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My Research 

•  Building fault-tolerant and secure software systems 

 

•  Three areas 
•  Software resilience techniques [CASES’14][DSN’13][ISPASS’13] 
•  Web applications’ reliability [ICSE’14][ICSE’14][ESEM’13] 
•  Smart meter security [HASE’14][WRAITS’12] 

•  This talk: Software resilience techniques 
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Motivation: Variations & Errors 
•  Variation of device times 

•  Higher spread of  device variations 
for future generations of  technology 

•  Feature size Vs MTTU 
•  Increase in number of  bits 

correlated with decrease in 
MTTU of  the chip  
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Source (CCC study on cross-layer reliability): www.relxlayer.org (2011)  



Hardware Errors: “Solutions” 
•  Guard-banding •  Duplication 
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Average Worst-case 

Guard-banding wastes 
power and performance 
as gap between average 
and worst-case widens 
due to variations 

Guard-band 

Hardware duplication 
(DMR) can result in 2X 
slowdown and/or 
energy consumption 



Why Application-level 
techniques ? 

Impactful Errors 

5 

Device/Circuit Level 

Architectural Level   

Operating System Level 

Application Level 

Overheads 



Our Goal 

•  Detect errors that cause Silent Data Corruption (SDC) 
•  Wrong results, Error Propagation etc. 

 

•  Error Detection Coverage vs. Performance Overhead 
•  Achieve high SDC coverage while incurring low overhead by 

selectively protecting program instructions/data 

•  No fault injections in applying to new programs 
•  Fault injections take significant time and effort 

6 



Outline 

•  Motivation and Goals 

•  EDC Causing Error Detection [DSN’13][SELSE’13] 

•  SDCTune: Protecting programs from SDCs [CASES’14] 

•  Error Resilience Characterization on GPUs [ISPASS’14] 

•  Conclusions and Future Work 
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Soft Computing Applications 

Ø Expected to dominate future workloads [Dubey’07] 
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Original image (left) versus faulty image from JPEG decoder 



Egregious Data Corruptions 
(EDCs) 
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Ø Large or unacceptable deviation in output  

EDC image (PSNR 11.37) vs Non-EDC image (PSNR 44.79) 



Goal 
Ø Detect EDC causing faults 
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Fault model 

•  Transient hardware faults 
•  Caused by particle strikes, temperature, etc. 

•  Assume that program data is corrupted 

•  Our Fault Model 
•  Single bit flip, One fault per run 

•  Processor registers and execution units 

•  Memory and cache protected with ECC 
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Approach 
Ø  Step 1: Separate EDCs from Non-EDCs by fault  injections 

 

Ø  Step 2: Heuristics identifying code regions prone to EDC 
causing faults 

 

Ø  Step 3: Automated algorithm for detector placement  
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Initial 
Study 

(Step 1) 

Heuristics 
(Step 2) 

Algorithm 
(Step 3) 



Step 1: Initial Study 
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Monitor 
Control/Pointer 

Data 

Ø Instrument code 
Ø Fault Injection  

 
Initial 
Study 

 

Heuristic
s Algorithm 

 
Ø  Correlation between data type – fault outcome 

Performed using LLFI [DSN’14] 



Data Categorization: Faults 
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High correlation between Control Non-Pointer and EDC/Non-EDC 
 

 
Initial 
Study 

 

Heuristic
s Algorithm 

6% 

43 % 

23% 

28% 



Step 2: Heuristics 
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Initial 
Study 

 

Heuristic
s Algorithm 

void conv422to444 (char *src, char *dst,  int height, int width, int 
offset) { 
     for(j=0; j < height; j++){ 
        for(i=0; i < width; i++) { 
           im1 = (i < 1) ? 0 : i – 1 
           … 
           dst[im1] = Clip[(21*src[im1])>>8];  
         } 
         if( j + 1 < offset) { 
             src += w; 
             dst += width; } 
      } 
} 



Step 2: Heuristics 
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Initial 
Study 

 

