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Abstract masked), (2) they may crash or hang the program, or (3) they

Silent Data Corruption (SDC) is a serious reliability issue in May lead to incorrect outputs, also cal.led Silent Data Corruptpn
many domains, including embedded systems. However, current(SDCS). While crashes and hangs are important from an availabil-
protection techniques are brittle, and do not allow programmers to Ity Perspective, SDCs are important from a reliability perspective
trade off performance for SDC coverage. Further, many of them be_cause t_hey cause programs to fail without any indication of the
require tens of thousands of fault injection experiments, which are failure. Prior work [17, 24] has broadly focused on crashes and
highly time-intensive. In this paper, we propose an empirical model he_tngs; therefore we focus on c_onpgurable techniques to reduce or
to predict the SDC proneness of a programQOs data &ill€Tune eliminate the number of SDCs in programs _
SDCTuneis based on static and dynamic features of the program _ Studies have shown that SDCs are caused by errors in a rel-
alone, and does not require fault injections to be performed. We atively small proportion of programsO data variables [9, 11, 23],
then develop an algorithm usif§DCTuneto selectively protect and by selectively protecting these SDC-prone variables, one can
the most SDC-prone data in the program subject to a given per- gchlgve high coverage agglnstSD(;s. Howe\_/e_r, most prlorvyork has
formance overhead bound. Our results show that our technique isidentiped SDC-prone variables using fault injection experiments,
highly accurate at predicting the relative SDC rate of an applica- Which are expensive for large applications [9, 11]. Other work [23]
tion, and outperforms full duplication by a factor of 0.83 to 1.87x focuses on Egregious Data Corruptions (EDC), which are a sub-

in efbciency of detection (i.e., ratio of SDC coverage provided to Set of SDCs that cause unacceptable deviations in soft-computing
performance overhead). applications, i.e., applications with relaxed correctness properties.

. . . For example, a single pixel being corrupted in a frame of a video
Categories and Subject DescriptorsC.4 [Performance of Sys- o o0assing application would be an SDC but not an EDC, while
temg: Fault tolerance, Reliability, availability, and serviceability the entire frame being corrupted would be an EDC as it can cause
Keywords Reliability, Compiler, Modeling an unacceptable deviatiowhile their approach is useful for soft-
1. Introduction cqmp_uting applications, it does not apply to general-purpose ap-
) ] o ) plications. Further, most of the prior approaches do not allow the
Hardware errors are increasing due to shrinking feature sizes [3, yser to trade-off performance for reliability by selectively protect-
5]. Conventional hardware-only solutions such as guard banding jng only a fraction of the SDC-prone variables to satisfy strict per-
and hardware redundancy are no longer feasible due to power conformance constraints, especially for embedded systems. The only
straints. As a result, researchers have explored software duplica-gxception that we are aware of is the work by Shabque et al. [21];
tion techniques to tolerate hardware faults [19]. However, generic pyt their technique does not distinguish between SDC causing er-
software solutions such as full duplication incur high power and rors and other failure causing errors.
performance overhead, and hence there is a compelling need for | this paper, we propos8DCTune a model to quantify the
conbgurable, application-specibc solutions for tolerating hardware spc proneness of program variables, and develop a model-based
faults. This is especially so for embedded systems, which have 0 echnique to selectively protect highly SDC-prone variables in the
operate under strict performance and/or power constraints, in orderprogram. An SDC prone variable is one in which a fault is highly
to meet system-wide timing and energy targets. likely to result in an SDC, and hence needs to be proteGed.
Hardware faults can affect the running software in three ways: cTuneuses only static and dynamic analysis to identify the SDC-
(1) they may not have any effect on the application (benign/- prone variables in a program, without requiring any fault injections
; - to be performed. Further, it allows users to conbgure the amount of
~ Meeta S. Gupta is currently on leave-of-absence from IBM Research, ygtection depending on the amount of performance overhead they
USA, qukmg on a temporary fgll-tlme suppleme_ntal research position at are willing to toleratée
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The main novelty of our approach is in the identipcation of
heuristics or features that correlate with highly SDC-prone program
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In this paper, we target transient errors, and hence we focus ontion, P(I|SDC)), represents the "fraction of SDCs" that can be de-
error detection rather than recovery (as the program can be restartedected by protecting instructioh and thus directly represents the
from a checkpoint to recover from a transient error). We $SBE- importance of the instructioh. Therefore, our goal is to maximize
Tuneto identify SDC-prone variables in the program, and to derive the ., . ... P(I|§DC) subjecttoacertain ;.. ., ... P(I)
error detectors for the variables, subject to a given performance specibed by the user. ;. , ., .., P(I|SDC) is the coverage of
overhead. Our detectors recompute the value of the chosen vari-SDC causing faults by protecting the instructions in it set
able(s) by duplicating their backward slice(s), and compare the re-while” ., _, .., P(I) is the number of dynamic instances of pro-
computed value with the original one. Any deviation between the tected instructions and is proportional to the protection overhead.
two values is treated as a successful error detection. As mentioned above, itis important to understand | SDC)

We make the following contributions in this paper: varies for each instruction in the program. One way to do this is

¥ We develop heuristics to identify SDC-prone variables based on to perform random fault injection into the program and measure
an initial fault-injection study (Section 2). These heuristics are P (I|SDC) for each instruction. However, it is difpcult to directly
based on static analysis and proble information (Section 3).  measure this probability for each instruction by random fault injec-

- tion as each instruction may not be injected sufbcient number of
¥We develop a model calleBDCTunebased on the heuristics . . o L .
developed to identify the relatively SDC-prone variables in a times to obtain statistically signibcant estimates. Instead, we per:

program. We then propose an algorithm base®BC Tuneo form a pxed number of fault injections into individual instructions
derive error detectors that check the values of the SDC-proneggrrrnnﬁ?aS ?g%g;:;;g (DI‘CS%%r;ﬁeneﬁSD C|I). We then use BayesO
variables at runtime, subject to a performance overhead con- ’

straint specibed by the programmer (Section 4).

