
The first controlled experiment was conducted in a lab setting with students and post-
docs at the University of British Columbia (UBC).

5.1. Approach

Experimental Design. For this experiment, both groups used Mozilla Firefox 19.0.
The control group used Firebug 1.11.2. We chose Firebug in the control group since it
is the de facto tool used for understanding, editing, and debugging modern web appli-
cations.7 Firebug has been used in other similar studies Zaidman et al. [2013].
Experimental Subjects. We recruited 16 participants for the study, 3 females and 13
males. The participants were drawn from different educational levels: 2 undergraduate
students, 5 Master’s students, 8 Ph.D. students, and 1 Postdoctoral fellow, at UBC.
The participants represented different areas of software and web engineering and had

6http://www.r-project.org
7Firebug has over 3 million active daily users: https://addons.mozilla.org/en-US/firefox/addon/firebug/statistics/usage/
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Fig. 16: Box plots of task completion
duration data per task for each tool.
Lower values are better. [Study 1]
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skills in web development ranging from beginner to professional. The tasks used in
this study are enumerated in Table II.
Experimental Object. We decided to use a web-based survey application that was
developed in our lab. The application had modest size and complexity, so that it could
be managed within the time frame anticipated for the experiment. Yet it covered the
common comprehension activities described in Table I.
Experimental Procedure. We followed the general procedure described in section
4.2. After filling the pre-questionnaire form, the participants in the control group were
given a tutorial on Firebug and had time to familiarize themselves with it, though
most of them were already familiar with Firebug.

5.2. Results

Duration. To address RQ1, we measured the amount of time (minutes:seconds) spent
on each task by the participants, and compared the task durations between CLEMATIS
and Firebug using a t-test. According to the results of the test, there was a statistically
significant difference (p-value=0.002) in the durations between CLEMATIS (M=23:22,
SD=4:24) and Firebug (M=36:35, SD=8:35). Figure 15 shows the results of the compar-
isons.

To investigate whether certain categories of tasks (Table II) benefit more from using
CLEMATIS (RQ3), we tested each task separately. The results showed improvements
in time for all tasks. The improvements were statistically significant for tasks 2 and 5,
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Table III: Comprehension tasks used in study 2.
Task Description Activity
T7 Extracting the control flow of an event with delayed effects A1, A4, A5, A7
T8 Finding the mutations in DOM after an event A1, A5
T9 Locating the implementation of a malfunctioning feature A1, A2, A3
T10 Extracting the control flow of an event with event propagation A1, A5, A8

and showed a 60% and 46% average time reduction with CLEMATIS, respectively. The
mean times of all tasks for CLEMATIS and Firebug are presented in Figure 16. The
results show that on average, participants using CLEMATIS require 36% less time than
than the control group using Firebug, for performing the same tasks.
Accuracy. The accuracy of answers was calculated in percentages. We compared the
accuracy of participants’ answers using a t-test. The results were again in favour of
CLEMATIS and were statistically significant (p=0.02): CLEMATIS (M=83%, SD=18%)
and Firebug (M=63%, SD=16%). This comparison of accuracy between tools is depicted
in Figure 17. As in the duration case, individual t-tests were then performed for com-
paring accuracy per task (related to RQ3). CLEMATIS showed an increased average
accuracy for all tasks. Further, the difference was statistically significant in favour of
CLEMATIS for task 5, and subtasks 4.a and 5.a. The results show that participants us-
ing CLEMATIS achieved 22% higher accuracy than participants in the control group.
We plot the average accuracies of all tasks for CLEMATIS and Firebug in Figure 18.
We discuss the implications of these results in Section 9.

6. EXPERIMENT 2: INDUSTRIAL
To investigate CLEMATIS’s effectiveness in more realistic settings, we conducted a sec-
ond controlled experiment at a large software company in Vancouver, where we re-
cruited professional developers as participants and used an open-source web applica-
tion as the experimental object.

6.1. Approach

Experimental Design. Similar to the first experiment, the participants were di-
vided into experimental and control groups. The experimental group used CLEMATIS
throughout the experiment. Unlike the previous experiment, members of the control
group were free to use the tool of their choice for performing the tasks. The intention
was for the participants to use whichever tool they were most comfortable with. 5 par-
ticipants used Google Chrome’s developer tools, 2 used Firefox’s developer tools, and 3
used Firebug.
Experimental Subjects. We recruited 20 developers from a large software company
in Vancouver, 4 females and 16 males. They were 23 to 42 years old and had medium
to high expertise in web development.