Heuristic
s Algorithm 

void conv422to444 (char *src, char *dst,  int height, int width, int 
offset) { 
     for(j=0; j < height; j++){ 
        for(i=0; i < width; i++) { 
           im1 = (i < 1) ? 0 : i – 1 
           … 
           dst[im1] = Clip[(21*src[im1])>>8];  
         } 
         if( j + 1 < offset) { 
             src += w; 
             dst += width; } 
      } 
} 

Faults affecting branches with large amount of  data within branch 
body, has a higher likelihood of  resulting in EDC outcomes 

High EDC 
Likelihood 

Ø Fault in offset 
Ø Branch Flip 



Step 2: Heuristics 
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Initial 
Study 

 

Heuristic
s Algorithm 

void conv422to444 (char *src, char *dst,  int height, int width, int 
offset) { 
     for(j=0; j < height; j++){ 
        for(i=0; i < width; i++) { 
           im1 = (i < 1) ? 0 : i – 1 
           … 
           dst[im1] = Clip[(21*src[im1])>>8];  
         } 
         if( j + 1 < offset) { 
             src += w; 
             dst += width; } 
      } 
} 

Faults affecting branches with large amount of  data within branch 
body, has a higher likelihood of  resulting in EDC outcomes 

Ø Fault in 
result of  
branch 

Low EDC 
Likelihood 



Step 3: Algorithm 
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Initial 
Study 

 

Heuristic
s Algorithm 

Automated Detector Placement Algorithm 



Step 3: Algorithm 
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Experimental Setup 

Ø Six Benchmarks from MediaBench, Parsec Suite 
Ø Fidelity Metric: PSNR, scaled distortion [Misailovic’12] 

 

Ø Performed fault injections using LLFI [DSN’14] 
Ø 2000 fault injections, one fault per run (1.3% at 95% CI) 
Ø Validated with respect to assembly-level injectors for EDCs 

 

Ø Measured EDC coverage under varying performance 
overhead bounds of  10, 20 and 25% 
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Experimental Framework 

Execute 
Application 
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Choose 
dynamic data 

instance at 
random 

Inject 
Random 

Single bit flip  

Compare 
faulty & 
fault-free 
outcome 
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Coverage Evaluation 
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Pre-emptive 
Detection 

Average EDC Coverage of   82% versus 56% 
under 10 % performance overhead 

Higher is better 



Coverage Evaluation 
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Selective  
Detection 

Lower is better 



Coverage in Perspective 
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Our technique detects most EDC causing errors for a 
fraction of  the cost of  full duplication 



Outline 

•  Motivation and Goals 

•  EDC Causing Error Detection [DSN’13][SELSE’13] 

•  SDCTune: Protecting programs from SDCs [CASES’14] 

•  Error Resilience Characterization on GPUs [ISPASS’14] 

•  Conclusions and Future Work 
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SDCTune: Goals 

•  Earlier work on EDC causing errors showed feasibility of 
selectively protecting critical data 
•  Can we extend this to SDCs in general-purpose applications 

which are not as error resilient ? 

•  Challenge: 
•  Not feasible to identify SDCs based on amount of  data 

affected by the fault as was the case with EDCs 

•  Need for comprehensive model for predicting SDCs based on 
static and dynamic program features 
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Main Idea 
•  Start from “Store” and “Cmp” instructions 

propagate backward through data dependencies 
 -”Store” and “Cmp” are the end of visible data-
dependency chain at the compiler levels 

•  Predict P(SDC|Store or Cmp) 
•  Extract the related features by static/dynamic analysis 

•  Quantify the effects by classification and  regression 
•  Estimate SDC rate of different “Store” and “Cmp” instructions 
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Approach: Overview 
•  Classification 

•  Classify the stored values and comparison values according to 
the extracted features (through static analysis) 

•  Organize the features as a decision tree with each feature 
corresponding to a branch 

 

•  Regression 
•  Within a single category, SDC rate may exhibit gradual 

correlations with several features 

•  Use linear regression for the classified groups to estimate the 
SDC rate within a node of  the tree 
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Approach: Decision Tree 
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Not used in Masking 
operations 

