
Vejovis: Suggesting Fixes for
JavaScript Faults

Frolin S. Ocariza, Jr.

Karthik Pattabiraman, Ali Mesbah

University of British Columbia

Problem and Motivation

2

JavaScript in web applications
has plenty of reliability issues

Average of 4 JavaScript
faults in production
websites [ISSRE’11]

JS faults lead to major
functionality/security

issues [ESEM’13]

JS faults are not trivially
fixed [ESEM’13]

Problem and Motivation

3

JavaScript in web applications
has plenty of reliability issues,
these JavaScript faults matter
and these JavaScript faults are

non-trivial to fix

Faults in JavaScript Code
}  Study of JS bug reports [ESEM’13]

}  Key Insight: Most (65%) mistakes programmers make in
JS propagate to parameters of DOM API method calls
}  DOM API methods: getElementById, getElementsByTagName,

jQuery’s $(), etc.
}  We also found that such faults are the most impactful, and take

the longest to fix

DOM-RELATED FAULTS

4

DOM-Related Fault Example

5

var x = “yes”;!
var elem = document.getElementById(x);!

div

div

div
id = “yes”

DOM-Related Fault Example

6

var x = “no”;!
var elem = document.getElementById(x);!

div

div

div
id = “yes”

MISTAKE!

DOM-Related Fault Example

7

var x = “no”;!
var elem = document.getElementById(x);!

div

div

div
id = “yes”

MISTAKE!

ID parameter evaluates to “no”, which is
not in the DOM

Goal

8

Facilitate the process of fixing DOM-
related faults

Fault Model
}  Suggest repairs for DOM-related faults
}  Only one mistake made

9

Common Developer Fixes
}  Study of 190 fixed bug reports from 12 web apps

10

elem = getElementById(param)
elem.innerHTML = “…”

Common Developer Fixes
}  Study of 190 fixed bug reports from 12 web apps

11

elem = getElementById(new_param)
elem.innerHTML = “…”

Modify the parameter

•  Parameter Modification
Ways Programmers Fix Faults

Common Developer Fixes
}  Study of 190 fixed bug reports from 12 web apps

12

elem = getElementById(param)
if (elem)

 elem.innerHTML = “…”

•  Parameter Modification
•  DOM Element Validation

Check if null

Ways Programmers Fix Faults

Common Developer Fixes
}  Study of 190 fixed bug reports from 12 web apps

13

elem = querySelector(param)
elem.innerHTML = “…”

•  Parameter Modification
•  DOM Element Validation
•  Method Modification

Modify the method Ways Programmers Fix Faults

Common Developer Fixes
}  Study of 190 fixed bug reports from 12 web apps

14

elem = getElementById(param)
elem.innerHTML = “…”

•  Parameter Modification
•  DOM Element Validation
•  Method Modification

27.2%
25.7%
24.6%

Ways Programmers Fix Faults

Structure in DOM Method Parameters

15

getElementById(“no”)! ???!

WRONG RIGHT

Question: How do we know that we
should replace “no” with “yes”

Answer: We need to infer
programmer intent

 - Very difficult to do in general,
but…

 - We have the DOM!

div

div

div
id = “yes”

Structure in DOM Method Parameters

16

getElementById(“no”)! getElementById(“yes”)!

WRONG RIGHT

Question: How do we know that we
should replace “no” with “yes”

Answer: We need to infer
programmer intent

 - Very difficult to do in general,
but…

 - We have the DOM!

div

div

div
id = “yes”

CSS Selectors

17

div#sample > table tr.hello

Class name “hello”
Tag name “tr”

Is descendant
Tag name “div”

Tag name “table”

Is child

ID “sample”

Input to querySelector(), $(), etc. to retrieve
list of elements

Design

18

Method/Property Modification, where a call to a DOM API meth-
od (or property) is either added, removed, or modified in
the JavaScript code. Here, modification refers to changing
the method (or property) originally called, not the param-
eter (e.g., instead of calling getElementsByClassName, the
method getElementsByTagName is called instead). This cat-
egory makes up 24.6% of the fixes.

Major Refactoring, where significantly large portions of the Java-
Script code are modified and restructured to implement the
fix. This category makes up 10.5% of the fixes.

Other/Uncategorized, which make up 12% of the fixes.

As seen in the above fix categories, the most prominent cate-
gories are Parameter Modification and DOM Element Validation,
which make up over half (52.9%) of the fixes. Therefore, we fo-
cus on these categories in our work. Although we do not consider
Method/Property Modifications in our repair approach, our algo-
rithm can be adapted to include this class of errors, at the cost of
increasing its complexity (see Section 7).

Application of Fixes. We next describe how programmers modify
the JavaScript code to apply the fixes. We discuss our findings for
the three most prominent fix categories – Parameter Modification,
DOM Element Validation, and Method/Property Modification.

Parameter Modification: We found that 67.3% of fixes belong-
ing to the Parameter Modification fix category involve the modifi-
cation of string values. The vast majority (around 70%) of these
string value modifications were direct modifications of string liter-
als in the JavaScript code. However, we also found cases where
the string value modification was applied by adding a call to string
modification methods such as replace().

We also analyzed the DOM methods/properties whose parame-
ters are affected by the modified values. For string value modifica-
tions, the methods/properties involved in multiple bug report fixes
are getElementById(), $() and jQuery(); together, fixes involv-
ing these methods comprise 51.4% of all string value modifications.
For non-string value modifications, fixes involved modification of
the numerical values assigned to elements’ style properties, partic-
ularly their alignment and scroll position.

DOM Element Validation: 75.5% of fixes belonging to this cat-
egory are applied by simply wrapping the code using the pertinent
DOM element within an if statement that performs the necessary
validation (so that the code only executes if the check passes).
Other modifications include (1) adding a check before the DOM
element is used so that the method returns if the check fails; (2)
adding a check before the DOM element is used such that the value
of the DOM element or its property is updated if the check fails;
(3) encapsulating the code using the DOM element in an if-else
statement so that a backup value can be used in case the check
fails; and finally (4) encapsulating the code in a try-catch state-
ment. The most prevalent checks are null/undefined checks, i.e.,
the code has been modified to check if the DOM element is null or
undefined before it is used, which constitutes 38.8% of the fixes
in the DOM Element Validation category.

Method/Property Modification: 53.2% of these fixes involve
changing the DOM method or property being called/assigned; the
rest involve either the removal of the method call or the property
assignment (e.g., remove a setAttribute call that changes the
class to which an element belongs), or the inclusion of such a call
or assignment (e.g., add a call to blur() to unfocus a particular
DOM element). Of the fixes where the DOM method/property was
changed, around 44% involve changing the event handler to which
a function is being assigned (e.g., instead of assigning a particular
method to onsubmit, it is assigned to onclick instead).

Data Collector
(box a)

Direct DOM Access Web Application
URL

Symptom Analyzer
(box b)

Treatment
Suggester

(box c)

Supplementary
Information

Symptoms
Data

Possible Sicknesses

List of Workaround
Suggestions

Figure 3: High-level block diagram of our design.

Summary of Findings. Our study shows that the most prominent
fix categories are Parameter Modification and DOM Element Vali-
dation. Our analysis also shows the prevalence of string value mod-
ifications and null/undefined checks when applying fixes. In ad-
dition, most parameter modifications are for values eventually used
in DOM methods that retrieve elements from the DOM, particu-
larly the $(), jQuery() and getElementById() methods. These
results motivate our fault model choice in Section 4 as well as our
choice of possible sickness classes in Section 5.2.

4. FAULT MODEL
In this work, we focus on DOM API methods that retrieve an el-

ement from the DOM using CSS selectors, IDs, tag names, or class
names, as we found that these were the common sources of mis-
takes made by programmers (Section 3). These DOM API methods
include getElementById(), getElementsByTagName(), getEl-
ementsByClassName(), querySelector(), and querySelect-
orAll(). We also support DOM API wrapper methods made avail-
able by commonly used JavaScript libraries including those in jQuery
(e.g., $() and jQuery()); Prototype (e.g., $$() and $()); and
tinyMCE (e.g., get()), among others. For simplicity, we will refer
to all these DOM API methods as the direct DOM access.

We further focus on code-terminating DOM-related faults, which
means the DOM API method returns null, undefined, or an empty
set of elements, eventually leading to a null or an undefined excep-
tion (thereby terminating JavaScript execution). However, our de-
sign can also be extended to apply to output-related DOM-related
faults, i.e., those that lead to incorrect output manifested on the
DOM. Such faults would require the programmer to manually spec-
ify the direct DOM access. In contrast, with code-terminating DOM-
related faults, the direct DOM access can be determined automat-
ically using the AUTOFLOX tool proposed in our prior work [14].
Thus we focus on this category of faults in this work.

The running example introduced in Section 2 is an example of
a fault that is encompassed by the fault model described above.
Here, the direct DOM access is the call to the $() method in line
11, which returns an empty set of elements. It is code-terminating
because the fault leads to an undefined exception in line 12.

5. APPROACH
In this section, we describe our approach for assisting web de-

velopers in repairing DOM-related faults satisfying the fault model
described in the previous section. Figure 3 shows a block diagram

Running Example

19

1 firstTag = “div”;!
2 prefix = “pain-”;!
3 suffix = “elem”;!
4 level1 = firstTag + “#” + prefix + suffix;!
5 level2 = “span.cls”;!
6 e = $(level1 + “ “ + level2);!
7 e[0].innerHTML = “new content”;!