Task Design. For this experiment, we used fewer but more complex tasks compared
to the first experiment. We designed 4 tasks (Table III) spanning the categories: fol-
lowing the control flow, understanding event propagation, detecting DOM mutations,
locating feature implementation, and determining delayed code execution using time-
outs.
Experimental Object. Phormer 8 is an online photo gallery in PHP, JavaScript, CSS
and XHTML. It provides features such as uploading, commenting, rating, and display-

8http://p.horm.org/er/
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ing slideshows for users’ photos. It contains typical mechanisms such as dynamic DOM
mutation, asynchronous calls (XHR and timeouts), and event propagation. Phormer
has over 6,000 lines of JavaScript, PHP and CSS code in total (1500 lines of Java-
Script). It was rated 5.0 star on SourceForge and had over 38,000 downloads at the
time of conducting the experiment.
Experimental Procedure. We followed the same procedure described in 4.2, with one
difference: the participants in the control group were not given any tutorial regarding
the tool they used throughout the experiment, as they were all proficient users of the
tool of their choice.

6.2. Results
Box plots of task completion duration and accuracy, per task and in total, for the control
(Ctrl) and experimental (Exp) groups, are depicted in Figures 19 and 20, respectively.
Duration. Similar to the previous experiment, we ran a set of t-tests for the total
task duration as well as for the time spent on individual tasks. The results of the
tests showed a statistically significant difference (p-value = 0.0009) between the exper-
imental group using CLEMATIS (M=15:37, SD=1:43) and the control group (M=29:12,
SD=5:59), in terms of total task completion duration. The results showed improve-
ments in duration when using CLEMATIS for all four tasks. We found significant differ-
ences in favour of CLEMATIS for tasks T7, T8 and T9. The results show that developers
using CLEMATIS took 47% less time on all tasks compared to developers in the control
group.
Accuracy. We used Mann-Whitney U tests for comparing the results of task accu-
racy between the control and the experimental group, since the data was not nor-
mally distributed. For the overall accuracy of the answers, the tests revealed a statisti-
cally significant difference with high confidence (p-value = 0.0005) between CLEMATIS
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(M=90%, SD=25%) and other tools (M=35%, SD=20%). We then performed the com-
parison between individual tasks. Again, for all tasks the experimental group using
CLEMATIS performed better on average. We observed statistical significant improve-
ments in the accuracy of developers using CLEMATIS for tasks T7, T8 and T10. The
results show that developers using CLEMATIS performed more accurately across all
tasks by 157% on average, compared to developers in the control group.

6.3. Qualitative Analysis of Participant Feedback
The industrial participants in our second experiment shared their feedback regarding
the tool they used in the experiment session (CLEMATIS for the experimental group
and other tools for the control group). They also discussed their opinions about the
features an ideal web application comprehension tool should have. We systematically
analyzed [Creswell 2012] the qualitative data to find the main features of a web ap-
plication comprehension tool according to professional web developers. To the best of
our knowledge, at the time conducting this study, there were neither any tools avail-
able specifically designed for web application comprehension, nor any studies on their
desirable characteristics.

6.3.1. Data Collection. The participant selection was based on introductions by the
team leads in the company. Our research group had started a research collaboration
with the company and they were willing to spread the word about the experiment and
help recruit volunteer participants. The examiner was present at the company start-
ing two weeks prior to the experiment and helped the procession of recruiting and if
possible, giving an introduction to the potential participants.

Our overall policy for recruiting participants was random sampling. However,
throughout the course of the experiment, we tried to partially apply theoretical sam-
pling by asking participants to recommend other candidates fit for attending the ex-
periment. In general, this did have a noticeable impact on our sampling process since
our desirable sample set had to be diverse. A wider range of experience and proficiency
was suitable for our purpose, as we wanted to support various groups of web devel-
opers by CLEMATIS. Moreover, preserving the overall randomness of sampling was
necessary for ensuring the validity of our qualitative analysis. Hence, we examined
the background and the experience of our potential candidates and tried to include a
more diverse group of participants that still met our original requirements.

In the final phase of the experiment, where we gathered the qualitative data, the
participants filled a post-questionnaire form with open-ended questions. The forms
allowed them to focus and provide answers without having the sense of being watched.
Next, they were interviewed verbally based on both their answers to the questionnaire,
and the comments of previous participants. During the interviews, the examiner took
notes of the participants’ answers as well as their expressions and body language,
which could convey more insight into participants’ intents.

6.3.2. Extracting the Concepts. After each group of consecutive sessions was completed,
we started coding the gathered data based on open coding principles. We read and
analyzed comments and interview manuscripts of each participant, and coded every
comment based on the participant’s intention. At this stage, no part of the data was
excluded. The coding only helped us extract the existing concepts within the data.
Hence, by performing coding parallel to conducting the experiments, we were able to
better direct our following interview sessions. This process enabled us to observe the
emerging categories as we proceeded with the experiment. We used this information to
guide the interviews towards discovering the new data. Moreover, we simultaneously
compared the coded scripts of different participants. This allowed us to investigate the
consistencies or differences between the derived concepts.
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As we progressed further in conducting the experiment sessions, the core categories
of concepts began to emerge from the coded data. We used memos to analyze these
categories early in the process, while we were still able to improve the interviews.

