
Tolerating Silent Data
Corruption (SDC) causing
Hardware Faults through

Software Techniques
 Karthik Pattabiraman

Anna Thomas, Qining Lu, Jiesheng Wei, Bo Fang
University of British Columbia (UBC)

Meeta S. Gupta, Jude A. Rivers, IBM Research

Sudhanva Gurumurthi, AMD Research

My Research

•  Building fault-tolerant and secure software systems

•  Three areas
•  Software resilience techniques [CASES’14][DSN’13][ISPASS’13]
•  Web applications’ reliability [ICSE’14][ICSE’14][ESEM’13]
•  Smart meter security [HASE’14][WRAITS’12]

•  This talk: Software resilience techniques

2

Motivation: Variations & Errors
•  Variation of device times

•  Higher spread of device variations
for future generations of technology

•  Feature size Vs MTTU
•  Increase in number of bits

correlated with decrease in
MTTU of the chip

3

Source (CCC study on cross-layer reliability): www.relxlayer.org (2011)

Hardware Errors: “Solutions”
•  Guard-banding •  Duplication

4

Average Worst-case

Guard-banding wastes
power and performance
as gap between average
and worst-case widens
due to variations

Guard-band

Hardware duplication
(DMR) can result in 2X
slowdown and/or
energy consumption

Why Application-level
techniques ?

Impactful Errors

5

Device/Circuit Level

Architectural Level

Operating System Level

Application Level

Overheads

Our Goal

•  Detect errors that cause Silent Data Corruption (SDC)
•  Wrong results, Error Propagation etc.

•  Error Detection Coverage vs. Performance Overhead
•  Achieve high SDC coverage while incurring low overhead by

selectively protecting program instructions/data

•  No fault injections in applying to new programs
•  Fault injections take significant time and effort

6

Outline

•  Motivation and Goals

•  EDC Causing Error Detection [DSN’13][SELSE’13]

•  SDCTune: Protecting programs from SDCs [CASES’14]

•  Error Resilience Characterization on GPUs [ISPASS’14]

•  Conclusions and Future Work

7

Soft Computing Applications

Ø Expected to dominate future workloads [Dubey’07]

8

Original image (left) versus faulty image from JPEG decoder

Egregious Data Corruptions
(EDCs)

9

Ø Large or unacceptable deviation in output

EDC image (PSNR 11.37) vs Non-EDC image (PSNR 44.79)

Goal
Ø Detect EDC causing faults

10

Non-
EDC

EDC

Detector

Benign

Pre-emptive

Selective

Application Execution

Fault model

•  Transient hardware faults
•  Caused by particle strikes, temperature, etc.

•  Assume that program data is corrupted

•  Our Fault Model
•  Single bit flip, One fault per run

•  Processor registers and execution units

•  Memory and cache protected with ECC

11

Approach
Ø  Step 1: Separate EDCs from Non-EDCs by fault injections

Ø  Step 2: Heuristics identifying code regions prone to EDC
causing faults

Ø  Step 3: Automated algorithm for detector placement

12

Initial
Study

(Step 1)

Heuristics
(Step 2)

Algorithm
(Step 3)

Step 1: Initial Study

13

Monitor
Control/Pointer

Data

Ø Instrument code
Ø Fault Injection

Initial
Study

Heuristic
s Algorithm

Ø  Correlation between data type – fault outcome

Performed using LLFI [DSN’14]

Data Categorization: Faults

14

High correlation between Control Non-Pointer and EDC/Non-EDC

Initial
Study

Heuristic
s Algorithm

6%

43 %

23%

28%

Step 2: Heuristics

15

Initial
Study

Heuristic
s Algorithm

void conv422to444 (char *src, char *dst, int height, int width, int
offset) {
 for(j=0; j < height; j++){
 for(i=0; i < width; i++) {
 im1 = (i < 1) ? 0 : i – 1
 …
 dst[im1] = Clip[(21*src[im1])>>8];
 }
 if(j + 1 < offset) {
 src += w;
 dst += width; }
 }
}

Step 2: Heuristics

16

Initial
Study

Heuristic
s Algorithm

void conv422to444 (char *src, char *dst, int height, int width, int
offset) {
 for(j=0; j < height; j++){
 for(i=0; i < width; i++) {
 im1 = (i < 1) ? 0 : i – 1
 …
 dst[im1] = Clip[(21*src[im1])>>8];
 }
 if(j + 1 < offset) {
 src += w;
 dst += width; }
 }
}