Access
DOM
element
using CSS
selector

Running Example

20

1 firstTag = “div”;!
2 prefix = “pain-”;!
3 suffix = “elem”;!
4 level1 = firstTag + “#” + prefix + suffix;!
5 level2 = “span.cls”;!
6 e = $(level1 + “ “ + level2);!
7 e[0].innerHTML = “new content”;!

Lines to set
up the
CSS selector
passed to $()

Running Example

21

1 firstTag = “div”;!
2 prefix = “pain-”;!
3 suffix = “elem”;!
4 level1 = firstTag + “#” + prefix + suffix;!
5 level2 = “span.cls”;!
6 e = $(level1 + “ “ + level2);!
7 e[0].innerHTML = “new content”;!

Constructed selector: div#pain-elem span.cls

Running Example

22

1 firstTag = “div”;!
2 prefix = “pain-”;!
3 suffix = “elem”;!
4 level1 = firstTag + “#” + prefix + suffix;!
5 level2 = “span.cls”;!
6 e = $(level1 + “ “ + level2);!
7 e[0].innerHTML = “new content”;!

Constructed selector: div#pain-elem span.cls
div

Id = “main-elem”

div
Id = “wrapper”

span
class=“cls”

span
class=“cls”

Running Example

23

1 firstTag = “div”;!
2 prefix = “pain-”;!
3 suffix = “elem”;!
4 level1 = firstTag + “#” + prefix + suffix;!
5 level2 = “span.cls”;!
6 e = $(level1 + “ “ + level2);!
7 e[0].innerHTML = “new content”;!

Constructed selector: div#pain-elem span.cls
div

Id = “main-elem”

div
Id = “wrapper”

span
class=“cls”

span
class=“cls”

Would return
empty set!

Main Idea
}  Parameter Analysis: What portion of the parameter do

we replace?
}  Context Analysis: How do we perform the replacement

in the code?

24

Method/Property Modification, where a call to a DOM API meth-
od (or property) is either added, removed, or modified in
the JavaScript code. Here, modification refers to changing
the method (or property) originally called, not the param-
eter (e.g., instead of calling getElementsByClassName, the
method getElementsByTagName is called instead). This cat-
egory makes up 24.6% of the fixes.

Major Refactoring, where significantly large portions of the Java-
Script code are modified and restructured to implement the
fix. This category makes up 10.5% of the fixes.

Other/Uncategorized, which make up 12% of the fixes.

As seen in the above fix categories, the most prominent cate-
gories are Parameter Modification and DOM Element Validation,
which make up over half (52.9%) of the fixes. Therefore, we fo-
cus on these categories in our work. Although we do not consider
Method/Property Modifications in our repair approach, our algo-
rithm can be adapted to include this class of errors, at the cost of
increasing its complexity (see Section 7).

Application of Fixes. We next describe how programmers modify
the JavaScript code to apply the fixes. We discuss our findings for
the three most prominent fix categories – Parameter Modification,
DOM Element Validation, and Method/Property Modification.

Parameter Modification: We found that 67.3% of fixes belong-
ing to the Parameter Modification fix category involve the modifi-
cation of string values. The vast majority (around 70%) of these
string value modifications were direct modifications of string liter-
als in the JavaScript code. However, we also found cases where
the string value modification was applied by adding a call to string
modification methods such as replace().

We also analyzed the DOM methods/properties whose parame-
ters are affected by the modified values. For string value modifica-
tions, the methods/properties involved in multiple bug report fixes
are getElementById(), $() and jQuery(); together, fixes involv-
ing these methods comprise 51.4% of all string value modifications.
For non-string value modifications, fixes involved modification of
the numerical values assigned to elements’ style properties, partic-
ularly their alignment and scroll position.

DOM Element Validation: 75.5% of fixes belonging to this cat-
egory are applied by simply wrapping the code using the pertinent
DOM element within an if statement that performs the necessary
validation (so that the code only executes if the check passes).
Other modifications include (1) adding a check before the DOM
element is used so that the method returns if the check fails; (2)
adding a check before the DOM element is used such that the value
of the DOM element or its property is updated if the check fails;
(3) encapsulating the code using the DOM element in an if-else
statement so that a backup value can be used in case the check
fails; and finally (4) encapsulating the code in a try-catch state-
ment. The most prevalent checks are null/undefined checks, i.e.,
the code has been modified to check if the DOM element is null or
undefined before it is used, which constitutes 38.8% of the fixes
in the DOM Element Validation category.

Method/Property Modification: 53.2% of these fixes involve
changing the DOM method or property being called/assigned; the
rest involve either the removal of the method call or the property
assignment (e.g., remove a setAttribute call that changes the
class to which an element belongs), or the inclusion of such a call
or assignment (e.g., add a call to blur() to unfocus a particular
DOM element). Of the fixes where the DOM method/property was
changed, around 44% involve changing the event handler to which
a function is being assigned (e.g., instead of assigning a particular
method to onsubmit, it is assigned to onclick instead).

Data Collector
(box a)

Direct DOM Access Web Application
URL

Symptom Analyzer
(box b)

Treatment
Suggester

(box c)

Supplementary
Information

Symptoms
Data

Possible Sicknesses

List of Workaround
Suggestions

Figure 3: High-level block diagram of our design.

Summary of Findings. Our study shows that the most prominent
fix categories are Parameter Modification and DOM Element Vali-
dation. Our analysis also shows the prevalence of string value mod-
ifications and null/undefined checks when applying fixes. In ad-
dition, most parameter modifications are for values eventually used
in DOM methods that retrieve elements from the DOM, particu-
larly the $(), jQuery() and getElementById() methods. These
results motivate our fault model choice in Section 4 as well as our
choice of possible sickness classes in Section 5.2.

4. FAULT MODEL
In this work, we focus on DOM API methods that retrieve an el-

ement from the DOM using CSS selectors, IDs, tag names, or class
names, as we found that these were the common sources of mis-
takes made by programmers (Section 3). These DOM API methods
include getElementById(), getElementsByTagName(), getEl-
ementsByClassName(), querySelector(), and querySelect-
orAll(). We also support DOM API wrapper methods made avail-
able by commonly used JavaScript libraries including those in jQuery
(e.g., $() and jQuery()); Prototype (e.g., $$() and $()); and
tinyMCE (e.g., get()), among others. For simplicity, we will refer
to all these DOM API methods as the direct DOM access.

We further focus on code-terminating DOM-related faults, which
means the DOM API method returns null, undefined, or an empty
set of elements, eventually leading to a null or an undefined excep-
tion (thereby terminating JavaScript execution). However, our de-
sign can also be extended to apply to output-related DOM-related
faults, i.e., those that lead to incorrect output manifested on the
DOM. Such faults would require the programmer to manually spec-
ify the direct DOM access. In contrast, with code-terminating DOM-
related faults, the direct DOM access can be determined automat-
ically using the AUTOFLOX tool proposed in our prior work [14].
Thus we focus on this category of faults in this work.

The running example introduced in Section 2 is an example of
a fault that is encompassed by the fault model described above.
Here, the direct DOM access is the call to the $() method in line
11, which returns an empty set of elements. It is code-terminating
because the fault leads to an undefined exception in line 12.

5. APPROACH
In this section, we describe our approach for assisting web de-

velopers in repairing DOM-related faults satisfying the fault model
described in the previous section. Figure 3 shows a block diagram

Parameter Analysis: Dividing
Components

25

Invalid selector: div#pain-elem span.cls

Divide into components

div | # | pain-elem | | span | . | cls

Method/Property Modification, where a call to a DOM API meth-
od (or property) is either added, removed, or modified in
the JavaScript code. Here, modification refers to changing
the method (or property) originally called, not the param-
eter (e.g., instead of calling getElementsByClassName, the
method getElementsByTagName is called instead). This cat-
egory makes up 24.6% of the fixes.

Major Refactoring, where significantly large portions of the Java-
Script code are modified and restructured to implement the
fix. This category makes up 10.5% of the fixes.

Other/Uncategorized, which make up 12% of the fixes.

As seen in the above fix categories, the most prominent cate-
gories are Parameter Modification and DOM Element Validation,
which make up over half (52.9%) of the fixes. Therefore, we fo-
cus on these categories in our work. Although we do not consider
Method/Property Modifications in our repair approach, our algo-
rithm can be adapted to include this class of errors, at the cost of
increasing its complexity (see Section 7).

Application of Fixes. We next describe how programmers modify
the JavaScript code to apply the fixes. We discuss our findings for
the three most prominent fix categories – Parameter Modification,
DOM Element Validation, and Method/Property Modification.

Parameter Modification: We found that 67.3% of fixes belong-
ing to the Parameter Modification fix category involve the modifi-
cation of string values. The vast majority (around 70%) of these
string value modifications were direct modifications of string liter-
als in the JavaScript code. However, we also found cases where
the string value modification was applied by adding a call to string
modification methods such as replace().