Categories started to form during the process of coding the data. We started to rec-
ognize the core categories based on the density of the data in each category. We then
continued with selective coding of the remaining forms and manuscripts. We intention-
ally permitted the evolution of multiple core categories (as opposed to one), in order to
account for different aspects of an ideal comprehension tool to get recognized. Multiple
categories were integrated to create each core category. The concepts that contributed
to building each core category were referred to by a noticeable number of participants.
Various subcategories were brought together to form different aspects of a desirable
web application comprehension tool according the developers who are interested in
using such a tool. Closer to the end of the experiments, only the more relevant cate-
gories to the core categories were selected due to selective coding. The maturity of the
core categories (described below) was indicated when the newly gathered data did not
contribute much to the existing categories.

6.3.3. Guidelines for Web Application Comprehension Tools. The following are the charac-
teristics of a desirable web application comprehension tool, derived from the partici-
pants’ responses to our post-questionnaire forms and interviews.

— Integration with debugging.
One of the most prevalent concepts that was discussed by the participants was de-
bugging. All of our participants were using a browser-specific debugger in their ev-
eryday tasks. Although these debugging capabilities are not best tuned for web ap-
plication comprehension, they still play a potent role in web development process.
Almost all developers in the control group used one or more features of a debugger.
Many developers in the experimental group requested adding features such as set-
ting break points and step-by-step execution to CLEMATIS. Some of our participants
suggested the integration of CLEMATIS with commonly-used platforms that support
debugging.

— DOM inspection.
Majority of the participants used the DOM inspection feature of browser develop-
ment tools extensively. However, the participants in the control group were frus-
trated by the unavailability of a feature that allows them to easily detect all of
changes to the DOM after a certain event. This option was provided for CLEMATIS
users, most of whom chose this feature as one of their favourite features. The ma-
jority of the participants in the experimental group mentioned CLEMATIS’s DOM
mutation view is particularly useful, and requested a better visualization.

— JavaScript and DOM interaction.
Many participants in the control group were complaining about the lack of bet-
ter means of relating the JavaScript code to DOM elements and events. Not using
CLEMATIS, there is currently no trivial way of relating DOM events to the respec-
tive executed JavaScript code. Moreover, there is no connection between a DOM
feature and the JavaScript code responsible for that feature. This can make the
common task of feature location rigorous.

— Call hierarchy.
One of the most popular topics of CLEMATIS users was any concept related to the
trace it keeps in each episode. The majority of the participants in the experimen-
tal group were pleased by the ease of understanding the customized sequence dia-
grams. They quickly adopted this feature, and many of the CLEMATIS users were
also impressed by the inclusion of asynchronous callbacks and propagated event
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Table IV: Injected faults for the controlled experiment.
Fault Fault Description Detecting Test

Case
Related
Task

F1 Altered unary operation related to navigating slideshow SlideShowTest T11
F2 Modified string related to photo-rating feature MainViewTest T12
F3 Changed number in branch condition for photo-rating feature MainViewTest T12
F4 Transformed string/URL related to photo-rating feature MainViewTest T12

handlers. On the other hand, most of the participants in the control group expressed
dissatisfaction by the lack of features such as call stacks in existing tools.

— Interactivity and realtimeness.
Many CLEMATIS users mentioned more interaction and better responsiveness of
the tool as a key factor in adopting it for their every-day tasks. Intrigued by the
ability to capture a story of interactions, they were demanding realtime creation
of stories while interacting with the application, and better analysis performance.
The industrial tools used by the control group provided much better performance,
but lacked many of the desired features (other core categories).

— Sophisticated visualization.
Many participants indicated that visualization techniques and the usability fac-
tors can hugely impact their usage of a tool. Most of CLEMATIS user preferred the
focus+context technique adopted by CLEMATIS. However, being an academic proto-
type, CLEMATIS has much room for improvement in terms of interface design and
usability. In general, any tool that supports all technical core categories can still be
unsuccessful should it fail in delivering the necessary information to users through
a visualization.
There were few features that the participants found useful, but were not included

in the core categories. Among them was semantic zooming, or presenting the overview
first and providing more details on demand. Another popular feature was the extrac-
tion of DOM mutations per event. The participants also requested for a number of
features to be included in future versions of the tool. These features included filtering
and query options for DOM mutations, and the ability to attach notes to bookmarked
episodes. Overall, according to two of our industrial participants, CLEMATIS is “Help-
ful and easy to use” and “Very useful. A lot of potential for this tool!”.

7. EXPERIMENT 3: TEST FAILURE COMPREHENSION
We conducted a third controlled experiment to assess the effectiveness of our test fail-
ure comprehension extension of CLEMATIS.