¥ We evaluateéSDCTuneby using it to predict the overall SDC P(I|SDC) =
proneness of a program relative to other programs. The results
show thatSDCTunds highly accurate at predicting the overall  where,
SDC proneness of a program relative to other programs. The _
rank correlation coefbcient between the predicted and observed P(§DC) = . P(SDCI)P(I) @
values ranges from 0.83 to 0.97 (Section 6). " prog

¥ We evaluate the detectors inserted by our algorithm by perform- 2.2 Fault Model
ing fault-injection experiments on siifferentprograms from We consider transient hardware faults that occur in processors
those used in our model extraction, for performance overhead and corrupt program data. Such faults are usually caused by elec-
bounds ranging from 10% to 30%. The results show that our trical noise, cosmic rays or temperature variation. These faults are
detectors can achieve high detection coverage for SDC-causingexacerbated by decreases in feature sizes and supply voltages. More
errors, for the given performance overhead, and achieves 0.83specibcally, we focus on the faults that occur in processorsO func-
to 1.87x higher efbciencies than both full duplication and hot- tional units and registers, (i.e., the ALUs, LSUs, GPRs, etc.) which

P(SDC|I)P(I)

P(SDO) @)

path duplication (Section 6). generally result in a corruption of the program data. However, we
.. . do not consider the faults in caches or control logic. Architectural
2. Initial Fault Injection Study solutions [14] such as ECC or parity can protect the chip from the

Because SDC failures are caused by faults that propagate to thefaults in the caches, while faults in the control logic usually trigger
programOs output, the SDC proneness of an instruction depends ohardware exceptions [27]. We do not consider faults in the pro-
how it propagates a fault, which in turn is determined by its data de- gramOs code or program counter, as such faults can be detected by
pendencies. In this section, we empirically study HeRC prone- control-3ow checking techniques.
nessof instructions is inBuenced by the data dependency chains.  As in other work [8, 9, 23], we assume that at most one fault
We brst debne some terms we will use in the paper and formalizeoccurs during a programQOs execution. This is because transient
the protection problem. We then present our fault model in Sec- faults are rare relative to the execution times of typical programs.
tion 2.2 and describe our fault .inje.ction expgriment_ in Section 23 2.3 Fault Injection Experiment
The results of the experiment is discussed in Section 2.4, and will
be used in Section 3 to develop heuristics for estimating the SDC
proneness of program variables.

The goal of our fault injection experiment is to understand the
reasons for SDCs when faults are injected into the program. In other
words, we want to study the SDC proneness of instructions in the

2.1 Terminology and Protection Model program, and understand how it varies by instruction.
We Prst debne the following terms in this paper: The fault injection experiment is conducted using LLFI, a pro-
Overall SDC rate: This is the overall probability that a fault ~ gram level fault injection tool, which has been shown to be ac-
leads to an SDC in the program. We denote thisify DC'). curate for measuring SDCs in programs [25]. LLFI works at the

SDC coverage of an instruction We debne the SDC coverage intermediate representative (IR) level of LLVM compiler infras-
of an instruction/ to be the probability that an SDC failure is  tructure [13], and enables the user to inject faults into the LLVM
caused by a fault in instructiofOs result and thus can be detected IR instructions. Using LLFI, we inject into the result of a random
by protecting instruction/ with a detector. This is denoted as dynamic instruction to emulate the effect of a computational error
P(I|SDC). in the program. Specibcally, we corrupt the instructionOs destina-
SDC proneness per instruction This is the probability that tion register by Ripping a single bit in it (similar to what prior work
a fault in instruction/ leads to an SDC. This is denoted as has done [8, 9, 23]). The main advantage of using LLFI is that it

P(SDCII). allows us to map the faults back to the programOs IR and trace its
Dynamic count ratio: This is the ratio of the number of dy-  propagation in the program. This necessary for our analysis.

namic instances of instructioh executed to the total number of We use four benchmarks in this experiment, nam@iip2

dynamic instructions in the program. This is denoted@$). IS, LU and Water-spatial They are from SPEC[10], NAS[1] and

Our overall goal is to selectively protect instructions with de- SPLASH-2[26] benchmark suites respectively. Note that these
tectors, to maximize the SDC detection coverage for a given per- benchmarks are only used for the initial fault-injection study - we
formance cost budget. The SDC detection coverage of an instruc-later derive and validate the model with a larger set of programs.



We choose a limited set of benchmarks in this study to balance

representativeness with time efpciency for fault injections. Table 1: Example from Bzip2 to illustrate the variation of SDC proneness
; ; e _ of highly executed instructions. Results obtained from fault injection.

_ We classify the outcome into four_ categories: (1) _Crash, mean- g rea’code:

ing that the program threw an exception, (2) SDC, which means the

programOs output deviated from the fault-free outcome, (3) Hang, | @ ! >bsBuff|=(v<<(32! s! >bsLive! n));

which means the program took signibcantly longer to execute than

a fault-free run, and (4) benign, which means the program com- 3‘3?:1? ID Instruction proSnZﬁess
pleted successfully and its output matched the fault-free outcome. 1 1 = &s + OFFSET(bsBum) 1%
The above outcomes are mutually exclusive and exhaustive. 2 t; =loadt; 7%
L 3 ts = &s + OFFSET(bsLive) 21%
2.4 Injection Results Z 1 = loadts 3%
The results of our fault injection experiments show that the top | bsw()-bb2 | 5 t5 =32-14 12%
10% most executed instructions, or those on the hot paths of the 6 tg=t5-n 12%
program, are responsible for 85% SDC failures on average. This 7 tr =vCis 58%
resultis similar to that of prior work, which has also observed that a g =% tfg;f:leT bSE ;égﬁ"
small fraction of static instructions cause most SDCs [9]. However, 10 9= Sstoret& s (bsBuf) . >

this does not mean that all the hot-path instructions should be

protected, as they incur high performance overhead when protected Table 2: Effects on SDC proneness of some operations

(as shown in Section 6.2). Further, there is considerable variation—operation Description Effect

in SDC rates even among the top 10% most executed instructionsgetelementpir address calculation Crash

as the example below shows. trunc truncate data size Mask due to truncafion
Table 1 shows an excerpt from tfBzip2 program on its hot Ishr Togical shift right Mask due fo Wrapping

path. The principle described here is observed across all four ashr arithmefic shift right Mask due to Wrapping

benchmarks we studied, but we focus on this (single) basic block shi shift Tet Mask due to Wrapping

for simplicity. The excerpt contains instructions from the LLVM  of an instruction. These heuristics will be used in the next section
IR, into which we inject faults. Although the original code is in the  to build our modelSDCTune
LLVM IR form, we use C source-like semantics for simplicity. For In the previous section, we found that the SDC proneness of
each instruction in the table, we report its SDC proneness measurecd Variable depends on (1) the fault propagation in its data depen-
by fault injection. It can be observed from the table that some of the dency chain, and (2) the SDC proneness of the end point of that
instructions have low SDC proneness, even in this highly executed chain. An end point can be a branch instruction, a store instruc-
block, e.g.jnstruction 4-6 This means even if a fault occurs in the  tionora function call instruction (in LLVM, function calls are rep-
result of these instructions, it is unlikely to result into an SDC, and resented by instructions). This is because stores and branches do
hence protecting such instructions is unlikely to improve coverage Nnot have destination registers, and function call instructions create
by much. Therefore, we need to bnd factors other than execution@ new stack frame, thereby terminating their dependency chains.
time that inBuence the SDC proneness of an instruction. However, function calls are not considered in our work, as LLVM
After investigating further, we found that SDC proneness is aggressively inlines functions, and hence there are few instances of
highly inBuenced by data dependencies among the instructions. Forsuch instructions. Further, because branch instructions depend on
example, in Table linstruction 4-8constitute a data dependency the results from comparison instructions to determine the direction

chain whose Pnal result is storedifistruction 10 Instruction 8is of the branch, we consider the results of comparison instructions as
the end of this data dependency chain and has an SDC proneneste end points of their dependency chains. Therefore, we consider
= 71%. The result ofinstruction 7is used ininstruction 8 so only comparison and store instructions for the SDC proneness of
a fault may propagate frorinstruction 7to instruction 8 But, end points of dependency chains.