We also analyzed the DOM methods/properties whose parame-
ters are affected by the modified values. For string value modifica-
tions, the methods/properties involved in multiple bug report fixes
are getElementById(), $() and jQuery(); together, fixes involv-
ing these methods comprise 51.4% of all string value modifications.
For non-string value modifications, fixes involved modification of
the numerical values assigned to elements’ style properties, partic-
ularly their alignment and scroll position.

DOM Element Validation: 75.5% of fixes belonging to this cat-
egory are applied by simply wrapping the code using the pertinent
DOM element within an if statement that performs the necessary
validation (so that the code only executes if the check passes).
Other modifications include (1) adding a check before the DOM
element is used so that the method returns if the check fails; (2)
adding a check before the DOM element is used such that the value
of the DOM element or its property is updated if the check fails;
(3) encapsulating the code using the DOM element in an if-else
statement so that a backup value can be used in case the check
fails; and finally (4) encapsulating the code in a try-catch state-
ment. The most prevalent checks are null/undefined checks, i.e.,
the code has been modified to check if the DOM element is null or
undefined before it is used, which constitutes 38.8% of the fixes
in the DOM Element Validation category.

Method/Property Modification: 53.2% of these fixes involve
changing the DOM method or property being called/assigned; the
rest involve either the removal of the method call or the property
assignment (e.g., remove a setAttribute call that changes the
class to which an element belongs), or the inclusion of such a call
or assignment (e.g., add a call to blur() to unfocus a particular
DOM element). Of the fixes where the DOM method/property was
changed, around 44% involve changing the event handler to which
a function is being assigned (e.g., instead of assigning a particular
method to onsubmit, it is assigned to onclick instead).

Data Collector
(box a)

Direct DOM Access Web Application
URL

Symptom Analyzer
(box b)

Treatment
Suggester

(box c)

Supplementary
Information

Symptoms
Data

Possible Sicknesses

List of Workaround
Suggestions

Figure 3: High-level block diagram of our design.

Summary of Findings. Our study shows that the most prominent
fix categories are Parameter Modification and DOM Element Vali-
dation. Our analysis also shows the prevalence of string value mod-
ifications and null/undefined checks when applying fixes. In ad-
dition, most parameter modifications are for values eventually used
in DOM methods that retrieve elements from the DOM, particu-
larly the $(), jQuery() and getElementById() methods. These
results motivate our fault model choice in Section 4 as well as our
choice of possible sickness classes in Section 5.2.

4. FAULT MODEL
In this work, we focus on DOM API methods that retrieve an el-

ement from the DOM using CSS selectors, IDs, tag names, or class
names, as we found that these were the common sources of mis-
takes made by programmers (Section 3). These DOM API methods
include getElementById(), getElementsByTagName(), getEl-
ementsByClassName(), querySelector(), and querySelect-
orAll(). We also support DOM API wrapper methods made avail-
able by commonly used JavaScript libraries including those in jQuery
(e.g., $() and jQuery()); Prototype (e.g., $$() and $()); and
tinyMCE (e.g., get()), among others. For simplicity, we will refer
to all these DOM API methods as the direct DOM access.

We further focus on code-terminating DOM-related faults, which
means the DOM API method returns null, undefined, or an empty
set of elements, eventually leading to a null or an undefined excep-
tion (thereby terminating JavaScript execution). However, our de-
sign can also be extended to apply to output-related DOM-related
faults, i.e., those that lead to incorrect output manifested on the
DOM. Such faults would require the programmer to manually spec-
ify the direct DOM access. In contrast, with code-terminating DOM-
related faults, the direct DOM access can be determined automat-
ically using the AUTOFLOX tool proposed in our prior work [14].
Thus we focus on this category of faults in this work.

The running example introduced in Section 2 is an example of
a fault that is encompassed by the fault model described above.
Here, the direct DOM access is the call to the $() method in line
11, which returns an empty set of elements. It is code-terminating
because the fault leads to an undefined exception in line 12.

5. APPROACH
In this section, we describe our approach for assisting web de-

velopers in repairing DOM-related faults satisfying the fault model
described in the previous section. Figure 3 shows a block diagram

Parameter Analysis: Dividing
Components

26

Invalid selector: div#pain-elem span.cls

Divide into components

div | # | pain-elem | | span | . | cls

tag has-id id has-
descendant

tag has-
class

class

Method/Property Modification, where a call to a DOM API meth-
od (or property) is either added, removed, or modified in
the JavaScript code. Here, modification refers to changing
the method (or property) originally called, not the param-
eter (e.g., instead of calling getElementsByClassName, the
method getElementsByTagName is called instead). This cat-
egory makes up 24.6% of the fixes.

Major Refactoring, where significantly large portions of the Java-
Script code are modified and restructured to implement the
fix. This category makes up 10.5% of the fixes.

Other/Uncategorized, which make up 12% of the fixes.

As seen in the above fix categories, the most prominent cate-
gories are Parameter Modification and DOM Element Validation,
which make up over half (52.9%) of the fixes. Therefore, we fo-
cus on these categories in our work. Although we do not consider
Method/Property Modifications in our repair approach, our algo-
rithm can be adapted to include this class of errors, at the cost of
increasing its complexity (see Section 7).

Application of Fixes. We next describe how programmers modify
the JavaScript code to apply the fixes. We discuss our findings for
the three most prominent fix categories – Parameter Modification,
DOM Element Validation, and Method/Property Modification.

Parameter Modification: We found that 67.3% of fixes belong-
ing to the Parameter Modification fix category involve the modifi-
cation of string values. The vast majority (around 70%) of these
string value modifications were direct modifications of string liter-
als in the JavaScript code. However, we also found cases where
the string value modification was applied by adding a call to string
modification methods such as replace().

We also analyzed the DOM methods/properties whose parame-
ters are affected by the modified values. For string value modifica-
tions, the methods/properties involved in multiple bug report fixes
are getElementById(), $() and jQuery(); together, fixes involv-
ing these methods comprise 51.4% of all string value modifications.
For non-string value modifications, fixes involved modification of
the numerical values assigned to elements’ style properties, partic-
ularly their alignment and scroll position.

DOM Element Validation: 75.5% of fixes belonging to this cat-
egory are applied by simply wrapping the code using the pertinent
DOM element within an if statement that performs the necessary
validation (so that the code only executes if the check passes).
Other modifications include (1) adding a check before the DOM
element is used so that the method returns if the check fails; (2)
adding a check before the DOM element is used such that the value
of the DOM element or its property is updated if the check fails;
(3) encapsulating the code using the DOM element in an if-else
statement so that a backup value can be used in case the check
fails; and finally (4) encapsulating the code in a try-catch state-
ment. The most prevalent checks are null/undefined checks, i.e.,
the code has been modified to check if the DOM element is null or
undefined before it is used, which constitutes 38.8% of the fixes
in the DOM Element Validation category.

Method/Property Modification: 53.2% of these fixes involve
changing the DOM method or property being called/assigned; the
rest involve either the removal of the method call or the property
assignment (e.g., remove a setAttribute call that changes the
class to which an element belongs), or the inclusion of such a call
or assignment (e.g., add a call to blur() to unfocus a particular
DOM element). Of the fixes where the DOM method/property was
changed, around 44% involve changing the event handler to which
a function is being assigned (e.g., instead of assigning a particular
method to onsubmit, it is assigned to onclick instead).

Data Collector
(box a)

Direct DOM Access Web Application
URL

Symptom Analyzer
(box b)

Treatment
Suggester

(box c)

Supplementary
Information

Symptoms
Data

Possible Sicknesses

List of Workaround
Suggestions

Figure 3: High-level block diagram of our design.

Summary of Findings. Our study shows that the most prominent
fix categories are Parameter Modification and DOM Element Vali-
dation. Our analysis also shows the prevalence of string value mod-
ifications and null/undefined checks when applying fixes. In ad-
dition, most parameter modifications are for values eventually used
in DOM methods that retrieve elements from the DOM, particu-
larly the $(), jQuery() and getElementById() methods. These
results motivate our fault model choice in Section 4 as well as our
choice of possible sickness classes in Section 5.2.

4. FAULT MODEL
In this work, we focus on DOM API methods that retrieve an el-

ement from the DOM using CSS selectors, IDs, tag names, or class
names, as we found that these were the common sources of mis-
takes made by programmers (Section 3). These DOM API methods
include getElementById(), getElementsByTagName(), getEl-
ementsByClassName(), querySelector(), and querySelect-
orAll(). We also support DOM API wrapper methods made avail-
able by commonly used JavaScript libraries including those in jQuery
(e.g., $() and jQuery()); Prototype (e.g., $$() and $()); and
tinyMCE (e.g., get()), among others. For simplicity, we will refer
to all these DOM API methods as the direct DOM access.

We further focus on code-terminating DOM-related faults, which
means the DOM API method returns null, undefined, or an empty
set of elements, eventually leading to a null or an undefined excep-
tion (thereby terminating JavaScript execution). However, our de-
sign can also be extended to apply to output-related DOM-related
faults, i.e., those that lead to incorrect output manifested on the
DOM. Such faults would require the programmer to manually spec-
ify the direct DOM access. In contrast, with code-terminating DOM-
related faults, the direct DOM access can be determined automat-
ically using the AUTOFLOX tool proposed in our prior work [14].
Thus we focus on this category of faults in this work.