𝑷 𝑺𝑫𝑪 𝑰 =−𝟎.𝟏𝟐∗𝒅𝒂𝒕𝒂  𝒘𝒊𝒅𝒕𝒉+𝟎.𝟖𝟕𝟖 

Example: Linear Regression for a Leaf 



Approach: Instruction Selection  
 

•  Select instructions for Protected Set 
•  Knapsack problem: value: estimated P(SDC,I), weight: P(I) 
•  A set of instructions to protect for a given overhead bound 
•  Replicate static backward slices of the instructions to protect 

•  Test coverage on training programs 
•  Measure the coverage for different overhead bounds and tune 

the model  
•  Apply the model  to a different set of programs to evaluate it 
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Experimental Methodology 
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Benchmarks 
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(a) Data dependency of
detector-free code

(b) Basic detector in-
strumented

(c) concatenate dupli-
cated instructions

Figure 5: The shaded portion of (a) shows the instructions need protection.
(b) shows the duplicated instructions (the shaded nodes) and the detector
inserted at the end of the two dependency chains. (c) shows one added
instruction to protect(node e’) that concatenates the two dependency chains
and save one checker

1 for ( =0;; ++){
2 // loop body
3 = < ?1:0;
4 if ( == 1)
5 break;
6 // decompose exit

predication
to

simulate
instruction
�level
behaviour .

7 }
8

(a) Detector-free code

1 =0;
2 // duplication of i
3 =0;
4 for (;;) {
5 // loop body
6 = < ?1:0;
7 =

< ?1:0;
8 if(flag != dup_flag)
9 Assert();

10 // inconsistent
11 if ( == 1)
12 break;
13 }

(b) Basic detector in-
strumented

1 =0;
2 // duplication of i
3 =0;
4 for (;;) {
5 // loop body
6 = < ?1:0;
7 =

< ?1:0;
8 if ( == 1)
9 break;

10 }
11 if(flag != dup_flag)
12 Assert();
13 // inconsistent

(c) Lazy checking ap-
plied

Figure 6: (b) shows how the loop index i in original code (a) is protected
with bold code as check. (c) shows how we move the check out of the loop
body

5. Experimental Setup
In this section, we empirically evaluate SDCTune for config-

urable SDC protection through fault injection experiments. All the
experiments and evaluations are conducted on a Intel i7 4-core
machine with 8GB memory running Debian Linux. Section 5.1
presents the details of benchmarks and section 5.2 presents our
evaluation metrics. Section 5.3 presents our methodology and
workflow for performing the experiments.
5.1 Benchmarks

We choose a total of 12 applications from a wide variety of do-
mains for training and testing. They are from SPEC benchmark
suite [12], SPLASH2 benchmark suite [30], NAS parallel bench-
mark suite [1], PARSEC benchmark suite [2] and Parboil bench-
mark suite [27]. We divide the 12 applications into two groups
of 6 applications each, one for training and the other for testing.
The four benchmarks studied in Section 2.3 are incorporated in the
training group. The details of these training and testing benchmarks
are shown in Table 5 and Table 6 respectively. All the applications
are compiled and linked into native executables with -O2 optimiza-
tion flags and run in a single threaded mode.
5.2 Evaluation Metrics

To gauge the accuracy of SDCTune, we use it for estimating the
overall SDC rate of an application, as well as the SDC coverage