the execution ofinstruction 8 or can mask the faulty bit from 3.1 Heuristics for Fault Propagation

instruction 7if the corresponding bit of the result ifstruction 2is In this subsection, we study how faults propagate along depen-
1. This explains why the SDC pronenessifestruction 7is slightly dency chains, and how to estimate the SDC proneness of an in-
lower than that ofnstruction 8 The operation oinstruction 7 shift struction based on the SDC proneness of the store or comparison

left can mask the fault in high bit positions of the second source jnstryctions that the instruction depends on, directly or indirectly.
operand due to architectural wrapping implementation of these 51 "o "Shc proneness of an instruction will decrease f its
shifting operations. The consequence of this masking effect is the| roqjt js used in either fault masking or crash prone instructions.
low SDC proneness afistruction 4-6 In addition to the arithmetic i _ i _
operations, our results show that address calculation operations Fault propagation can be stopped by an instruction either mask-
such asinstructions 1, 3and 9 ("getelementptr" instructions in  ing the fault, or by crashing the program. Both masking and crash-
LLVM) have low SDC proneness. This is because the results of ing decrease the probability of an SDC resulting from the instruc-
such instructions are usually used for pointer dereferences and ardion that propagates its data to the other crashing/masking instruc-
likely to cause segmentation faults which crash the application.  tion, as a result of which its SDC proneness is lowered. For exam-
Thus, we see that to calculate the SDC proneness of an instruc-Ple, in Table 1, the fault masking effect fstruction 7results in
tion and determine whether it should be protected, one needs toinstruction 6having a low SDC proneness. N
take into account théault propagationand SDC proneness of the ~ Table 2 shows instructions that have high probability of mask-
end pointof its data dependency chain. We will examine this in ing/crashing the program, thus lowering the SDC proneness. We
more detail in Section 3 by devising heuristics for Pnding highly derived this table from the initial fault injection study in Section 2,
SDC-prone instructions. based on general trends across the applications. Note that these are

conservative, as other instructions may also mask fault propagation
. in specibc circumstances depending on the values of their operands.
3. Heuristics To estimate SDC proneness of all instructions, we apply back-
In this section, we formulate various heuristics for modelling er- propagation starting from the store and comparison instructions
ror propagation in a program, and for estimating the SDC pronenessthrough the data dependency chains of the program. The SDC




% 1 S Addr NoCmp EAddrCmp ECmp NoAddr 2 NoCmp NoAddr
Table 3: SDC decreasing rates of masking/crashing prone operations 5
[¢] ¢} gp P 15)
Operation Involved source operands Decrease by 508
getelementptr all operands 75% 206
trunc variable needs truncation 50% Q q 7
0.4 \ 7
Ishr Shift bit variable 85% 2 \ %
ashr Shift bit variable 85% 002 \ % %
Shi Shift bit variable 85% Eooless \ _
% Addr Addr  Addr Cmp Addr Cmp Cmp Cmp NoCmp  NoCmp
Table 4: Four major Categories of stored values NoCmp NoCmp data width data width NoAddr NoAddr NoAddr NoAddr
data width data width ~ >32 <32 Resilient Unresilient Unused in  Used in
Major Average >32 <32 Cmp Cmp output output
Category Description related SDC (a) Effects of major related features for each of the four major categories
features | proneness of stored values.
Addr The stored value is used in .
NoCm calculating memory addresses  Data width 22.82% 09 095
p but not comparison results 208 ./\ % 0o
- =1 2o
The stored value is used in Data width g 0.7 5 05 /\’
Addr calculating both memory and control 48.17% 206 g
Cmp addresses and comparison RBow ’ S 05 Q o8
results deviation @0 2
on 0. &, 0.75
cmp The stored value is used in Resilient or 5’90,2 \ :5)“
NoAddr calculating comparison results|  Unresilient 67.25% Zo1 z 07
but not memory addresses comparison 0 065
The stored value is neither usedl ; 0 20 40 50 0 1 2 52
NoCmp in memory address calculation Used in 56.41% Data width (bits) Nest loop depths
NoAddr nor comparison results output or not i
(b) Effect of data width for addregg) Effect of nest loop depths for loop

computation related stored values terminating comparisons

proneness of the result of an instruction will propagate to its source )

operands unless itis one of the operations listed in Table 2, in which Figure 1: Average SDC proneness observed across all studied programs

case, the SDC proneness of the source operands will decrease by a )

certain extent, as listed in Table 3 to model the effect of masking. increasing the SDC proneness compared toAtiér NoCmpcate-

The values in Table 3 are based on our fault injection experiments. 90rY: As an example of this category fraBzip2is shown in Fig-
Then, the question left is how to estimate the SDC proneness of Y€ 2b

store and comparison instructions. This is addressed in the follow-| HS3: The SDC proneness #ddr NoCmp and Addr Cmp
ing two subsections. stored values increase as th&ata width decrease.

3.2 Heuristics for Store Operations Data widthis the number of bits in values, and is a major feature

. . . affecting the SDC proneness of stored values used in address com-
_In th's subsect!on_, we examine the SDC proneness of store putation (i.e.,Addr NoCmpand Addr Cmp. Figure 1b shows the
instructions, as this is one of the two categories of INSUCLONS 5\ 6raqe SDC proneness of the stored values used in address com-
used to estimate the SDC_p_ront_aness of every instruction in the putations, for different data width values. For values used in address
program. Through our fault injection study in Section 2, we found o, tation, a wider data width means more bits are crash-prone,
the SDC proneness of store instructions depends on how the store nd hence the value as a whole has lower SDC proneness.

value is used in the program. Therefore, we categorized the stores

; ; ; ; HS4: The SDC proneness@ip NoAddr stored values depends
Pl oy e ccording o et ysage 1) memon adresses a7 on e esience of e comparsonaperaton 0 i o vl
found that the SDC proneness is dependent on a specibc featuresra?r%%%aé?ielheé’ faﬂng Idgtg Ic}plzrt:ng. ange the result of the gom
of that category, which is also shown in Table 4. For example, . — .
in the Cmp NoAddrcategory, the SDC proneness of the store is e llustrate the above heuristic with an example fromBag2
determined by whether the value results in the comparison result @Pplication. Figure 2¢c shows an example of a resilient comparison
being Ripped, thus causing the wrong fork of the branch to be taken. operation in line 6. In this case, the equality is not satisped in the

Figure 1a shows the average SDC proneness of the four categoriesn@ority of executions (obtained through probling the program),
and the associated feature for each of the categories. and hence the branch is highly biased toward the not-equal fork.