The running example introduced in Section 2 is an example of
a fault that is encompassed by the fault model described above.
Here, the direct DOM access is the call to the $() method in line
11, which returns an empty set of elements. It is code-terminating
because the fault leads to an undefined exception in line 12.

5. APPROACH
In this section, we describe our approach for assisting web de-

velopers in repairing DOM-related faults satisfying the fault model
described in the previous section. Figure 3 shows a block diagram

Parameter Analysis: Dividing
Components

27

Invalid selector: div#pain-elem span.cls

Subdivide each component according to
dynamic backward slice

div | # | pain- | elem | | span | . | cls

Line 2 Line 3

Method/Property Modification, where a call to a DOM API meth-
od (or property) is either added, removed, or modified in
the JavaScript code. Here, modification refers to changing
the method (or property) originally called, not the param-
eter (e.g., instead of calling getElementsByClassName, the
method getElementsByTagName is called instead). This cat-
egory makes up 24.6% of the fixes.

Major Refactoring, where significantly large portions of the Java-
Script code are modified and restructured to implement the
fix. This category makes up 10.5% of the fixes.

Other/Uncategorized, which make up 12% of the fixes.

As seen in the above fix categories, the most prominent cate-
gories are Parameter Modification and DOM Element Validation,
which make up over half (52.9%) of the fixes. Therefore, we fo-
cus on these categories in our work. Although we do not consider
Method/Property Modifications in our repair approach, our algo-
rithm can be adapted to include this class of errors, at the cost of
increasing its complexity (see Section 7).

Application of Fixes. We next describe how programmers modify
the JavaScript code to apply the fixes. We discuss our findings for
the three most prominent fix categories – Parameter Modification,
DOM Element Validation, and Method/Property Modification.

Parameter Modification: We found that 67.3% of fixes belong-
ing to the Parameter Modification fix category involve the modifi-
cation of string values. The vast majority (around 70%) of these
string value modifications were direct modifications of string liter-
als in the JavaScript code. However, we also found cases where
the string value modification was applied by adding a call to string
modification methods such as replace().

We also analyzed the DOM methods/properties whose parame-
ters are affected by the modified values. For string value modifica-
tions, the methods/properties involved in multiple bug report fixes
are getElementById(), $() and jQuery(); together, fixes involv-
ing these methods comprise 51.4% of all string value modifications.
For non-string value modifications, fixes involved modification of
the numerical values assigned to elements’ style properties, partic-
ularly their alignment and scroll position.

DOM Element Validation: 75.5% of fixes belonging to this cat-
egory are applied by simply wrapping the code using the pertinent
DOM element within an if statement that performs the necessary
validation (so that the code only executes if the check passes).
Other modifications include (1) adding a check before the DOM
element is used so that the method returns if the check fails; (2)
adding a check before the DOM element is used such that the value
of the DOM element or its property is updated if the check fails;
(3) encapsulating the code using the DOM element in an if-else
statement so that a backup value can be used in case the check
fails; and finally (4) encapsulating the code in a try-catch state-
ment. The most prevalent checks are null/undefined checks, i.e.,
the code has been modified to check if the DOM element is null or
undefined before it is used, which constitutes 38.8% of the fixes
in the DOM Element Validation category.

Method/Property Modification: 53.2% of these fixes involve
changing the DOM method or property being called/assigned; the
rest involve either the removal of the method call or the property
assignment (e.g., remove a setAttribute call that changes the
class to which an element belongs), or the inclusion of such a call
or assignment (e.g., add a call to blur() to unfocus a particular
DOM element). Of the fixes where the DOM method/property was
changed, around 44% involve changing the event handler to which
a function is being assigned (e.g., instead of assigning a particular
method to onsubmit, it is assigned to onclick instead).

Data Collector
(box a)

Direct DOM Access Web Application
URL

Symptom Analyzer
(box b)

Treatment
Suggester

(box c)

Supplementary
Information

Symptoms
Data

Possible Sicknesses

List of Workaround
Suggestions

Figure 3: High-level block diagram of our design.

Summary of Findings. Our study shows that the most prominent
fix categories are Parameter Modification and DOM Element Vali-
dation. Our analysis also shows the prevalence of string value mod-
ifications and null/undefined checks when applying fixes. In ad-
dition, most parameter modifications are for values eventually used
in DOM methods that retrieve elements from the DOM, particu-
larly the $(), jQuery() and getElementById() methods. These
results motivate our fault model choice in Section 4 as well as our
choice of possible sickness classes in Section 5.2.

4. FAULT MODEL
In this work, we focus on DOM API methods that retrieve an el-

ement from the DOM using CSS selectors, IDs, tag names, or class
names, as we found that these were the common sources of mis-
takes made by programmers (Section 3). These DOM API methods
include getElementById(), getElementsByTagName(), getEl-
ementsByClassName(), querySelector(), and querySelect-
orAll(). We also support DOM API wrapper methods made avail-
able by commonly used JavaScript libraries including those in jQuery
(e.g., $() and jQuery()); Prototype (e.g., $$() and $()); and
tinyMCE (e.g., get()), among others. For simplicity, we will refer
to all these DOM API methods as the direct DOM access.

We further focus on code-terminating DOM-related faults, which
means the DOM API method returns null, undefined, or an empty
set of elements, eventually leading to a null or an undefined excep-
tion (thereby terminating JavaScript execution). However, our de-
sign can also be extended to apply to output-related DOM-related
faults, i.e., those that lead to incorrect output manifested on the
DOM. Such faults would require the programmer to manually spec-
ify the direct DOM access. In contrast, with code-terminating DOM-
related faults, the direct DOM access can be determined automat-
ically using the AUTOFLOX tool proposed in our prior work [14].
Thus we focus on this category of faults in this work.

The running example introduced in Section 2 is an example of
a fault that is encompassed by the fault model described above.
Here, the direct DOM access is the call to the $() method in line
11, which returns an empty set of elements. It is code-terminating
because the fault leads to an undefined exception in line 12.

5. APPROACH
In this section, we describe our approach for assisting web de-

velopers in repairing DOM-related faults satisfying the fault model
described in the previous section. Figure 3 shows a block diagram

Parameter Analysis: Dividing
Components

28

1 firstTag = “div”;!
2 prefix = “pain-”;!
3 suffix = “elem”;!
4 level1 = firstTag + “#” + prefix + suffix;!
5 level2 = “span.cls”;!
6 e = $(level1 + “ “ + level2);!
7 e[0].innerHTML = “new content”;!

Invalid selector: div#pain-elem span.cls
div

Id = “main-elem”

div
Id = “wrapper”

span
class=“cls”

span
class=“cls”

Backward slice
of “pain-elem”

Parameter Analysis: Dividing
Components

29

Invalid selector: div#pain-elem span.cls

Subdivide each component according to
dynamic backward slice

div | # | pain- | elem | | span | . | cls

Method/Property Modification, where a call to a DOM API meth-
od (or property) is either added, removed, or modified in
the JavaScript code. Here, modification refers to changing
the method (or property) originally called, not the param-
eter (e.g., instead of calling getElementsByClassName, the
method getElementsByTagName is called instead). This cat-
egory makes up 24.6% of the fixes.

Major Refactoring, where significantly large portions of the Java-
Script code are modified and restructured to implement the
fix. This category makes up 10.5% of the fixes.

Other/Uncategorized, which make up 12% of the fixes.

As seen in the above fix categories, the most prominent cate-
gories are Parameter Modification and DOM Element Validation,
which make up over half (52.9%) of the fixes. Therefore, we fo-
cus on these categories in our work. Although we do not consider
Method/Property Modifications in our repair approach, our algo-
rithm can be adapted to include this class of errors, at the cost of
increasing its complexity (see Section 7).

Application of Fixes. We next describe how programmers modify
the JavaScript code to apply the fixes. We discuss our findings for
the three most prominent fix categories – Parameter Modification,
DOM Element Validation, and Method/Property Modification.

Parameter Modification: We found that 67.3% of fixes belong-
ing to the Parameter Modification fix category involve the modifi-
cation of string values. The vast majority (around 70%) of these
string value modifications were direct modifications of string liter-
als in the JavaScript code. However, we also found cases where
the string value modification was applied by adding a call to string
modification methods such as replace().

We also analyzed the DOM methods/properties whose parame-
ters are affected by the modified values. For string value modifica-
tions, the methods/properties involved in multiple bug report fixes
are getElementById(), $() and jQuery(); together, fixes involv-
ing these methods comprise 51.4% of all string value modifications.
For non-string value modifications, fixes involved modification of
the numerical values assigned to elements’ style properties, partic-
ularly their alignment and scroll position.

DOM Element Validation: 75.5% of fixes belonging to this cat-
egory are applied by simply wrapping the code using the pertinent
DOM element within an if statement that performs the necessary
validation (so that the code only executes if the check passes).
Other modifications include (1) adding a check before the DOM
element is used so that the method returns if the check fails; (2)
adding a check before the DOM element is used such that the value
of the DOM element or its property is updated if the check fails;
(3) encapsulating the code using the DOM element in an if-else
statement so that a backup value can be used in case the check
fails; and finally (4) encapsulating the code in a try-catch state-
ment. The most prevalent checks are null/undefined checks, i.e.,
the code has been modified to check if the DOM element is null or
undefined before it is used, which constitutes 38.8% of the fixes
in the DOM Element Validation category.