Faults affecting branches with large amount of data within branch
body, has a higher likelihood of resulting in EDC outcomes

High EDC
Likelihood

Ø Fault in offset
Ø Branch Flip

Step 2: Heuristics

17

Initial
Study

Heuristic
s Algorithm

void conv422to444 (char *src, char *dst, int height, int width, int
offset) {
 for(j=0; j < height; j++){
 for(i=0; i < width; i++) {
 im1 = (i < 1) ? 0 : i – 1
 …
 dst[im1] = Clip[(21*src[im1])>>8];
 }
 if(j + 1 < offset) {
 src += w;
 dst += width; }
 }
}

Faults affecting branches with large amount of data within branch
body, has a higher likelihood of resulting in EDC outcomes

Ø Fault in
result of
branch

Low EDC
Likelihood

Step 3: Algorithm

18

Compiler
EDC

Ranking
Algorithm

Selection
Algorithm

IR

 Application
Source Code

Performance Overhead

Data Variables or Locations to Protect

Execution Profile

Initial
Study

Heuristic
s Algorithm

Automated Detector Placement Algorithm

Step 3: Algorithm

19

Compiler
EDC

Ranking
Algorithm

Selection
Algorithm

IR

 Application
Source Code

Performance Overhead

Data Variables or Locations to Protect

Execution Profile

Initial
Study

Heuristic
s Algorithm

Backward slice replication

Experimental Setup

Ø Six Benchmarks from MediaBench, Parsec Suite
Ø Fidelity Metric: PSNR, scaled distortion [Misailovic’12]

Ø Performed fault injections using LLFI [DSN’14]
Ø 2000 fault injections, one fault per run (1.3% at 95% CI)
Ø Validated with respect to assembly-level injectors for EDCs

Ø Measured EDC coverage under varying performance
overhead bounds of 10, 20 and 25%

20

Experimental Framework

Execute
Application

21

Choose
dynamic data

instance at
random

Inject
Random

Single bit flip

Compare
faulty &
fault-free
outcome

Crash
Fidelity
Metric

Benign

EDC

Non-
EDC

No Change

Exception
Value Change

Low Deviation

High deviation

Coverage Evaluation

22

Pre-emptive
Detection

Average EDC Coverage of 82% versus 56%
under 10 % performance overhead

Higher is better

Coverage Evaluation

23

Selective
Detection

Lower is better

Coverage in Perspective

24

Our technique detects most EDC causing errors for a
fraction of the cost of full duplication

Outline

•  Motivation and Goals

•  EDC Causing Error Detection [DSN’13][SELSE’13]

•  SDCTune: Protecting programs from SDCs [CASES’14]

•  Error Resilience Characterization on GPUs [ISPASS’14]

•  Conclusions and Future Work

25

SDCTune: Goals

•  Earlier work on EDC causing errors showed feasibility of
selectively protecting critical data
•  Can we extend this to SDCs in general-purpose applications

which are not as error resilient ?

•  Challenge:
•  Not feasible to identify SDCs based on amount of data

affected by the fault as was the case with EDCs

•  Need for comprehensive model for predicting SDCs based on
static and dynamic program features

26

Main Idea
•  Start from “Store” and “Cmp” instructions

propagate backward through data dependencies
 -”Store” and “Cmp” are the end of visible data-
dependency chain at the compiler levels

•  Predict P(SDC|Store or Cmp)
•  Extract the related features by static/dynamic analysis

•  Quantify the effects by classification and regression
•  Estimate SDC rate of different “Store” and “Cmp” instructions

27

Approach: Overview
•  Classification

•  Classify the stored values and comparison values according to
the extracted features (through static analysis)

•  Organize the features as a decision tree with each feature
corresponding to a branch

•  Regression
•  Within a single category, SDC rate may exhibit gradual

correlations with several features

•  Use linear regression for the classified groups to estimate the
SDC rate within a node of the tree

28

Approach: Decision Tree

29

Not used in Masking
operations

𝑷 𝑺𝑫𝑪 𝑰 =−𝟎.𝟏𝟐∗𝒅𝒂𝒕𝒂 𝒘𝒊𝒅𝒕𝒉+𝟎.𝟖𝟕𝟖

Example: Linear Regression for a Leaf

Approach: Instruction Selection

•  Select instructions for Protected Set
•  Knapsack problem: value: estimated P(SDC,I), weight: P(I)
•  A set of instructions to protect for a given overhead bound
•  Replicate static backward slices of the instructions to protect