We now examine each of the four categories in detail. T':ert?]fom, a faultin the Varti_abtt_atal_ilnk_lloi?»;‘lline 5)Itvyhitchh feedsl't
- . . into the comparison operation is unlikely to result in the equality
HS1: Addr NoCmp_stored values have low SDC proneness in being true, and hence the control Bow of the program does not
general, as shown in Table 4. X .
_ i i _ change from a fault-free execution. We call such comparisons as
This is because faults in such values are highly likely to prop- resilient On the other hand, the code in the right of Figure 2d,
agate to addresses of other loads and stores, which would ||ke|yi||ustrates a case where a fault in the Comparison Opemc_
result in the application crashing due to a segmentation fault, espe-torMtffi]=j (line 3) will affect the number of loop iterations, thus
Cla”y for those values that are wider than 32 bits (See Flgure 1a.) making it h|gh|y SDC prone. We call such Comparisonsuas
Figure 2a shows an example of this category, where a fault in resilient A key factor in deciding the SDC proneness @fp
the destination register @f3 in (line 3) results in a system crash  NoAddr stored values is whether the comparison using the stored

o

upon pointer dereference. value is resilient (Figure 1a).

HS2: Addr Cmp stored values usually have higher SDC prone- | HS5: The SDC proneness dloCmp NoAddr stored value$

ness tharAddr NoCmp depend on the probability of a fault in them propagating to the
As shown in Figure 1a, by propagating the fault to the compari- | ProgramOs output, and whether the output is important to the

son instructionAddr Cmpvalues may change the control Row and program.

elide the pointer dereference, which would have crashed the appli- NoCmp NoAddr stored values are used neither in computing
cation otherwise. This decreases the probability of a crash, therebymemory addresses nor in comparison instructions, and do not af-



static void mainSort(...){ 1 static void mainSort(...){
for (; 1>=3;i! =4) 2 Int321lo=
{... ptr[j]=i-3;} // corrupted ftab[sb]&CLEARMASK ;
/I corrupted
){ // control Bow
changed
mainQsort3(lo,...);

static void mainSimpleSort(...{
while(mainGtU(ptr[j-h]+d ,...))
{3

if (

1
2
3
4}
5
6
7
e}
9

}
void mainQSort3(Int32 loSt,...){
mpush(loSt,...) ;...mpop(lo ,...) ;
med=(Int32) mmed3(block[ptr|
lo]+d],...); // load avoided

4
static Bool mainGtU(UInt32x i1, 6
7
8

L)
o cl=block[il];...i1++; c1=
block[i1];//load 9
operation

11}
(a) Example ofAddr NoCmpfrom (b) Example of Addr Cmp from

10}

Bzip2. Bzip2. The fault occurs at line 2 may
not propagate to the load at line 10 be-
cause of the control Bow deviation at
line 3

1 Bool copy_input_until_stop( 1 static void sendMTFValues(
Estatex s){ Estate* s){

2 .. 2 for(i=0,i<nSelectors;i++){

3 while(True){ 3 s->selectorMtfli]=j ;

4 4

5 s! >strm! >total_in_lo32++; 5 for(i=0;i<nselectors;i++){

6 if ( ) 6 for (J=0;j<s->selectorMtfli] ; j

7 s! >strm! > ++

total_in_hi32++; 7 bsW(s,1,1);
8 8
9} 9}

(c) Example ofCmp NoAddrfrom (d) Example ofCmp NoAddrfrom
Bzip2. A resilient comparison oper8zip2. An unresilient comparison
tions(line 6) that masks the fault thasage of the stored value &
occurs at line 5. >selectorMtffi]=j (line 3).

1 void main (...) { 1 void InitA(double rhs){

2 .. 2 for(J=0;g<n;j++X

3 (start) = (unsignedlong)( 3 for (i=0;i<n;i++){
FullTime.tv_usec + 4 rhs[il+=aliil[jj] ;
FullTime.tv_sec 5 }
1000000); 6 }

4 .. }

5 Global! >starttime = start; ; void CheckResult(..., double* rhs){

6 printf(...,Global! > o for(J=0;g<n;j++)X{y[jl=rhs[j] :}...
); 10 for(J=0;3<n;j++){diff=y[j]-1.0 ;...}

11 max_diff=diff

8 12 printf (...,max_diff);

9 13}

(e) Example ofNoCmp NoAdd(f) Example of NoCmp NoAddrfrom
from IS with zero SDC pronenes&U with high SDC proneness.

Figure 2: Examples of stored values. The fault propagation is highlighted in
red.

fect pointers or branches. Figure 2e and Figure 2f show two ex-
cerpts fromlS and LU respectively. The faulty stored value 8
only affects the time statistics while the onelitd may affect the
output of the application. This explains the difference of their SDC

1 void BZ2_hbMakeCodeLengths mainSort(...){

1
..x 2 for(j=bbSize! 1;j>=0;j!! )
2 while(nHeap>1){ //outer loop 3
3 4 if (a2update

4 while(weight[tmp]<weight[ <BZ_NOVERSHOOT)

heap[zz>>1]]){ 5 quadrant[a2update+

5 /l'inner loop nblock]=qVal; //Not

6 Heap[zz]=heap[zz>>1]; usedin future

7 z2z>>1; 6

8 } 7}

9 } 8 ..

10} 9}
(a) An excerpt fronBzip2 The com-(b) An example from Bzip2
parison result for the outer loop hasteat the  comparison  result:

higher SDC proneness than the com2update<BZ_NOVERSHOOT
parison result for the inner loop  (line 4) has a low SDC proneness. It
only affects a silent store instruction

1 daxpy(double a, double b ,...) {

2 long I;

3 for(i=0;i<n;i++){ // terminatesthe loop too early

4 a[i]+=alphaxb[i]; /skippeddueto loop termination

6}

7 bmodd(double a, double ¢ ,...) {...

8 daxpy(&a[k+1+j*stride_c] ,&a[k+1+j*stride_a],dimi! k! lalpha);...
9 /lthe contentof a[] is corrupted

10}

11 hu() {...

12 A=&a[K+j*nblocks] ;// fault propagatesto a[] through the call of

bmodd)
13 bmodd(D,A,strK,strl,strK,strK);...// content of A[] is corrupted
14}
15 CheckResult(...double* a ,...) {... // called by main()
16 printf(..,max_diff ,...) ;... // corrupted becauseof corruptedal]

17}

(c) An example fromLU that a faulty comparison resul&n(line 3) will
change the control Bow to elide the store operatipfr=alpha*b[i] (line
4). The value is used in the calculation of the output in functidi and
Pnally inCheckResult()The fault propagation trace is highlighted in red.