Method/Property Modification: 53.2% of these fixes involve
changing the DOM method or property being called/assigned; the
rest involve either the removal of the method call or the property
assignment (e.g., remove a setAttribute call that changes the
class to which an element belongs), or the inclusion of such a call
or assignment (e.g., add a call to blur() to unfocus a particular
DOM element). Of the fixes where the DOM method/property was
changed, around 44% involve changing the event handler to which
a function is being assigned (e.g., instead of assigning a particular
method to onsubmit, it is assigned to onclick instead).

Data Collector
(box a)

Direct DOM Access Web Application
URL

Symptom Analyzer
(box b)

Treatment
Suggester

(box c)

Supplementary
Information

Symptoms
Data

Possible Sicknesses

List of Workaround
Suggestions

Figure 3: High-level block diagram of our design.

Summary of Findings. Our study shows that the most prominent
fix categories are Parameter Modification and DOM Element Vali-
dation. Our analysis also shows the prevalence of string value mod-
ifications and null/undefined checks when applying fixes. In ad-
dition, most parameter modifications are for values eventually used
in DOM methods that retrieve elements from the DOM, particu-
larly the $(), jQuery() and getElementById() methods. These
results motivate our fault model choice in Section 4 as well as our
choice of possible sickness classes in Section 5.2.

4. FAULT MODEL
In this work, we focus on DOM API methods that retrieve an el-

ement from the DOM using CSS selectors, IDs, tag names, or class
names, as we found that these were the common sources of mis-
takes made by programmers (Section 3). These DOM API methods
include getElementById(), getElementsByTagName(), getEl-
ementsByClassName(), querySelector(), and querySelect-
orAll(). We also support DOM API wrapper methods made avail-
able by commonly used JavaScript libraries including those in jQuery
(e.g., $() and jQuery()); Prototype (e.g., $$() and $()); and
tinyMCE (e.g., get()), among others. For simplicity, we will refer
to all these DOM API methods as the direct DOM access.

We further focus on code-terminating DOM-related faults, which
means the DOM API method returns null, undefined, or an empty
set of elements, eventually leading to a null or an undefined excep-
tion (thereby terminating JavaScript execution). However, our de-
sign can also be extended to apply to output-related DOM-related
faults, i.e., those that lead to incorrect output manifested on the
DOM. Such faults would require the programmer to manually spec-
ify the direct DOM access. In contrast, with code-terminating DOM-
related faults, the direct DOM access can be determined automat-
ically using the AUTOFLOX tool proposed in our prior work [14].
Thus we focus on this category of faults in this work.

The running example introduced in Section 2 is an example of
a fault that is encompassed by the fault model described above.
Here, the direct DOM access is the call to the $() method in line
11, which returns an empty set of elements. It is code-terminating
because the fault leads to an undefined exception in line 12.

5. APPROACH
In this section, we describe our approach for assisting web de-

velopers in repairing DOM-related faults satisfying the fault model
described in the previous section. Figure 3 shows a block diagram

Parameter Analysis: Finding
Valid Selectors

30

Invalid selector: div#pain-elem span.cls

div
Id = “main-

elem”
div

Id = “wrapper”
span

class=“cls”

span
class=“cls”

Construct VALID selectors from current DOM that are
“sufficiently close” to the erroneous one

Method/Property Modification, where a call to a DOM API meth-
od (or property) is either added, removed, or modified in
the JavaScript code. Here, modification refers to changing
the method (or property) originally called, not the param-
eter (e.g., instead of calling getElementsByClassName, the
method getElementsByTagName is called instead). This cat-
egory makes up 24.6% of the fixes.

Major Refactoring, where significantly large portions of the Java-
Script code are modified and restructured to implement the
fix. This category makes up 10.5% of the fixes.

Other/Uncategorized, which make up 12% of the fixes.

As seen in the above fix categories, the most prominent cate-
gories are Parameter Modification and DOM Element Validation,
which make up over half (52.9%) of the fixes. Therefore, we fo-
cus on these categories in our work. Although we do not consider
Method/Property Modifications in our repair approach, our algo-
rithm can be adapted to include this class of errors, at the cost of
increasing its complexity (see Section 7).

Application of Fixes. We next describe how programmers modify
the JavaScript code to apply the fixes. We discuss our findings for
the three most prominent fix categories – Parameter Modification,
DOM Element Validation, and Method/Property Modification.

Parameter Modification: We found that 67.3% of fixes belong-
ing to the Parameter Modification fix category involve the modifi-
cation of string values. The vast majority (around 70%) of these
string value modifications were direct modifications of string liter-
als in the JavaScript code. However, we also found cases where
the string value modification was applied by adding a call to string
modification methods such as replace().

We also analyzed the DOM methods/properties whose parame-
ters are affected by the modified values. For string value modifica-
tions, the methods/properties involved in multiple bug report fixes
are getElementById(), $() and jQuery(); together, fixes involv-
ing these methods comprise 51.4% of all string value modifications.
For non-string value modifications, fixes involved modification of
the numerical values assigned to elements’ style properties, partic-
ularly their alignment and scroll position.

DOM Element Validation: 75.5% of fixes belonging to this cat-
egory are applied by simply wrapping the code using the pertinent
DOM element within an if statement that performs the necessary
validation (so that the code only executes if the check passes).
Other modifications include (1) adding a check before the DOM
element is used so that the method returns if the check fails; (2)
adding a check before the DOM element is used such that the value
of the DOM element or its property is updated if the check fails;
(3) encapsulating the code using the DOM element in an if-else
statement so that a backup value can be used in case the check
fails; and finally (4) encapsulating the code in a try-catch state-
ment. The most prevalent checks are null/undefined checks, i.e.,
the code has been modified to check if the DOM element is null or
undefined before it is used, which constitutes 38.8% of the fixes
in the DOM Element Validation category.

Method/Property Modification: 53.2% of these fixes involve
changing the DOM method or property being called/assigned; the
rest involve either the removal of the method call or the property
assignment (e.g., remove a setAttribute call that changes the
class to which an element belongs), or the inclusion of such a call
or assignment (e.g., add a call to blur() to unfocus a particular
DOM element). Of the fixes where the DOM method/property was
changed, around 44% involve changing the event handler to which
a function is being assigned (e.g., instead of assigning a particular
method to onsubmit, it is assigned to onclick instead).

Data Collector
(box a)

Direct DOM Access Web Application
URL

Symptom Analyzer
(box b)

Treatment
Suggester

(box c)

Supplementary
Information

Symptoms
Data

Possible Sicknesses

List of Workaround
Suggestions

Figure 3: High-level block diagram of our design.

Summary of Findings. Our study shows that the most prominent
fix categories are Parameter Modification and DOM Element Vali-
dation. Our analysis also shows the prevalence of string value mod-
ifications and null/undefined checks when applying fixes. In ad-
dition, most parameter modifications are for values eventually used
in DOM methods that retrieve elements from the DOM, particu-
larly the $(), jQuery() and getElementById() methods. These
results motivate our fault model choice in Section 4 as well as our
choice of possible sickness classes in Section 5.2.

4. FAULT MODEL
In this work, we focus on DOM API methods that retrieve an el-

ement from the DOM using CSS selectors, IDs, tag names, or class
names, as we found that these were the common sources of mis-
takes made by programmers (Section 3). These DOM API methods
include getElementById(), getElementsByTagName(), getEl-
ementsByClassName(), querySelector(), and querySelect-
orAll(). We also support DOM API wrapper methods made avail-
able by commonly used JavaScript libraries including those in jQuery
(e.g., $() and jQuery()); Prototype (e.g., $$() and $()); and
tinyMCE (e.g., get()), among others. For simplicity, we will refer
to all these DOM API methods as the direct DOM access.

We further focus on code-terminating DOM-related faults, which
means the DOM API method returns null, undefined, or an empty
set of elements, eventually leading to a null or an undefined excep-
tion (thereby terminating JavaScript execution). However, our de-
sign can also be extended to apply to output-related DOM-related
faults, i.e., those that lead to incorrect output manifested on the
DOM. Such faults would require the programmer to manually spec-
ify the direct DOM access. In contrast, with code-terminating DOM-
related faults, the direct DOM access can be determined automat-
ically using the AUTOFLOX tool proposed in our prior work [14].
Thus we focus on this category of faults in this work.

The running example introduced in Section 2 is an example of
a fault that is encompassed by the fault model described above.
Here, the direct DOM access is the call to the $() method in line
11, which returns an empty set of elements. It is code-terminating
because the fault leads to an undefined exception in line 12.

5. APPROACH
In this section, we describe our approach for assisting web de-

velopers in repairing DOM-related faults satisfying the fault model
described in the previous section. Figure 3 shows a block diagram

Parameter Analysis: Finding
Valid Selectors

31

Invalid selector: div#pain-elem span.cls

div
Id = “main-

elem”
div

Id = “wrapper”
span

class=“cls”

span
class=“cls”

Construct VALID selectors from current DOM that are
“sufficiently close” to the erroneous one

List of valid selectors:

div#main-elem span.cls

div#wrapper span.cls

Method/Property Modification, where a call to a DOM API meth-
od (or property) is either added, removed, or modified in
the JavaScript code. Here, modification refers to changing
the method (or property) originally called, not the param-
eter (e.g., instead of calling getElementsByClassName, the
method getElementsByTagName is called instead). This cat-
egory makes up 24.6% of the fixes.