7.1. Approach

Experimental Design. Once again, we divided the participants into experimental
(CLEMATIS) and control groups.
Experimental Subjects. 12 participants were recruited for the study at the Univer-
sity of British Columbia (UBC), three females and nine males. The participants were
drawn from different education levels at UBC. They all had prior experience in web de-
velopment and testing, ranging from beginner to professional. Furthermore, six of the
participants had worked in industry previously either full-time or through internships
Task Design. For this experiment, we used fewer but more complex tasks compared
to the first experiment. To answer RQ5, participants were given two main tasks, each
involving the debugging of a test failure in the Phormer application (Table IV). For
each task, participants were given a brief description of the failure and a test case
capable of detecting the failure. We used a test suite written by a UBC student for the
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Phormer application. The test suite was written as part of a separate and independent
course project, six months before the inception of our project presented in this paper.

For the first task of this experiment (T11), they were asked to locate an injected
fault in Phormer given a failing test case. Participants were asked not to modify the
application’s JavaScript code during T11.

The second task of this experiment (T12) involved identifying and fixing a regression
fault (unrelated to the first one). For this task, participants were asked to locate and
repair the fault(s) causing the test failure. As the second failure was caused by three
separate faults, participants were allowed to modify the application source code in
order to iteratively uncover each fault by rerunning the test case. In addition to the
failing test case, participants in both groups were given two versions of Phormer, the
faulty version and the original fault-free one. The intention here was to simulate a
regression testing environment.

The injected faults are based on common mistakes JavaScript developers make in
practice, as identified by Mirshokraie et al. [2015].
Experimental Object. Similar to the previous experiment, we used Phormer as the
experimental object.
Experimental Procedure. The procedure was similar to what we described in 4.2.
A maximum of 1.5 hours was allocated for the study: 10 minutes were designated for
an introduction, 15 minutes were allotted for users to familiarize themselves with the
tool being used, 20 minutes were allocated for task 11, another 30 minutes were set
aside for task 12, and 15 minutes were used for completing the questionnaire at the
end of the study.

7.2. Results
Figure 21 and Figure 22 depict box plots of task completion accuracy and duration, per
task and in total, for both the experimental group (Exp) and the control group (Ctrl).
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Accuracy. The accuracy of participant answers was calculated to answer RQ5. Over-
all, the group using CLEMATIS (M = 95.83, SD = 10.21) performed much more accu-
rately than the control group (M = 47.92, SD = 45.01). The results show a statistically
significant improvement for the experimental group (p-value = 0.032). Comparing the
results for the two tasks separately, the experimental group performed better on both
tasks on average. The results show that participants using CLEMATIS performed more
accurately across both tasks by a factor of two, on average, compared to those partici-
pants in the control group.
Duration. To further answer RQ5, we measured the amount of time (minutes:seconds)
spent by participants on each task and in total. According to the results of the tests,
there was a statistically significant difference in the duration of T11 for CLEMATIS
(M = 5:42, SD = 2:10) and the control group (M = 12:03, SD = 4:29); p-value = 0.016.
Comparison of the duration data gathered for T12 yielded no significant difference
between CLEMATIS (M = 23:23, SD = 6:31) and the control group (M = 19:46, SD =
8:05); p-value > 0.05. Those participants in the control group who answered task 2
correctly required a mean duration of 25:21 to complete the task, which is a longer time
than the mean duration of the experimental group. The results revealed no significant
difference between CLEMATIS group (M = 29:05, SD = 7:42) and the control group (M
= 31:49, SD = 10:37) with regard to the total time spent (p-value > 0.05). The results
show that developers using CLEMATIS took 54% less time to localize a detected fault.
The results are inconclusive regarding fault repair time.

8. PERFORMANCE OVERHEAD
With respect to RQ4, there are three sources of potential performance overhead: (1) in-
strumentation overhead, (2) execution overhead, and (3) dynamic analysis overhead.
The first pertains to the overhead incurred due to the instrumentation code added by
CLEMATIS, while the second pertains to the overhead of processing the trace and con-
structing the model. The third type of overhead is caused by dynamic slicing, and can
only occur when the test failure comprehension unit is activated. We do not measure
the overhead of visualization as this is dependent on the user task performed.

We measure the first two types of overhead when the test comprehension unit is
deactivated. Then we activate the test unit and measure the additional overhead.
Phormer, the experimental object in study 2, is used to collect performance measure-
ments over 10 one-minute trials of user interaction with the application. We also acti-
vate the test comprehension unit, and execute each of the two test cases from experi-
ment 3 with both selective instrumentation enabled and disabled. The two tests were
run 10 times each. The results are as follows:
Instrumentation overhead. Code comprehension. Average delays of 15.04 and 1.80
seconds were experienced for pre and post processing phases with CLEMATIS respec-
tively. And a 219.30 ms additional delay was noticed for each page. On average, each
captured episode occupies 11.88 KB within our trace.