Table 5: Training programs

Program Description Benchmark
suite Input Stores Compar-

isons
IS Integer sorting NAS default 21 20
LU Linear algebra SPLASH2 test 41 110

Bzip2 Compression SPEC test 681 646

Swaptions Price portfolio
of swaptions

PARSEC Sim-
large 36 101

Water Molecular
dynamics

SPLASH2 test 187 224

CG
Conjugate
gradient
method

NAS default 32 97

Table 6: Testing programs

Program Description Benchmark
suite Input Stores Compar-

isons

Lbm Fluid
dynamics

Parboil short 71 34

Gzip Compression SPEC test 251 399

Ocean
Large-scale

ocean
movements

SPLASH test 322 813

Bfs Breadth-First
search

Parboil 1M 36 57

Mcf Combinatorial
optimization

SPEC test 87 158

Libquantum Quantum
computing

SPEC test 39 136

for different performance overhead bounds. The former is used for
comparing the resilience of different applications, while the latter
is used to insert detectors for configurable protection.
Estimation of overall SDC rates: We perform a random fault in-
jection experiment to determine the overall SDC rate of the appli-
cation. We then compare the SDC rate obtained with SDCTune with
that obtained from the fault injection experiment. We also consider
the relative SDC rate compared to other applications (i.e., its rank).
We use the same experimental setup for fault injection as described
in Section 2.3.
SDC coverages for different performance overhead bounds: We
use SDCTune to predict the SDC coverage for different instructions
to satisfy the performance overhead bounds provided by the user.
We start with the most SDC prone instructions and iteratively ex-
pand the set of instructions until the performance overhead bounds
are met. We perform fault injection experiments on the program in-
strumented with our detectors for these instructions, and measure
the percentages of SDCs detected. We then compare our results
with those of full duplication, i.e., when every instruction is dupli-
cated in the program, and hot-path duplication, i.e., when the top
10% most executed instructions are duplicated in the program.
SDC detection efficiency: Similar to the efficiency defined in
prior work [25], we define the SDC detection efficiency as the
ratio between SDC coverage and performance overhead for a de-
tection technique. We calculate the efficiency of each benchmark
under a given performance overhead bound, and compare it with
the efficiencies of full duplication and hot-path duplication. The
SDC coverage of full duplication is assumed to be a hundred per-
cent [23].
5.3 Work Flow and Implementation

Figure 7 shows the workflow for estimating the overall SDC
rates and providing configurable protection using SDCTune. The
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comparing the resilience of different applications, while the latter
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cation. We then compare the SDC rate obtained with SDCTune with
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with those of full duplication, i.e., when every instruction is dupli-
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10% most executed instructions are duplicated in the program.
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Experiments 

•  Estimate overall SDC rates using SDCTune and 
compare with fault injection experiments  
•  Measure correlation between predicted and actual 

•  Measure SDC Coverage of  detectors inserted using 
SDCTune for different overhead bounds 
•  Consider 10, 20 and 30% performance overheads 

•  Compared performance overhead and efficiency 
with full duplication and hot-path duplication 
•  Efficiency = SDC coverage / Performance overhead 
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Overall SDC Rates: Ranks 
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P-value** 0.00694 0.0125 

0 
1 
2 
3 
4 
5 
6 
7 

0 1 2 3 4 5 6 7 

R
an

k 
of

 o
ve

ra
ll

 S
D

C
 r

at
es

 
by

 e
st

im
at

io
n 

Rank of overall SDC rates by fault injection experiment 

Training 
programs 

Tesing 
program 

Linear 
regression 
for 
training 
programs 



SDC-Tune Based Detectors:  
SDC Coverage 
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SDC coverage ranges from 45% to 87% for the training 
programs as overhead goes from 10 to 30%, while for testing 
programs it ranges from  39% to 75% for the same overhead.  



Full Duplication and Hot Path 
Duplication:  Overhead 
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Full duplication and hot-path duplication (top 10% of  paths) 
have high overheads. For full duplication it ranges from 53.7% 
to 73.6%, for hot-path duplication it ranges from 43.5 to 57.6%. 



Detection Efficiency of  
Detectors Vs. Full Duplication  
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Detection efficiency of  the detectors normalized to full duplication 
is 2.87x, 2.34x and 1.84x at the 10%, 20% and 30% overheads. 



Outline 

•  Motivation and Goals 

•  EDC Causing Error Detection [DSN’13][SELSE’13] 

•  SDCTune: Protecting programs from SDCs [CASES’14] 

•  Error Resilience Characterization on GPUs [ISPASS’14] 

•  Conclusions and Future Work 
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 GPU Error Resilience: Motivation 

•  GPUs have traditionally been used for error-resilient workloads 
§  E.g. Image Processing 

•  GPUs are used in general-purpose applications, i.e. GPGPU 
•  Small errors can lead to completely incorrect outputs 
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ATATTTTTTCTTGTT
TTTTATATCCACAAA
CTCTTTTCGTACTTT
TACACAGTATATCGT
GT 