Major Refactoring, where significantly large portions of the Java-
Script code are modified and restructured to implement the
fix. This category makes up 10.5% of the fixes.

Other/Uncategorized, which make up 12% of the fixes.

As seen in the above fix categories, the most prominent cate-
gories are Parameter Modification and DOM Element Validation,
which make up over half (52.9%) of the fixes. Therefore, we fo-
cus on these categories in our work. Although we do not consider
Method/Property Modifications in our repair approach, our algo-
rithm can be adapted to include this class of errors, at the cost of
increasing its complexity (see Section 7).

Application of Fixes. We next describe how programmers modify
the JavaScript code to apply the fixes. We discuss our findings for
the three most prominent fix categories – Parameter Modification,
DOM Element Validation, and Method/Property Modification.

Parameter Modification: We found that 67.3% of fixes belong-
ing to the Parameter Modification fix category involve the modifi-
cation of string values. The vast majority (around 70%) of these
string value modifications were direct modifications of string liter-
als in the JavaScript code. However, we also found cases where
the string value modification was applied by adding a call to string
modification methods such as replace().

We also analyzed the DOM methods/properties whose parame-
ters are affected by the modified values. For string value modifica-
tions, the methods/properties involved in multiple bug report fixes
are getElementById(), $() and jQuery(); together, fixes involv-
ing these methods comprise 51.4% of all string value modifications.
For non-string value modifications, fixes involved modification of
the numerical values assigned to elements’ style properties, partic-
ularly their alignment and scroll position.

DOM Element Validation: 75.5% of fixes belonging to this cat-
egory are applied by simply wrapping the code using the pertinent
DOM element within an if statement that performs the necessary
validation (so that the code only executes if the check passes).
Other modifications include (1) adding a check before the DOM
element is used so that the method returns if the check fails; (2)
adding a check before the DOM element is used such that the value
of the DOM element or its property is updated if the check fails;
(3) encapsulating the code using the DOM element in an if-else
statement so that a backup value can be used in case the check
fails; and finally (4) encapsulating the code in a try-catch state-
ment. The most prevalent checks are null/undefined checks, i.e.,
the code has been modified to check if the DOM element is null or
undefined before it is used, which constitutes 38.8% of the fixes
in the DOM Element Validation category.

Method/Property Modification: 53.2% of these fixes involve
changing the DOM method or property being called/assigned; the
rest involve either the removal of the method call or the property
assignment (e.g., remove a setAttribute call that changes the
class to which an element belongs), or the inclusion of such a call
or assignment (e.g., add a call to blur() to unfocus a particular
DOM element). Of the fixes where the DOM method/property was
changed, around 44% involve changing the event handler to which
a function is being assigned (e.g., instead of assigning a particular
method to onsubmit, it is assigned to onclick instead).

Data Collector
(box a)

Direct DOM Access Web Application
URL

Symptom Analyzer
(box b)

Treatment
Suggester

(box c)

Supplementary
Information

Symptoms
Data

Possible Sicknesses

List of Workaround
Suggestions

Figure 3: High-level block diagram of our design.

Summary of Findings. Our study shows that the most prominent
fix categories are Parameter Modification and DOM Element Vali-
dation. Our analysis also shows the prevalence of string value mod-
ifications and null/undefined checks when applying fixes. In ad-
dition, most parameter modifications are for values eventually used
in DOM methods that retrieve elements from the DOM, particu-
larly the $(), jQuery() and getElementById() methods. These
results motivate our fault model choice in Section 4 as well as our
choice of possible sickness classes in Section 5.2.

4. FAULT MODEL
In this work, we focus on DOM API methods that retrieve an el-

ement from the DOM using CSS selectors, IDs, tag names, or class
names, as we found that these were the common sources of mis-
takes made by programmers (Section 3). These DOM API methods
include getElementById(), getElementsByTagName(), getEl-
ementsByClassName(), querySelector(), and querySelect-
orAll(). We also support DOM API wrapper methods made avail-
able by commonly used JavaScript libraries including those in jQuery
(e.g., $() and jQuery()); Prototype (e.g., $$() and $()); and
tinyMCE (e.g., get()), among others. For simplicity, we will refer
to all these DOM API methods as the direct DOM access.

We further focus on code-terminating DOM-related faults, which
means the DOM API method returns null, undefined, or an empty
set of elements, eventually leading to a null or an undefined excep-
tion (thereby terminating JavaScript execution). However, our de-
sign can also be extended to apply to output-related DOM-related
faults, i.e., those that lead to incorrect output manifested on the
DOM. Such faults would require the programmer to manually spec-
ify the direct DOM access. In contrast, with code-terminating DOM-
related faults, the direct DOM access can be determined automat-
ically using the AUTOFLOX tool proposed in our prior work [14].
Thus we focus on this category of faults in this work.

The running example introduced in Section 2 is an example of
a fault that is encompassed by the fault model described above.
Here, the direct DOM access is the call to the $() method in line
11, which returns an empty set of elements. It is code-terminating
because the fault leads to an undefined exception in line 12.

5. APPROACH
In this section, we describe our approach for assisting web de-

velopers in repairing DOM-related faults satisfying the fault model
described in the previous section. Figure 3 shows a block diagram

Parameter Analysis: Inferring Possible
Replacements [Example]

32

Invalid selector: div#pain-elem span.cls

div | # | pain- | elem | | span | . | cls

Parameter Analysis: Inferring Possible
Replacements [Example]

33

Invalid selector: div#pain-elem span.cls

div | # | pain- | elem | | span | . | cls

Assumed
incorrect

Parameter Analysis: Inferring Possible
Replacements [Example]

34

Invalid selector: div#pain-elem span.cls

div | # | | elem | | span | . | cls

Use as pattern
List of valid selectors:

div#main-elem span.cls
div#wrapper span.cls

Parameter Analysis: Inferring Possible
Replacements [Example]

35

Invalid selector: div#pain-elem span.cls

div | # | | elem | | span | . | cls

List of valid selectors:

div#main-elem span.cls – MATCHES PATTERN!
div#wrapper span.cls

Context Analysis

36

1 firstTag = “div”;!
2 prefix = “pain-”;!
3 suffix = “elem”;!
4 level1 = firstTag + “#” + prefix + suffix;!
5 level2 = “span.cls”;!
6 e = $(level1 + “ “ + level2);!
7 e[0].innerHTML = “new content”;!

Invalid selector: div#pain-elem span.cls
Replacement selector: div#main-elem span.cls

Method/Property Modification, where a call to a DOM API meth-
od (or property) is either added, removed, or modified in
the JavaScript code. Here, modification refers to changing
the method (or property) originally called, not the param-
eter (e.g., instead of calling getElementsByClassName, the
method getElementsByTagName is called instead). This cat-
egory makes up 24.6% of the fixes.

Major Refactoring, where significantly large portions of the Java-
Script code are modified and restructured to implement the
fix. This category makes up 10.5% of the fixes.

Other/Uncategorized, which make up 12% of the fixes.

As seen in the above fix categories, the most prominent cate-
gories are Parameter Modification and DOM Element Validation,
which make up over half (52.9%) of the fixes. Therefore, we fo-
cus on these categories in our work. Although we do not consider
Method/Property Modifications in our repair approach, our algo-
rithm can be adapted to include this class of errors, at the cost of
increasing its complexity (see Section 7).

Application of Fixes. We next describe how programmers modify
the JavaScript code to apply the fixes. We discuss our findings for
the three most prominent fix categories – Parameter Modification,
DOM Element Validation, and Method/Property Modification.

Parameter Modification: We found that 67.3% of fixes belong-
ing to the Parameter Modification fix category involve the modifi-
cation of string values. The vast majority (around 70%) of these
string value modifications were direct modifications of string liter-
als in the JavaScript code. However, we also found cases where
the string value modification was applied by adding a call to string
modification methods such as replace().

We also analyzed the DOM methods/properties whose parame-
ters are affected by the modified values. For string value modifica-
tions, the methods/properties involved in multiple bug report fixes
are getElementById(), $() and jQuery(); together, fixes involv-
ing these methods comprise 51.4% of all string value modifications.
For non-string value modifications, fixes involved modification of
the numerical values assigned to elements’ style properties, partic-
ularly their alignment and scroll position.

DOM Element Validation: 75.5% of fixes belonging to this cat-
egory are applied by simply wrapping the code using the pertinent
DOM element within an if statement that performs the necessary
validation (so that the code only executes if the check passes).
Other modifications include (1) adding a check before the DOM
element is used so that the method returns if the check fails; (2)
adding a check before the DOM element is used such that the value
of the DOM element or its property is updated if the check fails;
(3) encapsulating the code using the DOM element in an if-else
statement so that a backup value can be used in case the check
fails; and finally (4) encapsulating the code in a try-catch state-
ment. The most prevalent checks are null/undefined checks, i.e.,
the code has been modified to check if the DOM element is null or
undefined before it is used, which constitutes 38.8% of the fixes
in the DOM Element Validation category.