Figure 3: Examples of comparison results. Fault propagation is highlighted
inred.

Since the outer loop covers more program data than the inner
loop, an extra or missing iteration of the outer loop caused by a
faulty comparison result has a higher chance to cause the program
to deviate from its correct execution. Prior work has made a similar
observation in the context of soft-computing applications [23].

HC2: Comparison operations that only affesitent storeshave
low SDC proneness.

A silent store is a store whose stored value is not subsequently
used by the program. Therefore, the comparison operation has
a low likelihood of affecting the programOs output. An exam-
ple from Bzip2is shown in Figure 3b. A Bip in the comparison
a2update<BZ_NOVERSHOQihe 5) can cause the store opera-
tion quadrant[a2update+nblock]=qVéline 6) to be elided. How-

proneness. Also in Figure 1a, we can see the average SDC proneever, this is a silent store, and hence does not result in an SDC.
ness for the stored values that do not propagate to program output HC3: Comparisons that affect output-related store value

is much lower than the SDC proneness of those values that do.

3.3 Heuristics for Comparison Operations
Comparison instructions are the other category of instructions

have high SDC proneness.

A fault in these comparisons has a high probability of result-
ing in a corrupted program output. Figure 3c shows an example

whose SDC proneness determines the SDC proneness of everjom the LU benchmark. A faulty comparison result iain(line
instruction in the program. We bnd that the SDC proneness of 3) may terminate the loop too early and elide the store operation

comparison instructions depends on three features, as follows:

HC1: Nested loop depthsaffect the SDC proneness of loopsO
comparison operations, as the SDC proneness of comparisgn op-
erations in inner loops are generally lower than the comparison
operations in outer loops, as shown in Figure 1c.

Figure 3a shows an example froBzip2 Both nHeap>land
weight[tmp]<weight[heap[zzE1]are used in determining the loop
exit conditions for the outer and inner loops respectively.

a[i]+=alpha*b[i] (line 4) whose stored value is used in calculating
the output. This results in a high SDC pronenesinfline 3).

3.4 Heuristics of Other Factors

In addition to the specibc features for branch and store oper-
ations, the following factors also affect the SDC proneness of an
instruction.

HO1: Memory allocation functions related stored values and
comparison operations have low SDC proneness.




Memory allocation functions related stored values or comparison All stored values
operations can directly affect memory allocation functions such as

malloc(), valloc(), palloc(), and hence faults in the instructions are | ‘Addr NoCmp || ‘Addr Cmp || Crmp NoAddr || NocmpNoAdd,|
very likely to trigger memory exceptions. This results in having
low SDC proneness. We observe that the average SDC proneness ™ ™7 |ReSCmpN0Addr| | u;m/ﬁnp """

0. T

for memory allocation related store or comparison operations is T
12.42%, which is considerably lower than the average of other ClOPRCID || o Ciobal || pcoumutative || NorAccumiative
store and comparison operations, which is 42.58%.

Other Features: In addition to the above features, we consider Figure 4: The example of the classiPcation tree for stored values.
other program features considered in prior work, suclylabal
variable [8], the loop deptH23], accumulative computatiof#],
andfan-out of variablg17]. We do not explain them due to space
constraints, however.

Regression is applied upon the leaf nodes of the classibcation
tree to factor in the effects of continuous features suchlaa
width. For example, consider a leaf node of stored valdeidr
4. Approach NoCmp->Not Used in Masking Operatian#/e bnd that the SDC

: pp proneness of stored values in this node satisfy the following equa-

In the previous section, we examined various heuristics for tion;p(gpcu) = —0.012+data width+0.878. This expression

identifying SDC-prone variables in a program. In this section, we was derived using linear regression based on the results from fault
Prst quantify the estimation of SDC proneness using SBC- injection over a set of training programs in Section 5.1. The reason
Tunemodel obtained from empirical data (Section 4.1). We then for the negative correlation in this equation is that the higher bit
present our approach for choosing the SDC-prone locations subjectpositions of stored values in le&tidr NoCmp->Not Used in Mask-

to a maximum performance overhead usBigCTun€Section 4.2). ing Operationsare very likely to cause application crash if they are
Finally, we describe the nature of the detectors we inserted to pro- corrupted. Since values with largeata widthhave a higher proba-
tect the program (Section 4.3). bility of being corrupted in higher bit positions, faults that occur in
4.1 Model Building those values are less likely to cause SDCs as they are more likely to

cause the program to crash. For the leaf nodes that do not exhibit a

Our model,SDCTune for predicting the SDC proneness of a : X - . .
variable is built from fault injections over a set of training pro- correlation with continuous features, we take the arithmetic means
as the estimation of their SDC proneness.

grams, and incorporates the heuristics delPned in the previous sec-
tion. We start by modelling the SDC proneness of store and branch4.2  Choosing the Instructions

instructions in the program. The SDC proneness of these instruc-  As shown in Section 2, we can calculate ®BC coveragef

tions depends on discrete features suchieadient comparisons protecting an instruction if we know th8DC pronenessf that

and on continuous features such dega width (Section 3.2 and instruction using Equation 1 in Section 2.1. We appHCTunedo
Section 3.3). We uselassibcatiorto model the discrete features, estimate the SDC proneness of each instruction in the program
andlinear regressiorto model the continuous ones. Once we de- that we want to protect. We also obtain the dynamic count of
termine the SDC proneness of the store and branch instructions, weeach instruction in the program by proPbling it with representative
use the back propagation procedure outlined in Section 3.1 for es-inputs. We then attempt to choose instructions to maximize the
timating the SDC proneness of other instructions. We explain the SDC coverage subject to a given performance overhead (Section 2),
classibcation and regression methods below. using a standard dynamic programming algorithm [9].