•  Test coverage on training programs
•  Measure the coverage for different overhead bounds and tune

the model
•  Apply the model to a different set of programs to evaluate it

30

Experimental Methodology

31

Features
extracted based

on heuristic
knowledge from

training
programs

SDC rate for
each instruction
P(SDC|I) from

training
programs

Training
(Regression)

P(SDC|I)
Predictor

Optimal
selection: est.
P(SDC|I)P(|)

vs.
P(I)

Set{Instructions
} for a certain

overhead bound
(∑P(I))

Random Fault
Injection Results

from testing
programs

Actual SDC
coverage for

testing programs

Features
extracted from

testing programs

Training phase

Testing and using phase

Measure real
coverage on

testing
programs

Benchmarks

32

(a) Data dependency of
detector-free code

(b) Basic detector in-
strumented

(c) concatenate dupli-
cated instructions

Figure 5: The shaded portion of (a) shows the instructions need protection.
(b) shows the duplicated instructions (the shaded nodes) and the detector
inserted at the end of the two dependency chains. (c) shows one added
instruction to protect(node e’) that concatenates the two dependency chains
and save one checker

1 for (=0;; ++){
2 // loop body
3 = < ?1:0;
4 if (== 1)
5 break;
6 // decompose exit

predication
to

simulate
instruction
�level
behaviour .

7 }
8

(a) Detector-free code

1 =0;
2 // duplication of i
3 =0;
4 for (;;) {
5 // loop body
6 = < ?1:0;
7 =

< ?1:0;
8 if(flag != dup_flag)
9 Assert();

10 // inconsistent
11 if (== 1)
12 break;
13 }

(b) Basic detector in-
strumented

1 =0;
2 // duplication of i
3 =0;
4 for (;;) {
5 // loop body
6 = < ?1:0;
7 =

< ?1:0;
8 if (== 1)
9 break;

10 }
11 if(flag != dup_flag)
12 Assert();
13 // inconsistent

(c) Lazy checking ap-
plied

Figure 6: (b) shows how the loop index i in original code (a) is protected
with bold code as check. (c) shows how we move the check out of the loop
body

5. Experimental Setup
In this section, we empirically evaluate SDCTune for config-

urable SDC protection through fault injection experiments. All the
experiments and evaluations are conducted on a Intel i7 4-core
machine with 8GB memory running Debian Linux. Section 5.1
presents the details of benchmarks and section 5.2 presents our
evaluation metrics. Section 5.3 presents our methodology and
workflow for performing the experiments.
5.1 Benchmarks

We choose a total of 12 applications from a wide variety of do-
mains for training and testing. They are from SPEC benchmark
suite [12], SPLASH2 benchmark suite [30], NAS parallel bench-
mark suite [1], PARSEC benchmark suite [2] and Parboil bench-
mark suite [27]. We divide the 12 applications into two groups
of 6 applications each, one for training and the other for testing.
The four benchmarks studied in Section 2.3 are incorporated in the
training group. The details of these training and testing benchmarks
are shown in Table 5 and Table 6 respectively. All the applications
are compiled and linked into native executables with -O2 optimiza-
tion flags and run in a single threaded mode.
5.2 Evaluation Metrics

To gauge the accuracy of SDCTune, we use it for estimating the
overall SDC rate of an application, as well as the SDC coverage