Method/Property Modification: 53.2% of these fixes involve
changing the DOM method or property being called/assigned; the
rest involve either the removal of the method call or the property
assignment (e.g., remove a setAttribute call that changes the
class to which an element belongs), or the inclusion of such a call
or assignment (e.g., add a call to blur() to unfocus a particular
DOM element). Of the fixes where the DOM method/property was
changed, around 44% involve changing the event handler to which
a function is being assigned (e.g., instead of assigning a particular
method to onsubmit, it is assigned to onclick instead).

Data Collector
(box a)

Direct DOM Access Web Application
URL

Symptom Analyzer
(box b)

Treatment
Suggester

(box c)

Supplementary
Information

Symptoms
Data

Possible Sicknesses

List of Workaround
Suggestions

Figure 3: High-level block diagram of our design.

Summary of Findings. Our study shows that the most prominent
fix categories are Parameter Modification and DOM Element Vali-
dation. Our analysis also shows the prevalence of string value mod-
ifications and null/undefined checks when applying fixes. In ad-
dition, most parameter modifications are for values eventually used
in DOM methods that retrieve elements from the DOM, particu-
larly the $(), jQuery() and getElementById() methods. These
results motivate our fault model choice in Section 4 as well as our
choice of possible sickness classes in Section 5.2.

4. FAULT MODEL
In this work, we focus on DOM API methods that retrieve an el-

ement from the DOM using CSS selectors, IDs, tag names, or class
names, as we found that these were the common sources of mis-
takes made by programmers (Section 3). These DOM API methods
include getElementById(), getElementsByTagName(), getEl-
ementsByClassName(), querySelector(), and querySelect-
orAll(). We also support DOM API wrapper methods made avail-
able by commonly used JavaScript libraries including those in jQuery
(e.g., $() and jQuery()); Prototype (e.g., $$() and $()); and
tinyMCE (e.g., get()), among others. For simplicity, we will refer
to all these DOM API methods as the direct DOM access.

We further focus on code-terminating DOM-related faults, which
means the DOM API method returns null, undefined, or an empty
set of elements, eventually leading to a null or an undefined excep-
tion (thereby terminating JavaScript execution). However, our de-
sign can also be extended to apply to output-related DOM-related
faults, i.e., those that lead to incorrect output manifested on the
DOM. Such faults would require the programmer to manually spec-
ify the direct DOM access. In contrast, with code-terminating DOM-
related faults, the direct DOM access can be determined automat-
ically using the AUTOFLOX tool proposed in our prior work [14].
Thus we focus on this category of faults in this work.

The running example introduced in Section 2 is an example of
a fault that is encompassed by the fault model described above.
Here, the direct DOM access is the call to the $() method in line
11, which returns an empty set of elements. It is code-terminating
because the fault leads to an undefined exception in line 12.

5. APPROACH
In this section, we describe our approach for assisting web de-

velopers in repairing DOM-related faults satisfying the fault model
described in the previous section. Figure 3 shows a block diagram

Context Analysis

37

1 firstTag = “div”;!
2 prefix = “main-”;!
3 suffix = “elem”;!
4 level1 = firstTag + “#” + prefix + suffix;!
5 level2 = “span.cls”;!
6 e = $(level1 + “ “ + level2);!
7 e[0].innerHTML = “new content”;!

Invalid selector: div#pain-elem span.cls

String literal
replaced

Replacement selector: div#main-elem span.cls

Method/Property Modification, where a call to a DOM API meth-
od (or property) is either added, removed, or modified in
the JavaScript code. Here, modification refers to changing
the method (or property) originally called, not the param-
eter (e.g., instead of calling getElementsByClassName, the
method getElementsByTagName is called instead). This cat-
egory makes up 24.6% of the fixes.

Major Refactoring, where significantly large portions of the Java-
Script code are modified and restructured to implement the
fix. This category makes up 10.5% of the fixes.

Other/Uncategorized, which make up 12% of the fixes.

As seen in the above fix categories, the most prominent cate-
gories are Parameter Modification and DOM Element Validation,
which make up over half (52.9%) of the fixes. Therefore, we fo-
cus on these categories in our work. Although we do not consider
Method/Property Modifications in our repair approach, our algo-
rithm can be adapted to include this class of errors, at the cost of
increasing its complexity (see Section 7).

Application of Fixes. We next describe how programmers modify
the JavaScript code to apply the fixes. We discuss our findings for
the three most prominent fix categories – Parameter Modification,
DOM Element Validation, and Method/Property Modification.

Parameter Modification: We found that 67.3% of fixes belong-
ing to the Parameter Modification fix category involve the modifi-
cation of string values. The vast majority (around 70%) of these
string value modifications were direct modifications of string liter-
als in the JavaScript code. However, we also found cases where
the string value modification was applied by adding a call to string
modification methods such as replace().

We also analyzed the DOM methods/properties whose parame-
ters are affected by the modified values. For string value modifica-
tions, the methods/properties involved in multiple bug report fixes
are getElementById(), $() and jQuery(); together, fixes involv-
ing these methods comprise 51.4% of all string value modifications.
For non-string value modifications, fixes involved modification of
the numerical values assigned to elements’ style properties, partic-
ularly their alignment and scroll position.

DOM Element Validation: 75.5% of fixes belonging to this cat-
egory are applied by simply wrapping the code using the pertinent
DOM element within an if statement that performs the necessary
validation (so that the code only executes if the check passes).
Other modifications include (1) adding a check before the DOM
element is used so that the method returns if the check fails; (2)
adding a check before the DOM element is used such that the value
of the DOM element or its property is updated if the check fails;
(3) encapsulating the code using the DOM element in an if-else
statement so that a backup value can be used in case the check
fails; and finally (4) encapsulating the code in a try-catch state-
ment. The most prevalent checks are null/undefined checks, i.e.,
the code has been modified to check if the DOM element is null or
undefined before it is used, which constitutes 38.8% of the fixes
in the DOM Element Validation category.

Method/Property Modification: 53.2% of these fixes involve
changing the DOM method or property being called/assigned; the
rest involve either the removal of the method call or the property
assignment (e.g., remove a setAttribute call that changes the
class to which an element belongs), or the inclusion of such a call
or assignment (e.g., add a call to blur() to unfocus a particular
DOM element). Of the fixes where the DOM method/property was
changed, around 44% involve changing the event handler to which
a function is being assigned (e.g., instead of assigning a particular
method to onsubmit, it is assigned to onclick instead).

Data Collector
(box a)

Direct DOM Access Web Application
URL

Symptom Analyzer
(box b)

Treatment
Suggester

(box c)

Supplementary
Information

Symptoms
Data

Possible Sicknesses

List of Workaround
Suggestions

Figure 3: High-level block diagram of our design.

Summary of Findings. Our study shows that the most prominent
fix categories are Parameter Modification and DOM Element Vali-
dation. Our analysis also shows the prevalence of string value mod-
ifications and null/undefined checks when applying fixes. In ad-
dition, most parameter modifications are for values eventually used
in DOM methods that retrieve elements from the DOM, particu-
larly the $(), jQuery() and getElementById() methods. These
results motivate our fault model choice in Section 4 as well as our
choice of possible sickness classes in Section 5.2.

4. FAULT MODEL
In this work, we focus on DOM API methods that retrieve an el-

ement from the DOM using CSS selectors, IDs, tag names, or class
names, as we found that these were the common sources of mis-
takes made by programmers (Section 3). These DOM API methods
include getElementById(), getElementsByTagName(), getEl-
ementsByClassName(), querySelector(), and querySelect-
orAll(). We also support DOM API wrapper methods made avail-
able by commonly used JavaScript libraries including those in jQuery
(e.g., $() and jQuery()); Prototype (e.g., $$() and $()); and
tinyMCE (e.g., get()), among others. For simplicity, we will refer
to all these DOM API methods as the direct DOM access.

We further focus on code-terminating DOM-related faults, which
means the DOM API method returns null, undefined, or an empty
set of elements, eventually leading to a null or an undefined excep-
tion (thereby terminating JavaScript execution). However, our de-
sign can also be extended to apply to output-related DOM-related
faults, i.e., those that lead to incorrect output manifested on the
DOM. Such faults would require the programmer to manually spec-
ify the direct DOM access. In contrast, with code-terminating DOM-
related faults, the direct DOM access can be determined automat-
ically using the AUTOFLOX tool proposed in our prior work [14].
Thus we focus on this category of faults in this work.

The running example introduced in Section 2 is an example of
a fault that is encompassed by the fault model described above.
Here, the direct DOM access is the call to the $() method in line
11, which returns an empty set of elements. It is code-terminating
because the fault leads to an undefined exception in line 12.

5. APPROACH
In this section, we describe our approach for assisting web de-

velopers in repairing DOM-related faults satisfying the fault model
described in the previous section. Figure 3 shows a block diagram

Context Analysis

38

1 firstTag = “div”;!
2 prefix = “main-”;!
3 suffix = “elem”;!
4 level1 = firstTag + “#” + prefix + suffix;!
5 level2 = “span.cls”;!
6 e = $(level1 + “ “ + level2);!
7 e[0].innerHTML = “new content”;!