Test comprehension Average delays of 1.29 and 1.83 seconds were introduced by the
selective and non-selective instrumentation algorithms, respectively, on top of the 407
ms required to create a new browser instance. Moreover, the average trace produced
by executing the selectively instrumented application was 37 KB in size. Executing a
completely instrumented application resulted in an average trace size of 125 KB. Thus,
the selective instrumentation approach is able to reduce trace size by 70% on average,
while also reducing instrumentation time by 41%.
Execution overhead. Code comprehension. For processing one minute of activity
with Phormer, CLEMATIS experienced an increase of 250.8 ms, 6.1 ms and 11.6 ms
for DOM events, timeouts and XHRs, respectively. Based on our experiments, there
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was no noticeable delay for end-users when interacting with a given web application
through CLEMATIS.

Test Comprehension The actual execution of each test case required an additional
246 ms for the selectively instrumented application. Instrumenting the entire applica-
tion without static analysis resulted in each test case taking 465 ms longer to execute.
Based on these measurements, our selective instrumentation approach lowers the ex-
ecution overhead associated with CLEMATIS by 47%.
Dynamic analysis overhead. It took CLEMATIS 585 ms on average to compute each
JavaScript slice when utilizing selective instrumentation. Non-selective instrumenta-
tion lengthened the required dynamic analysis time to 750 ms. By analyzing a more
concise execution trace, CLEMATIS was able to lower the slice computation time by
22%. Thus, we see that CLEMATIS incurs low performance overhead in all three com-
ponents, mainly due to its selective instrumentation capabilities.

9. DISCUSSION
9.1. Task Completion Duration
Task completion duration is a measure of task performance. Therefore, CLEMATIS im-
proves web developers’ performance by significantly decreasing the overall time re-
quired to perform a set of code comprehension tasks (RQ1).
Dynamic Control Flow. Capturing and bubbling mechanisms are pervasive in Java-
Script-based web applications and can severely impede a developer in understanding
the dynamic behaviour of an application. These mechanisms also complicate the con-
trol flow of an application, as described in Section 2. Our results show that CLEMATIS
significantly reduces the time required for completing tasks that involve a combination
of nested function calls, event propagation, and delayed function calls due to timeouts
within a web application (T2, T5.a, and T7). Hence, CLEMATIS makes it more intuitive
to comprehend and navigate the dynamic flow of the application (RQ3).

One case that needs further investigation is T10. This task mainly involves follow-
ing the control flow when most of the executed functions are invoked through event
propagation. The results of this task indicate that although using CLEMATIS caused
an average of 32% reduction in task completion duration, the difference was not sta-
tistically significant. However, closer inspection of the results reveals that the answers
given using CLEMATIS for T10 are 68% more accurate in average. This huge difference
shows that many of the developers in the control group were unaware of occurrences of
event propagation in the application, and terminated the task early. Hence, they scored
significantly lower than the experimental group in task accuracy and still spent more
time to find the (inaccurate) answers.
Feature Location. Locating features, finding the appropriate place to add a new func-
tionality, and altering existing behaviour are a part of comprehension, maintenance
and debugging activities in all software tools, not only in web applications. The results
of study 1 suggested that CLEMATIS did reduce the average time spent on the tasks
involving these activities (T1, T3, T4.b), but these reductions were not statistically
significant. These tasks mostly dealt with static characteristics of the code and did
not involve any of the features specific to JavaScript-based web applications. Study 2,
however, involved more complicated tasks in more realistic settings. T9 represented
the feature location activity in this study, and the results showed that using CLEMA-
TIS improved the average time spent on this task by 68%. Thus, we see that CLEMATIS
speeds up the process of locating a feature or a malfunctioning part of the web appli-
cation (RQ3).
State of the DOM. The final category of comprehension activities investigated in
this work is the implications of events on the state of the DOM. Results of Study 1
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displayed a significant difference in duration of the task involving finding DOM muta-
tions in favour of CLEMATIS (T5). The results of Study 2 further confirmed the findings
of Study 1 by reducing the duration in almost half (T8). Thus, CLEMATIS aids under-
standing the behaviour of web applications by extracting the mutated elements of the
DOM, visualizing contextual information about the mutations, and linking the muta-
tions back to the corresponding JavaScript code (RQ3).
Test Failure Comprehension. The average recorded task duration for T11 was sig-
nificantly lower for the experimental group. The participants in the control group of-
ten used breakpoints to step through the application’s execution while running the
provided test case. When unsure of the application’s execution, these developers would
restart the application and re-execute the test case, extending their task duration.
Instead of following a similar approach, those developers using CLEMATIS were able
to rewind and replay the application’s execution multiple times offline, after only ex-
ecuting the test case once. The trace collected by CLEMATIS during this initial test
case execution was used to deterministically replay the execution while avoiding the
overhead associated with re-running the test case.