Table 5: Training programs

Program Description Benchmark
suite Input Stores Compar-

isons
IS Integer sorting NAS default 21 20
LU Linear algebra SPLASH2 test 41 110

Bzip2 Compression SPEC test 681 646

Swaptions Price portfolio
of swaptions

PARSEC Sim-
large 36 101

Water Molecular
dynamics

SPLASH2 test 187 224

CG
Conjugate
gradient
method

NAS default 32 97

Table 6: Testing programs

Program Description Benchmark
suite Input Stores Compar-

isons

Lbm Fluid
dynamics

Parboil short 71 34

Gzip Compression SPEC test 251 399

Ocean
Large-scale

ocean
movements

SPLASH test 322 813

Bfs Breadth-First
search

Parboil 1M 36 57

Mcf Combinatorial
optimization

SPEC test 87 158

Libquantum Quantum
computing

SPEC test 39 136

for different performance overhead bounds. The former is used for
comparing the resilience of different applications, while the latter
is used to insert detectors for configurable protection.
Estimation of overall SDC rates: We perform a random fault in-
jection experiment to determine the overall SDC rate of the appli-
cation. We then compare the SDC rate obtained with SDCTune with
that obtained from the fault injection experiment. We also consider
the relative SDC rate compared to other applications (i.e., its rank).
We use the same experimental setup for fault injection as described
in Section 2.3.
SDC coverages for different performance overhead bounds: We
use SDCTune to predict the SDC coverage for different instructions
to satisfy the performance overhead bounds provided by the user.
We start with the most SDC prone instructions and iteratively ex-
pand the set of instructions until the performance overhead bounds
are met. We perform fault injection experiments on the program in-
strumented with our detectors for these instructions, and measure
the percentages of SDCs detected. We then compare our results
with those of full duplication, i.e., when every instruction is dupli-
cated in the program, and hot-path duplication, i.e., when the top
10% most executed instructions are duplicated in the program.
SDC detection efficiency: Similar to the efficiency defined in
prior work [25], we define the SDC detection efficiency as the
ratio between SDC coverage and performance overhead for a de-
tection technique. We calculate the efficiency of each benchmark
under a given performance overhead bound, and compare it with
the efficiencies of full duplication and hot-path duplication. The
SDC coverage of full duplication is assumed to be a hundred per-
cent [23].
5.3 Work Flow and Implementation

Figure 7 shows the workflow for estimating the overall SDC
rates and providing configurable protection using SDCTune. The

Training programs Testing programs
(a) Data dependency of
detector-free code

(b) Basic detector in-
strumented

(c) concatenate dupli-
cated instructions

Figure 5: The shaded portion of (a) shows the instructions need protection.
(b) shows the duplicated instructions (the shaded nodes) and the detector
inserted at the end of the two dependency chains. (c) shows one added
instruction to protect(node e’) that concatenates the two dependency chains
and save one checker

1 for (=0;; ++){
2 // loop body
3 = < ?1:0;
4 if (== 1)
5 break;
6 // decompose exit

predication
to

simulate
instruction
�level
behaviour .

7 }
8

(a) Detector-free code

1 =0;
2 // duplication of i
3 =0;
4 for (;;) {
5 // loop body
6 = < ?1:0;
7 =

< ?1:0;
8 if(flag != dup_flag)
9 Assert();

10 // inconsistent
11 if (== 1)
12 break;
13 }

(b) Basic detector in-
strumented

1 =0;
2 // duplication of i
3 =0;
4 for (;;) {
5 // loop body
6 = < ?1:0;
7 =

< ?1:0;
8 if (== 1)
9 break;

10 }
11 if(flag != dup_flag)
12 Assert();
13 // inconsistent

(c) Lazy checking ap-
plied

Figure 6: (b) shows how the loop index i in original code (a) is protected
with bold code as check. (c) shows how we move the check out of the loop
body

5. Experimental Setup
In this section, we empirically evaluate SDCTune for config-

urable SDC protection through fault injection experiments. All the
experiments and evaluations are conducted on a Intel i7 4-core
machine with 8GB memory running Debian Linux. Section 5.1
presents the details of benchmarks and section 5.2 presents our
evaluation metrics. Section 5.3 presents our methodology and
workflow for performing the experiments.
5.1 Benchmarks

We choose a total of 12 applications from a wide variety of do-
mains for training and testing. They are from SPEC benchmark
suite [12], SPLASH2 benchmark suite [30], NAS parallel bench-
mark suite [1], PARSEC benchmark suite [2] and Parboil bench-
mark suite [27]. We divide the 12 applications into two groups
of 6 applications each, one for training and the other for testing.
The four benchmarks studied in Section 2.3 are incorporated in the
training group. The details of these training and testing benchmarks
are shown in Table 5 and Table 6 respectively. All the applications
are compiled and linked into native executables with -O2 optimiza-
tion flags and run in a single threaded mode.
5.2 Evaluation Metrics

To gauge the accuracy of SDCTune, we use it for estimating the
overall SDC rate of an application, as well as the SDC coverage