Classibcation The goal of classibcation is to use the discrete 4.3 Detector Design
features that we observed before to categorize the stored values Once we identify a set of instruction to protect, the next step is
or comparison results into different groups so that we can apply to insert error detectors for instructions. Our detectors are based on
the continuous features (or arithmetic means) to quantify the SDC duplicating the backward slices of the instructions to protect, sim-
proneness of each group. As shown in Sections 3.2 and 3.3, differ-ilar to prior work [8]. We insert a check immediately after the in-
ent categories of stored values and comparison results have differ-structions to be protected, which compares the original value com-
ent discrete features for determining their SDC pronenessrée.g.  puted by the instruction with the value computed by the duplicated
silient comparison or notor Cmp NoAddrstored values andsed instructions. Any difference in these values is deemed to be an error
in output or notfor NoCmp NoAddones). Therefore, we apply  detection and the program is stopped. Figure 5b shows a concep-
tree-structured classibcation so that different features can be usedual example of our detector for a given set of instructions to be
in different categories. The features are arranged hierarchically in protected in Figure 5a.
the form of a tree, starting from a root node, and partitioning the Note that we assume that there is a single transient fault in the
nodes based on different features recursively until all the data in a program (Section 2.2), and hence it is not possible for both the
leaf node belongs to a single category. detector and the chosen instruction to be erroneous. Therefore, any
For example, consider ttemp NoAddrstored values category  error in the computation performed by the chosen instruction will
we introduced in Section 3.2. This constitutes one of the four be detected by the corresponding error detector.
partitions from the root node of all stored values, and we then A naive implementation of our detectors can result in pro-
split this group into two groups, namelResCmp NoAddand hibitive performance overhead. Therefore, we develop two opti-
UnresCmp NoAddbased on heuristiddS4 (Section 3.2). As the mizations to lower the detector overhead. Firstomacatenat@d-
tree grows,ResCmp NoAddwill then be divided again based jacentduplicated pieces of code by adding the instructions between
on whether the value is global variable (Section 3.4), while them to the protection set so that we can combine their detectors.
UnresCmp NoAddwill be split based on whether it @cumulative Figure 5¢c shows how this optimization works. This optimization
computation(Section 3.4). The other types of stored valukddr provides benebts when the cost of the saved detector is higher than
NoCmp Addr Cmpand NoCmp NoAddwill also be partitioned the cost due to the added instructions. Second, we perfazymn
in a similar way but with different features. Finally, we generate checkingin which detectors for cumulative computations in loops
a tree that partitions all stored values into its leaf nodes. The tree are moved out of the loop bodies, as the example in Figure 6 illus-
generated for this example is shown in Figure 4. trates. This optimization is effective for long running loops.



checker

checker

(a) Data dependency ofp) Basic detector in<(c) concatenatedupli-

Table 5: Training programs: These are used for traiibgTune

- Benchmark Compa-
Program Description suite Input Stores| risons
IS Integer sorting NAS default 21 20
LU Linear algebra | SPLASH?2 test 41 110
Bzip2 Compression SPEC test 681 646
: Price portfolio Sim-
Swaptions of swaptions PARSEC large 36 101
Water Molecular | gp| AgH2 | test | 187 | 224
dynamics
CG Conjugate NAS | default | 32 97
gradient

Table 6: Testing programs: These are used for evalu&idgTune

detector-free code strumented cated instructions Program Description BeQSiTénark Input Stores| ﬁg&%a_
Figure 5: The shaded portion of (a) shows the instructions need protection. Fluid .
(b) shows the duplicated instructions (the shaded nodes) and the detecto! Lbm dynamics Parboail short 71 34
inserted at the end of the two dependency chains. (c) shows one adde Gzip Compression SPEC test 251 399
instruction to protect(node(®that concatenates the two dependency chains
and save one checker Large-scale
Ocean ocean SPLASH2 test 322 813
movements
1 for (i=0;; i++){ 1 1=0; 1 1=0; Breadth-First .
2 Illoop body 2 /I duplication of i 2 Il duplication of i Bfs search Parboil M 36 57
3 flag = i<n?1.0; 3 dup_i=0; 3 dup_i=0; Combi al
4 if (flag==1) 4 for () { o for G { Mcf ombinatorial | - gppc test | 87 158
5 break 5 //loop body 5 //loop body optimization
6 //decomposexit s flag=i<n?1:0; 6 flag=1i<n?1:0; : Quantum
predication 7 dup_flag =dup_i dup_flag =dup_i Libquantun computing SPEC test 39 136
to <n?1:0; <n?1:0;
simulate g if(Bag != dup_Rag) g if (Flag==1)
instruction 9 Assert(); 9 break
! level 10 /I inconsistent 10 . . . . .
behaviout 1 if (Flag==1) 11 i}f(gag I= dup_Rag) comparing the SDC rates of different applications, while the latter
7} 12 break 12 ?S_Seﬂ(): et is used to insert detectors for conbgurable protection. We use the
23 0 T inconsisten same experimental setup for fault injection as that described in

(a) Detector-free code (b) Basic detector in<(c) Lazy checkingap-
strumented plied

Figure 6: (b) shows how the loop indéxn original code (a) is protected
with bold code as check. (c) shows how we move the check out of the loop
body

5. Experimental Setup

In this section, we empirically evaluaDCTunefor conbg-
urable SDC protection through fault injection experiments. All the

Section 2.3.

Estimation of overall SDC rates: We perform a random fault in-
jection experiment to determine the overall SDC rate of the appli-
cation. We then compare the SDC rate estimate8DZTunewvith

that obtained from the fault injection experiment. We also compare
the relative SDC rate of an application with respect to other ap-
plications (i.e., its rank) estimated ISDCTunewith that obtained
from fault injection.

experiments and evaluations are conducted on a Intel i7 4-coreSDC coverages for different performance overhead bounds:

machine with 8GB memory running Debian Linux. Section 5.1

The SDC coverage is dePned as the fraction of SDC causing errors

presents the details of benchmarks and Section 5.2 presents ougetected by our detectors. We &BCTunéo predict the SDC cov-

evaluation metrics. Section 5.3 presents our methodology and
workf3ow for performing the experiments.

5.1 Benchmarks

We choose a total of 12 applications from a wide variety of
domains for training and testin§DCTune The applications are
drawn from the SPEC [10], SPLASH2 [26], NAS parallel [1], PAR-
SEC [2] and Parboil [22] benchmark suites. We randomly divide
the 12 applications into two groups of 6 applications each, one
group for training and the other for testing. The four benchmarks
used in Section 2.3 to derive the heuristics are drawn from the train-

ing group. The details of these training and testing benchmarks are

shown in Table 5 and Table 6 respectively. All the applications are
compiled and linked into native executables with -O2 optimization

Rags and run in a single threaded mode, as our current implemen-

tation of SDCTuneawvorks only with single-threaded programs.
5.2 Evaluation Method

To gauge the accuracy 8DCTunewe use it for estimating the
overall SDC rate of an application, as well as the SDC coverage(s)
for different performance overhead bounds. The former is used for

erage for different instructions to satisfy the performance overhead
bounds provided by the user. Our selection algorithm(Section 4.2)
starts with the instructions providing the highest coverage, and
iteratively expands the set of instructions until the performance
overhead bounds are met. We then perform fault injection exper-
iments on the program instrumented with our detectors for these
instructions, and measure the percentage(s) of SDCs detected. We
then compare our results with those of full duplication, i.e., when
every instruction is duplicated in the program, and that of hot-path
duplication, i.e., when the top 10% most executed instructions are
duplicated in the program.

To ensure a fair comparison among these techniques, we use a
metric called thesDC detection efpciengyvhich is similar to the
efbciency debned in prior work [21]. We debne the SDC detection
efbciency as the ratio between SDC coverage and performance
overhead for a detection technique. We calculate the SDC detection
efbciency of each benchmark under a given performance overhead
bound, and compare it with the corresponding efpciencies of full
duplication and hot-path duplication. The SDC coverage of full
duplication is assumed to be a hundred percent [19].