While task duration was significantly improved by CLEMATIS for T11, the average
measured task duration was in fact longer for CLEMATIS in T12. However, the partic-
ipants using CLEMATIS performed much more accurately on T12, suggesting that the
task is complex and the main advantage of using CLEMATIS is in accurate completion
of the task. Studying the accuracy results for T12 reveals that many of the participants
in the control group failed at correcting the faults, and instead simply addressed the
failure directly. This may explain the reason for no observable improvement in task
duration for T12, as hiding the failure often requires less effort than repairing the
actual fault.

9.2. Task Completion Accuracy
Task completion accuracy is another metric for measuring developers’ performance.
According to the results of both experiments, CLEMATIS increases the accuracy of de-
velopers’ actions significantly (RQ2). The effect is most visible when the task involves
event propagation (RQ3). The outcome of Study 1 shows that CLEMATIS addresses
Challenge 1 (described in Section 2) in terms of both time and accuracy (T5.a). Study
2 further indicates that CLEMATIS helps developers to be more accurate when faced
with tasks involving event propagation and control flow detection in JavaScript appli-
cations (67% and 68% improvement for T7 and T10 respectively).

For the remaining tasks of Study 1, the accuracy was somewhat, though not sig-
nificantly, improved. We believe this is because of the simplistic design of the experi-
mental object used in Study 1, as well as the relative simplicity of the tasks. This led
us towards the design of Study 2 with professional developers as participants and a
third-party web application as the experiment object in the evaluation of CLEMATIS.
According to the results of Study 2, CLEMATIS significantly improves the accuracy of
completion of tasks (T8) that require finding the implications of executed code in terms
of DOM state changes (RQ3). This is related to Challenge 3 as described in Section 2.

For the feature location task (T9), the accuracy results were on average slightly
better with CLEMATIS. However, the experimental group spent 68% less time on the
task compared to the control group. This is surprising as this task is common across
all applications and programming languages and we anticipated that the results for
the control group would be comparable with those of the experimental group.
Test Failure Comprehension. The results from both experimental tasks suggest
that CLEMATIS is capable of significantly improving the fault localization and re-
pair capabilities of developers (RQ5). many participants in the control group failed
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to correctly localize the fault, illustrating the difficulty in tracing dependencies in a
dynamic language such as JavaScript. Although users in the control group had access
to breakpoints, many of them had difficulty stepping through the application’s execu-
tion at runtime due to the existence of asynchronous events such as timeouts, which
caused non-deterministic behaviour in the application when triggered in the presence
of breakpoints.

Many of the participants in the control group fixed the failure instead of the actual
fault; they altered the application’s JavaScript code such that the provided test case
would pass, yet the faults still remained unfixed. The JavaScript code related to task
2 contained multiple statements that accessed the DOM dependency of the failing test
case assertion. Participants who simply corrected the failure had trouble identifying
which of these statements was related to the fault, and as a result would alter the
wrong portion of the code. On the other hand, those participants using CLEMATIS
were able to reason about these DOM altering statements using the provided links
and slices.

9.3. Consistent Performance
Looking at Figures 19 and 20, it can be observed that using CLEMATIS not only im-
proves both duration and accuracy of individual and total tasks, but it also helps devel-
opers to perform in a much more consistent manner. The high variance in the results
of the control group shows that individual differences of developers (or tools in Study
2) influence their performance. However, the low variance in all the tasks for the ex-
perimental group shows that CLEMATIS helped all developers in the study to perform
consistently better by making it easier to understand the internal flow and dependency
of event-based interactions.

9.4. Threats to Validity

Internal Threats. The first threat is that different levels of expertise in each sub-
ject group could affect the results. We mitigated this threat by manually assigning the
subjects to experimental and control groups such that the level of expertise was bal-
anced between the two groups. The second threat is that the tasks in the experiment
were biased towards CLEMATIS. We eliminated this threat by adopting the tasks from
a well-known framework of common code comprehension tasks Pacione et al. [2004].
A third threat arises from the investigators’ bias towards CLEMATIS when rating the
accuracy of subjects’ answers. We addressed this concern by developing an answer key
for all the tasks before conducting the experiments. A similar concern arises regarding
the task completion duration measurements. We mitigated this threat by presenting
each task to subjects on a separate sheet of paper and asking them to return it upon
completion. The duration of each task was calculated from the point a subject received
the task until they returned the paper to the investigators, thus eliminating our bias in
measuring the time (and the subjects’ bias in reporting the time). Finally, we avoided
an inconsequential benchmark by choosing a tool for the control group in Study 1 that
was stable and widely-deployed, namely Firebug. In Study 2, the developers in the
control group were given the freedom to choose any tool they preferred (and had expe-
rience with).
External Threats. An external threat to validity is that the tasks used in the exper-
iment may not be representative of general code comprehension activities. As men-
tioned above, we used the Pacione’s framework and thus these tasks are generalizable.
A similar threat arises with the representativeness of the participants. To address this
threat, we used both professional web developers and students/post-docs with previous
web development experience.
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Reproducibility. As for replicating our experiments, CLEMATIS, the experimental
object Phormer, and the details of our experimental design (e.g., tasks and question-
naires) are all available making our results reproducible.