Invalid selector: div#pain-elem span.cls

String literal
replaced

Replacement selector: div#main-elem span.cls

Message:
REPLACE STRING LITERAL “pain-” in line 2 with string
literal “main-”

Method/Property Modification, where a call to a DOM API meth-
od (or property) is either added, removed, or modified in
the JavaScript code. Here, modification refers to changing
the method (or property) originally called, not the param-
eter (e.g., instead of calling getElementsByClassName, the
method getElementsByTagName is called instead). This cat-
egory makes up 24.6% of the fixes.

Major Refactoring, where significantly large portions of the Java-
Script code are modified and restructured to implement the
fix. This category makes up 10.5% of the fixes.

Other/Uncategorized, which make up 12% of the fixes.

As seen in the above fix categories, the most prominent cate-
gories are Parameter Modification and DOM Element Validation,
which make up over half (52.9%) of the fixes. Therefore, we fo-
cus on these categories in our work. Although we do not consider
Method/Property Modifications in our repair approach, our algo-
rithm can be adapted to include this class of errors, at the cost of
increasing its complexity (see Section 7).

Application of Fixes. We next describe how programmers modify
the JavaScript code to apply the fixes. We discuss our findings for
the three most prominent fix categories – Parameter Modification,
DOM Element Validation, and Method/Property Modification.

Parameter Modification: We found that 67.3% of fixes belong-
ing to the Parameter Modification fix category involve the modifi-
cation of string values. The vast majority (around 70%) of these
string value modifications were direct modifications of string liter-
als in the JavaScript code. However, we also found cases where
the string value modification was applied by adding a call to string
modification methods such as replace().

We also analyzed the DOM methods/properties whose parame-
ters are affected by the modified values. For string value modifica-
tions, the methods/properties involved in multiple bug report fixes
are getElementById(), $() and jQuery(); together, fixes involv-
ing these methods comprise 51.4% of all string value modifications.
For non-string value modifications, fixes involved modification of
the numerical values assigned to elements’ style properties, partic-
ularly their alignment and scroll position.

DOM Element Validation: 75.5% of fixes belonging to this cat-
egory are applied by simply wrapping the code using the pertinent
DOM element within an if statement that performs the necessary
validation (so that the code only executes if the check passes).
Other modifications include (1) adding a check before the DOM
element is used so that the method returns if the check fails; (2)
adding a check before the DOM element is used such that the value
of the DOM element or its property is updated if the check fails;
(3) encapsulating the code using the DOM element in an if-else
statement so that a backup value can be used in case the check
fails; and finally (4) encapsulating the code in a try-catch state-
ment. The most prevalent checks are null/undefined checks, i.e.,
the code has been modified to check if the DOM element is null or
undefined before it is used, which constitutes 38.8% of the fixes
in the DOM Element Validation category.

Method/Property Modification: 53.2% of these fixes involve
changing the DOM method or property being called/assigned; the
rest involve either the removal of the method call or the property
assignment (e.g., remove a setAttribute call that changes the
class to which an element belongs), or the inclusion of such a call
or assignment (e.g., add a call to blur() to unfocus a particular
DOM element). Of the fixes where the DOM method/property was
changed, around 44% involve changing the event handler to which
a function is being assigned (e.g., instead of assigning a particular
method to onsubmit, it is assigned to onclick instead).

Data Collector
(box a)

Direct DOM Access Web Application
URL

Symptom Analyzer
(box b)

Treatment
Suggester

(box c)

Supplementary
Information

Symptoms
Data

Possible Sicknesses

List of Workaround
Suggestions

Figure 3: High-level block diagram of our design.

Summary of Findings. Our study shows that the most prominent
fix categories are Parameter Modification and DOM Element Vali-
dation. Our analysis also shows the prevalence of string value mod-
ifications and null/undefined checks when applying fixes. In ad-
dition, most parameter modifications are for values eventually used
in DOM methods that retrieve elements from the DOM, particu-
larly the $(), jQuery() and getElementById() methods. These
results motivate our fault model choice in Section 4 as well as our
choice of possible sickness classes in Section 5.2.

4. FAULT MODEL
In this work, we focus on DOM API methods that retrieve an el-

ement from the DOM using CSS selectors, IDs, tag names, or class
names, as we found that these were the common sources of mis-
takes made by programmers (Section 3). These DOM API methods
include getElementById(), getElementsByTagName(), getEl-
ementsByClassName(), querySelector(), and querySelect-
orAll(). We also support DOM API wrapper methods made avail-
able by commonly used JavaScript libraries including those in jQuery
(e.g., $() and jQuery()); Prototype (e.g., $$() and $()); and
tinyMCE (e.g., get()), among others. For simplicity, we will refer
to all these DOM API methods as the direct DOM access.

We further focus on code-terminating DOM-related faults, which
means the DOM API method returns null, undefined, or an empty
set of elements, eventually leading to a null or an undefined excep-
tion (thereby terminating JavaScript execution). However, our de-
sign can also be extended to apply to output-related DOM-related
faults, i.e., those that lead to incorrect output manifested on the
DOM. Such faults would require the programmer to manually spec-
ify the direct DOM access. In contrast, with code-terminating DOM-
related faults, the direct DOM access can be determined automat-
ically using the AUTOFLOX tool proposed in our prior work [14].
Thus we focus on this category of faults in this work.

The running example introduced in Section 2 is an example of
a fault that is encompassed by the fault model described above.
Here, the direct DOM access is the call to the $() method in line
11, which returns an empty set of elements. It is code-terminating
because the fault leads to an undefined exception in line 12.

5. APPROACH
In this section, we describe our approach for assisting web de-

velopers in repairing DOM-related faults satisfying the fault model
described in the previous section. Figure 3 shows a block diagram

Context Analysis: Non-”Replace”
Messages

}  Loops – “replace” may be unsafe
}  String value doesn’t originate from string literal

}  Analyze the context!

39

MESSAGE TYPES

REPLACE

REPLACE AT ITERATION

OFF BY ONE AT BEGINNING

OFF BY ONE AT END

MODIFY UPPER BOUND

EXCLUDE ITERATION

ENSURE

Implementation

} Vejovis

http://ece.ubc.ca/~frolino/projects/vejovis

}  Data collection: Rhino and Crawljax
}  Pattern matching: Hampi

40

Usage Model

41

VEJOVIS

INPUTS

OUTPUT

AUTOFLOX URL

DOM METHOD LOCATION

LIST OF ACTIONABLE REPAIR MESSAGES

Evaluation: Research Questions

RQ1: What is the accuracy of Vejovis in suggesting a correct
repair?

RQ2: How quickly can Vejovis determine possible
replacements? What is its performance overhead?

42

RQ1: Accuracy of Vejovis
Subjects JS Code Size

(KB)
Drupal 213

Ember.js 745
Joomla 434
jQuery 94
Moodle 352

MooTools 101
Prototype 164
Roundcube 729

TYPO3 2252
WikiMedia 160
WordPress 197

43

•  22 bug reports (2 per app,
and randomly chosen)

•  Replicated bug and ran
with Vejovis

•  Recall and Precision

RECALL: 100% if correct fix
appears; 0% otherwise

PRECISION: Measure of
extraneous suggestions

RQ1: Recall
Subject Bug Report

#1
Bug Report
#2

Drupal ✔ ✔

Ember.js ✔ ✔

Joomla ✔ ✔

jQuery ✔ ✗

Moodle ✔ ✔

MooTools ✔ ✔

Prototype ✔ ✔

Roundcube ✔ ✗

TYPO3 ✔ ✔

WikiMedia ✔ ✔

WordPress ✔ ✔

44

Overall
Recall: 91%

RQ1: Precision
Subject Bug Report

#1
Bug Report
#2

Drupal 3% 25%

Ember.js 50% 33%

Joomla 1% 1%

jQuery 1% 0%

Moodle 3% 3%

MooTools 50% 50%

Prototype 17% 50%

Roundcube 1% 0%

TYPO3 1% 100%

WikiMedia 4% 1%

WordPress 3% 1%

45

Avg. Precision: 2%

49 suggestions per
bug on average!

Improvements
1.  Edit distance

bound
2.  Ranked

suggestions

Alternative: Ranking

46

Subject Bug Report
#1

Bug Report
#2

Drupal 31 / 40 1 / 4

Ember.js 1 / 2 1 / 3

Joomla 1 / 88 1 / 88

jQuery 2 / 108 -

Moodle 2 / 37 1 / 37

MooTools 2 / 2 1 / 2

Prototype 1 / 6 1 / 2

Roundcube 4 / 79 -

TYPO3 1 / 187 1 / 1

WikiMedia 6 / 24 1 / 71

WordPress 13 / 30 1 / 170

#1 Ranking in 13 out
of 20 bugs

Conservative
ranking

Ranking seems to be
beneficial

RQ2: Performance
}  Takes average of 44 seconds to find correct fix
}  Worst case: 91.1 seconds (Joomla)

47

Threats to Validity
}  External: Evaluated on 11 web apps
}  Internal: Took bugs from earlier empirical study

48

Conclusion
}  Vejovis: replacement suggestor for DOM-related faults

}  Project Link: http://ece.ubc.ca/~frolino/projects/vejovis

}  Evaluated on 22 real-world bugs
}  Good recall – 91%
}  Correct fix ranked #1 in 13/20 cases
}  Average 44 s to complete

49