Estimated

ZT’(SDC\I)P(I) f:;f:" sbc Table 7: The SDC rates and ranks from fault injections @B Tune
P(SDC) (rank) B(SDC) (rank)
Source . IR [ Feature Execution profile Group Benchmark from injections from SDCTune
code Compiler extraction [| SDCTune P 1S 43.46% (1) 33.75% (1)
| y LU 31.9% (2) 25.43% (2)
Selection ini Bzip2 24.47% (3) 17.88% (3)
Perf head 8 Feedback for Trainin P 0
o algorithm overhead 9 Water 5.9% (4) 9.75% (5)
Instructions to protect bound Swaptions 4.1% (5) 11.46% (4)
CG 1.89% (6) 3.54% (6)
- Cbm 52.53% (1) 48.11% (1)
Instrument o Gzip 3B67% (2) 32.46% (2)
detectors executable Testing Ocean 20.6% (3) T4.75% (@)
. . 0, 0,
Figure 7: The workBow of applyingDCTunefor two usage cases: (1) ,afcsf g%oﬁ Egg 1‘71'5471[;; gg
estimate the overall SDC failure raend (2)selectively protect the SDC- ; .
' : Cibquantum 10.5% (6) T10.9% (6)
prone variables subject to a performance overhead
5.3 Work Flow and Implementation o 7
. S =6
Figure 7 shows the workRow for estimating the overall SDC 2 £ -
. . - =5 A Training programs
rates and providing conbgurable protection us8igCTune The SE,
workf3ow requires the following inputs from the user: (1) source £ 3 ® Tesing program
. . >
code for the program, (2) a set of representative input(s) for ex- 52" - —Trend line training
ecuting the application, and (3) output function calls that generate = £ 1 programs
. . - " :
the output data that we care about in terms of SDC failures (as men- = 0 —;:’;j'a';:e testing

tioned before, not all output data in an application is important from o 5 4 6 8

the perspective of SDCs, for example, statistical or timing informa- Rank of overall SDC rates by fault injection experiment

tion in the output). In addition, it requires the user to specify the

maximum allowable performance overhead that may be incurred Figure 8: The rank correlation for both training and testing programs. The

by the detectors inserted by our technique. x-axis is the rank of overall SDC rates from 3000 random fault injections,
We brst compile the application using LLVM into its IR form.  the y-axis is the rank of estimated overall SDC rates uSiDgTune The

We then extract the features that our model needs to estimate therank correlaion coefbcients are 0.9714(training) and 0.8286(testing).

SDC proneness of stored values and comparison results. This is L .

done zsing an automated compiler pass wg wrote in LLVM, and rates P(SDAC)) from the fault |nJ§cF|0ns and the estlmateq overall

the LAMPView tool [16] for analyzing load/store dependencies. SDC rates P(SDC)) for both training programs and testing pro-

Third, we run the parameters throu§BC Tunébuilt in Section 4.1, grams. The SDC rates are statistically signibcant with an error bar

to generate a estimated SDC proneness for each instruction. Fourthfanging from 1.78%(Lbm) to 0.49%(CG), at the 95% conbdence

we use the results fro®DCTuneo estimate the overall SDC rate ~ intervals. _

of the application, and for inserting detectors into the program  From Table 7, it can be observed that the absolute values of

for protecting the most SDC_prone instructions W|th|n the given the eStImated SDC rates dO not matC_h W|th the Observed ones.

overhead bound. The detectors are inserted by another LLVM passHowever, the ranks of the SDC rates estimated by the model closely

we wrote. We use the representative inputs provided by the usermatch those observed in reality. Figure 8 plots the estimated SDC

to execute the program for obtaining its execution time with the ranks versus the observed ranks for both _the training and testing

detectors. The above process of choosing instructions to protectPrograms. The SpearmanOs rank correlation coefbciert7is

is repeated iteratively until the designated performance overheadfor training programs (p-valu€=00694), and0.8286 for testing

bound is fulblled. If we exceed the performance overhead bound, Programs (p-value 8.0125), showing a strong positive correlation

we backtrack and remove the most recently inserted detectors.for both sets of programs. _ o

Finally, we use the program fortiPed with the detectors to measure  Thus, SDCTuneis highly accurate in predicting SDC ranks

its performance overhead and fault coverage. of applications relative to other applications. However, it is not
accurate at predicting the absolute rates of SDCs. There are two
6. Results reasons for this inaccuracy. First, our estimation of SDC rates using

This section presents the results of our experiments tGse back-propagation is conservative, and sometimes may overestimate
CTunefor (1) estimating the overall SDC rate of an application the SDC proneness of variables in the presence of application-
and (2) for conbgurable protection to maximize detection coverage specibPc masking. Second, our load-store dependence analysis is
under different performance overhead bound. In our experiments, performed using the LAMPView tool, which does not handle some
SDCTuneequires bve to Pty minutes (average of 24 minutes) de- library functions such amemcpyThis inaccuracy in absolute SDC
pending on the application, to estimate the overall SDC rate and to rate prediction may lead to inadequate protection, and additional
generate a fortibed executable protected with detectors for a givenoverhead. However, our results show that despite the inaccuracy,
performance overhead. On the contrary, fault injection alone re- SDCTunecan guide detector placement to obtain high coverage at
quires anywhere from a few hours to a few days to generate the low performance overheads.

SDC rates for each application. Further, estimating the SDC-proneg.2  SDC Coverage and Detection Efbciency
locations in a program using fault injection requires even more fault
injections and signibcant effort to map the results of the fault injec-

tion back to the programOs code, which is necessary for placing,eaq. Figure 9a shows the SDC coverage obtained by our technique
detectors. for each benchmark under three different performance overhead
6.1 Estimation of Overall SDC Rates bounds: 10%, 20% and 30%. For the training programs, the geo-

We estimate the overall SDC rate of the application uSibg- metric means of the SDC coverage for the 10%, 20% and 30% over-
Tune and compare it with the SDC rate obtained through 3000 ran- head bounds are 44.8%, 78.6% and 86.8%, respectively. For the
dom fault injections per benchmark. Table 7 shows the overall SDC testing programs, the corresponding geometric means are 39.0%,

We useSDCTundor inserting error detectors into the applica-
ns to maximize SDC coverage under a given performance over-