9.5. Limitations
The contributions of this work were essential basic steps towards an interactive ap-
proach for understanding event-based interactions in client-side JavaScript. However,
our approach entails many limitations and has much room left for future improve-
ments.

JavaScript is a highly dynamic language. There are many cases that occur in Java-
Script applications and are not currently supported by CLEMATIS. As an example,
CLEMATIS does not instrument JavaScript code that is maintained in strings and is
executed using eval(). Also, should an exception occur and change the normal means
of function execution, the resulting model may be affected. However, these are among
features of JavaScript that can be handled in near future using the current design.

There is also room left for research in determining the episode ending criteria. For
terminating an episode, the current approach ensures that the call stack is empty
and there are no immediate asynchronous timing events in the event loop. If these
conditions are valid and there is inactivity in JavaScript execution for a certain amount
of time, the algorithm terminates the episode. We determined the minimum required
inactivity time by choosing the best results from is a set of empirical examinations.
Further investigation on this temporal threshold, as well as other criteria that can
define the boundaries of episodes may lead to interesting findings.

Finally, the resulting model can still be overwhelming for users. Large-scale enter-
prise applications often have customized event frameworks and communicate with
their servers constantly. CLEMATIS’s semantic zooming can help mitigate this issue,
but to a limit. Proposing abstraction and categorization techniques techniques for
CLEMATIS’s visualization can be applied to further assist the comprehension process.

10. RELATED WORK
According to a literature survey by Cornelissen et al. [2009], despite their unique and
challenging characteristics, web applications have rarely been targeted in program
comprehension research. Previous research has approached this issue through differ-
ent perspectives.
Program Analysis. EventRacer is a tool for facilitating dynamic race detection for
event-driven applications [Raychev et al. 2013]. Compliant with its goal, EventRacer
traces only the events and not other dynamic and asynchronous feature of JavaScript.
Moreover, unlike CLEMATIS, their approach requires using an instrumented browser.
Wei and Ryder [2013] use both static and dynamic analysis to perform a points-to
analysis of JavaScript. However, they do not take into account the DOM-based and
asynchronous interactions of JavaScript. Ghezzi et al. [2014] extract behavioural mod-
els from a different perspective. They focus on users’ navigation preferences in user-
intensive software. Their approach, called BEAR, depends on server logs to capture
user interactions. Unlike CLEMATIS, BEAR only focuses on direct user interactions in
order to fulfill its purpose, which is classifying the behaviour of users.
UI Feature Location. Li and Wohlstadter [2009] present a tool called Script Insight
to locate the implementation of a DOM element in JavaScript code. Similarly, Maras
et al. [2012, 2013] propose a technique for deriving the implementation of a UI feature
on the client side. While similar to our work at a high level, in these approaches the
user needs to select a visible DOM element and its relevant behaviour in order to
investigate its functionality. This manual effort can easily frustrate the user in large
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applications. Further, these techniques are not concerned with capturing event-based
interactions. Finally, the model they derive and present to the user contains low-level
information and noise, which can adversely influence program comprehension.
Capture and Replay. Extensive reliance on user interactions is an important charac-
teristic of modern web applications. Capture and replay tools are used in the literature
to address this issue [Cornelissen et al. 2009]. Montoto et al. [2009] propose a set of
techniques for generating a navigation sequence for Ajax-based websites and executing
the recorded trace. Mugshot [Mickens et al. 2010] is a system which employs a server-
side web proxy to capture events in interactive web applications. It injects code into
a target web application in order to record sources of nondeterminism such as DOM
events and interrupts. The recorded information is used by Mugshot to dispatch syn-
thetic events to a web browser in order to replay the execution trace. WaRR [Andrica
and Candea 2011] is another system for capturing and replaying events. Capturing is
accomplished by altering a user’s web browser in order to record keystrokes and mouse
clicks. In the event of a failure, end users of a web application may send a record of
their keystrokes to the developer for debugging purposes. Jalangi [Sen et al. 2013]
is another record-replay tool that supports dynamic analysis by shadow execution on
shadow values. Burg et al. [2013] integrate their capture/replay tool with debugging
tools.