Error ATATTTTTTCTTGTT
TTTTATATCCACAAT
CTCTTTTCGTACTTT
TACACAGTATATCGT
GT 

Error 



GPU Fault Injection: Challenges 

•  Challenge 1: Scale of GPGPU applications 
•  GPGPU applications consist of  thousands of  threads, and 

injecting sufficient faults in each thread will be very time 
consuming 

•  Challenge 2: Representativeness  
•  Need to execute application on real GPU to get hardware error 

detection 

•  Need to uniformly sample the execution of  the application to 
emulate randomly occurring faults 
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Addressing Challenge 1: Scale 

•  Choose representative threads to inject faults into 

•  Group threads with similar numbers of  instructions into 
equivalence classes and sample from each class (or from 
the most popular thread classes) 

•  Hypothesis: Threads that execute similar numbers of  
instructions have similar behavior – validated by injection 
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Addressing Challenge 2: 
Representativeness 

•  We use a source-level debugger for CUDA® 
GPGPU applications called CUDA-gdb 
•  Advantage: Directly inject into the GPU hardware 

•  Disadvantage: Requires source-code information to set 
breakpoints for injecting faults 

•  Our solution: Single-step the program using CUDA-
gdb and map dynamic instructions to source code 
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Fault injection Methodology: 
GPU-Qin 
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Experimental Setup 

•  NVIDIA® Tesla C 2070/2075  

•  12 CUDA benchmarks comprising 15 kernels 
•  Rodinia, Parboil and Cuda-SDK benchmark suites 

•  Only consider activated faults – faults read by application 

•  Outcomes  
•  Benign: correct output 

•  Crash: hardware exceptions raised by the system 

•  Silent Data Corruption (SDC): incorrect output, as obtained by 
comparing with golden run of  the application 

•  Hang: did not finish in considerably longer time 
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Overall Characterization Results 
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Hypothesis: Algorithmic Categories 
 

•  Resilience correlated with algorithmic properties 
•  Mapping to dwarves of  parallelism [Berkeley’07] 
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Resilience 
Category  

Benchmarks Measured SDC  Dwarf(s)  of  
parallelism 
 

Search-based  MergeSort  6% Backtrack and 
Branch+Bound  

Bit-wise Operation  HashGPU, AES  25% - 37% Combinational 
Logic  

Average-out Effect  Stencil, MONTE  1% - 5% Structured Grids, 
Monte Carlo  

Graph Processing  BFS  10% Graph Traversal  

Linear Algebra  Transpose, MAT, 
MRI-Q, SCAN-
block, LBM, SAD  

15% - 25% Dense Linear 
Algebra, Sparse 
Linear Algebra, 
Structured Grids  



Implications of  our Results 

•  Wide variation in SDC rates across GPGPU applications, 
much more than CPU applications 
•  Need for application specific fault-tolerance 

 

•  Correlation between algorithm and error resilience 
•  Can be used to obtain quick estimates without FI 

•  Can be used to customize level of  protection provided 
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Outline 

•  Motivation and Goals 

•  EDC Causing Error Detection [DSN’13][SELSE’13] 

•  SDCTune: Protecting programs from SDCs [CASES’14] 

•  Error Resilience Characterization on GPUs [ISPASS’14] 

•  Conclusions and Future Work 

48 



Conclusion 

•  Selective protection of  instructions in applications for both 
detecting both EDCs and SDCs 
•  Protection configurable based on max performance overhead  
•  Can provide high detection coverage for most severe errors 

•  GPGPU applications have wider variations in SDC rates 
compared to CPU applications 
•  Correlation between algorithmic properties and application error 

resilience à mapping to dwarves 
•  Development of  new algorithms for resilient computation 

Fault Injectors at http://github.com/DependableSystemsLab 
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Future Work 

•  Understanding effect of  algorithm on shared memory 
parallel applications on the CPU 
•  Similar correlations as GPGPU apps [FTXS’14] 

•  Effect of  compiler optimizations on the error resilience of  
applications [AER’13] 
•  Identify safe optimizations for given error resilience targets 

•  Theoretical foundations of  programs’ error resilience 
•  PVF analysis combined with heuristics-based analysis 
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