63.7% and 74.9% respectively, which are somewhat lower than the ., Training programs ! Testing programs

training programsO averages, as expected. We also measured thgﬂgggﬁ

SDC coverage obtained with hot-path duplication, and found it to £ 70%

be 79.5% and 87.6% on average for training and testing programs 2 Som

respectively. o el
Figure 9b shows the performance overhead of full duplication % 20% ‘

and hot-path duplication. The overhead of full duplication is 53.7% 0%

on average for the training programs, while it is 73.6% on average

for the testing programs. Hot-path duplication has an overhead

of 43.5% for the training programs, and 57.6% for the testing

roarams. N h h of th r nsiderably higher than the(® The SDC coverages with error bars at the 95% conbdence interval. The
programs. Note that both of these are considerably higher than t eerror bars are less than 2%, and obtained from 3000 random fault injections

30% overhead bound we consid_ered With our detectors. per benchmark. The SDC coverage of full duplication is considered as 100%
We also calculate the detection efbciency of the detectors we

inserted, and for hot-path duplication based on their overhead and
SDC coverages (Section 5.2). Figure 9c shows the SDC detection 2100%

efbciency for our detectors with the three overhead bounds, and for 80%

Overhead
bounds

B 20%
8530%

| BHot-path

Training programs

Testing programs

m Full

hot-path duplication. The efpciencies are normalized to that of full &% duplication
duplication, which has a baseline efbciency of 1. A value close to & o  Hot-path
1 means that no improvement is achieved over full duplication. % duplication

Performance over

For our detectors, we observe SDC detection efbciencies of
2.38x, 2.09x and 1.54x for the training programs, and 2.87x, 2.34x ©
and 1.84x for the testing programs, at the 10%, 20% and 30% per-
formance overhead bounds respectively. The reason that the efp-
ciencies decrease as overhead increase is that some of the instruc- (b) The overhead of full duplication and hot-path duplication
tions protected at higher overhead are not as SDC prone. As the
performance overhead of the detectors approaches that of full du-
plication, the detection efbciencies will drop to 1. We also observe
no gain in efbciency with hot-path duplication compared to full du-
plication in spite of its high coverage, as it incurs correspondingly
higher overhead (as mentioned in Section 2).

We bnd that there is considerable variation in detector efbciency
among benchmarks. There are two reasons for this variation. First,
for our technique to be efbcient, it needs to protect instructions with
high SDC proneness, but with low dynamic execution count. We
observed that applications which have such instructions experience
moderate SDC rates, which are neither too high nor too low. From
Table 7, programs such &zip, Libquantumand Oceanfall into &
this category. These programs benebt the most from our technique(c) The normalized detection efbciency. Full duplication is the baseline and has
(Figure 9c). On the other hand, if the benchmark has highly SDC detection efbciency = 1. (Detection efpciency is the ratio of SDC coverage and

- . . . performance overhead)
prone instructions that are also highly executed, our technique does
not do as well since the overhead limit prevents our technique from
selecting those SDC prone instructions. Examples of these pro-
grams ard_bmandIS. An exception to this is th€G benchmark,
which has only a few SDC-prone instructions that are highly exe-
cuted. Therefore, protecting these instructions is sufbcient to obtaing|| SDC prone instructions in the program have high execution
high coverage, and this can be done with relatively low overhead counts, and hence the performance overhead bounds cannot be sat-
(compared to full duplication). Second, if all instructions of a pro-  isped if they are selected for protection. Therefore, this benchmark
gram are low in SDC proneness (e.gater), our technique does  has low SDC coverage with our technique.
not do as well, since no instruction provides higher benebt when  |n summary, our technique signipcantly outperforms both full-
protected than others. duplication and hot-path duplication in providing better detection

The second reason for the variation in efpciency among bench- efpciency, for much lower performance overhead bounds.
marks relative to full duplication, is that the overhead of full du-

plication is not uniform, as shown in Figure 9b. This is because of 7. Related Work

benchmark-specibc reasons such as the distribution of integer and We classi lated K into th " . v (1) d
Roating point operations. In general, processors have abundant in- e classify related work into three categories, namely (1) du-

teger computation units but not as many Boating point units, so the Plication based techniques, (2) invariant based techniques, and (3)
higher the fraction of Roating point operations, the higher is the appl)DIlcalt_lon or algorlth spr(]ac_lbc tecsr:/r\]/ﬁ:qresig . i
overhead due to duplication. We found that for some benchmarks, _ Puplication based techniques SWIFT [19] is a compiler
such aslS, Bfs andBzip2 the full duplication overhead is only based technique that uses fuI_I du_pllcatlon to det_ect_ faults in pro-
about 40%. This means that the detection efbciency improvementd'am data. However, full duplication can have signibcant perfor-
over full duplication is unlikely to be very high for these bench- mance overhead, t_espeually on embedded systems which do_not
marks. For example, even thout Bfs and Swaptionshave rea- have an abund_ant _|dIe resources to mask the overhead_ of _dupllca-
sonable SDC coverage, their detection efbciency is not very high. tion. As shown in Figure 9(SDCT_un€Dutperf0rms full duplication

In one of the benchmark&bm our detectors have a lower detec- " terms of SDC detection efbciency, and also enables conbgura-

tion efpciency compared to full duplication. This is because nearly Plity to protect programs from SDC causing errors under various
given performance overheads.

Training programs Testing programs

Overhead
bounds

fficiency
”
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m E20%
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Figure 9: The results for different performance overhead bounds, hot-path
duplication and full duplication. The X-axis shows the training and testing
programs.



Feng et al. [8], and Khudia et al. [12] have attempted to reduce 8. Conclusion

the overhead of full duplication by only duplicating Ohigh-valueO  Thjs paper proposes a conbgurable protection technique for
instructions (and variables), where a fault is unlikely to be detected gpc-causing errors that allows users to trade-off performance for
by other techniques and hence lead to SDCs. Unlike our work how- re|igpjjity. We develop heuristics for estimating the SDC proneness
ever, they do not provide a mechanism to conPgure the protection uf instryctions and build a modSIDCTunébased on the heuristics.
for a given performance overhead bound. This is especially impor- \we then useSDCTuneto guide the selection of instructions to be
tant for embedded systems where the system has to satisfy striciyotected with error detectors under a given performance overhead.
performance constraints. Our results show thaBDCTuneis highly accurate at predicting
Another branch of work [4, 6, 14, 15, 23] has focused on pro- the relative SDC rates of applications, and the detectors inserted
tecting soft-computing applications from soft errors, by duplicat- sing our technique outperform both full duplication and hot-path
ing only critical instructions or data in the program. Examples of qplication by a factor of 0.83 to 1.87x in detection efbciency.
soft-computing applications are those used in media processing and
machine learning, which can tolerate a certain amount of errors in ACknowledgments
their outputs. These papers exploit the resilience of soft comput-  This work is sponsored, in part, by the Natural Science and Engineer-
ing applications to come up with targeted protection mechanisms. ing Research Council of Canada (NSERC), Defense Advanced Research

ol frgipe Projects Agency (DARPA), Microsystems Technology Ofbce (MTO), un-
However, they cannot be applied in general purpose applications. der contract no. HR0011-13-C-0022. | The views expressed are those of the
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