The goal in most of these techniques is to find a deterministic way of replaying the
same set of user events for debugging purposes. Instead of simply replaying recorded
events, our approach aims at detecting causal and temporal event-based interactions
and linking them to their impact on JavaScript code execution and DOM mutations.
Moreover, our approach does not require manual user effort, a modified server, or a
special browser.
Visualization. There are many tools that use visualization to improve the process of
understanding the behaviour of software applications. Matthijssen et al. [2010] con-
duct a user study for investigating the strategies that web developers use for code
comprehension. Extraviz [Cornelissen et al. 2011] is a visualization tool that repre-
sents the dynamic traces of Java applications to assist with program comprehension
tasks. However, their approach does not concern itself with building a model of the web
application, while ours does.

Zaidman et al. [2013] propose a Firefox add-on called FireDetective, which captures
and visualizes a trace of execution on both the client and the server side. Their goal
is to make it easier for developers to understand the link between client and server
components, which is different from our approach which aims to make it easier for
developers to understand the client-side behaviour of the web application.

FireCrystal [Oney and Myers 2009] is another Firefox extension that stores the trace
of a web application in the browser. It then visualizes the events and changes to the
DOM in a timeline. FireCrystal records the execution trace selectively similar to our
work. But unlike CLEMATIS, FireCrystal does not capture the details about the exe-
cution of JavaScript code or asynchronous events. Another limitation of FireCrystal is
that it does not link the triggering of events with the dynamic behaviour of the appli-
cation, as CLEMATIS does. DynaRIA [Amalfitano et al. 2014] focuses on investigating
the structural and quality aspect of the code. While DynaRIA captures a trace of the
web application, CLEMATIS facilitates the process of comprehending the dynamic be-
haviour using a high-level model and visualization based on a semantically partitioned
trace.
Fault Localization and Debugging. Delta debugging [Zeller 2002b] is a technique
whereby the code change responsible for a failure is systematically deduced by narrow-
ing the state differences between a passing and a failing run. Other fault localization

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2015.



A:36 S Alimadadi et al.

techniques have been proposed that compare different characteristics of passing and
failing runs for a program [Agrawal et al. 1995; Cleve and Zeller 2005b; Groce and
Visser 2003; Pytlik et al. 2003]. Our approach is different in that it focuses on a single
web application test assertion at a time and does not require a passing test per se to
operate.

There is limited research geared towards web application fault localization in the
literature [Artzi et al. 2010; Ocariza et al. 2012]. Google has recently provided some
support for debugging asynchronous JavaScript in Chrome DevTools [Chen 2014]. Our
work is different from previous techniques since it aims at making the implicit links
between test failures and faulty JavaScript code more explicit to enhance debugging.
In addition, calculating and displaying the JavaScript code slice for a test assertion
poses new challenges not faced by previous techniques. This is stemmed from the dis-
connect between a test assertion failure, the DOM, and the JavaScript code interacting
with the DOM.
Program Slicing. Originally proposed by Weiser [1981], program slicing techniques
can be classified in two categories, namely static and dynamic slicing [Korel and Laski
1988]. WALA [Sridharan et al. 2007] performs JavaScript slicing by inferring a call
graph through static analysis. Since JavaScript is such a dynamic language, WALA
yields conservative results that may not be reflective of an application’s actual execu-
tion. It also ignores the JavaScript-DOM interactions completely. Although not used
for slicing purposes, others [Necula et al. 2005; Yong and Horwitz 2005] have utilized
static analysis to reduce the execution overhead incurred from code instrumentation.
Our approach determines JavaScript slices through a selective code instrumentation
algorithm.

11. CONCLUDING REMARKS
Modern web applications are highly dynamic and interactive, and offer a rich expe-
rience for end-users. This interactivity is made possible by the intricate interactions
between user-events, JavaScript code, and the DOM. However, web developers face nu-
merous challenges when trying to understand these interactions. In this paper, we pro-
posed a portable and fully-automated technique for relating low-level interactions in
JavaScript-based web applications to high level behaviour. We proposed a behavioural
model to capture these event interactions, and their temporal and causal relations.
We also proposed a strategy for helping developers understand the root causes of fail-
ing test cases. We presented a novel interactive visualization mechanism based on
focus+context techniques, for presenting these complex event interactions in a more
comprehensible format to web developers. Our approach is implemented in a code com-
prehension tool, called CLEMATIS. The evaluation of CLEMATIS points to the efficacy of
the approach in reducing the overall time and increasing the accuracy of developer ac-
tions, compared to state-of-the-art web development tools. The greatest improvement
was seen for tasks involving control flow detection, and especially event propagation,
showing the power of our approach.

As part of future work, we plan to improve the interactive visualization and extend
the details captured in each story to allow the programmer to gain a better insight into
the application. Another direction we will pursue is in debugging, where we will im-
prove CLEMATIS’s fault localization unit to further help developers detect and localize
faulty behaviour of JavaScript applications.
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