Table 5: Training programs

Program Description Benchmark
suite Input Stores Compar-

isons
IS Integer sorting NAS default 21 20
LU Linear algebra SPLASH2 test 41 110

Bzip2 Compression SPEC test 681 646

Swaptions Price portfolio
of swaptions

PARSEC Sim-
large 36 101

Water Molecular
dynamics

SPLASH2 test 187 224

CG
Conjugate
gradient
method

NAS default 32 97

Table 6: Testing programs

Program Description Benchmark
suite Input Stores Compar-

isons

Lbm Fluid
dynamics

Parboil short 71 34

Gzip Compression SPEC test 251 399

Ocean
Large-scale

ocean
movements

SPLASH test 322 813

Bfs Breadth-First
search

Parboil 1M 36 57

Mcf Combinatorial
optimization

SPEC test 87 158

Libquantum Quantum
computing

SPEC test 39 136

for different performance overhead bounds. The former is used for
comparing the resilience of different applications, while the latter
is used to insert detectors for configurable protection.
Estimation of overall SDC rates: We perform a random fault in-
jection experiment to determine the overall SDC rate of the appli-
cation. We then compare the SDC rate obtained with SDCTune with
that obtained from the fault injection experiment. We also consider
the relative SDC rate compared to other applications (i.e., its rank).
We use the same experimental setup for fault injection as described
in Section 2.3.
SDC coverages for different performance overhead bounds: We
use SDCTune to predict the SDC coverage for different instructions
to satisfy the performance overhead bounds provided by the user.
We start with the most SDC prone instructions and iteratively ex-
pand the set of instructions until the performance overhead bounds
are met. We perform fault injection experiments on the program in-
strumented with our detectors for these instructions, and measure
the percentages of SDCs detected. We then compare our results
with those of full duplication, i.e., when every instruction is dupli-
cated in the program, and hot-path duplication, i.e., when the top
10% most executed instructions are duplicated in the program.
SDC detection efficiency: Similar to the efficiency defined in
prior work [25], we define the SDC detection efficiency as the
ratio between SDC coverage and performance overhead for a de-
tection technique. We calculate the efficiency of each benchmark
under a given performance overhead bound, and compare it with
the efficiencies of full duplication and hot-path duplication. The
SDC coverage of full duplication is assumed to be a hundred per-
cent [23].
5.3 Work Flow and Implementation

Figure 7 shows the workflow for estimating the overall SDC
rates and providing configurable protection using SDCTune. The

Experiments

•  Estimate overall SDC rates using SDCTune and
compare with fault injection experiments
•  Measure correlation between predicted and actual

•  Measure SDC Coverage of detectors inserted using
SDCTune for different overhead bounds
•  Consider 10, 20 and 30% performance overheads

•  Compared performance overhead and efficiency
with full duplication and hot-path duplication
•  Efficiency = SDC coverage / Performance overhead

33

Overall SDC Rates: Ranks

34

Training programs Testing programs

Rank correlation* 0.9714 0.8286

P-value** 0.00694 0.0125

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

R
an

k
of

 o
ve

ra
ll

 S
D

C
 r

at
es

by

 e
st

im
at

io
n

Rank of overall SDC rates by fault injection experiment

Training
programs

Tesing
program

Linear
regression
for
training
programs

SDC-Tune Based Detectors:
SDC Coverage

35

SDC coverage ranges from 45% to 87% for the training
programs as overhead goes from 10 to 30%, while for testing
programs it ranges from 39% to 75% for the same overhead.

Full Duplication and Hot Path
Duplication: Overhead

36

Full duplication and hot-path duplication (top 10% of paths)
have high overheads. For full duplication it ranges from 53.7%
to 73.6%, for hot-path duplication it ranges from 43.5 to 57.6%.

Detection Efficiency of
Detectors Vs. Full Duplication

37

Detection efficiency of the detectors normalized to full duplication
is 2.87x, 2.34x and 1.84x at the 10%, 20% and 30% overheads.

Outline

•  Motivation and Goals

•  EDC Causing Error Detection [DSN’13][SELSE’13]

•  SDCTune: Protecting programs from SDCs [CASES’14]

•  Error Resilience Characterization on GPUs [ISPASS’14]

•  Conclusions and Future Work

38

 GPU Error Resilience: Motivation

•  GPUs have traditionally been used for error-resilient workloads
§  E.g. Image Processing

•  GPUs are used in general-purpose applications, i.e. GPGPU
•  Small errors can lead to completely incorrect outputs

39

ATATTTTTTCTTGTT
TTTTATATCCACAAA
CTCTTTTCGTACTTT
TACACAGTATATCGT
GT

Error ATATTTTTTCTTGTT
TTTTATATCCACAAT
CTCTTTTCGTACTTT
TACACAGTATATCGT
GT

Error

GPU Fault Injection: Challenges

•  Challenge 1: Scale of GPGPU applications
•  GPGPU applications consist of thousands of threads, and

injecting sufficient faults in each thread will be very time
consuming

•  Challenge 2: Representativeness
•  Need to execute application on real GPU to get hardware error

detection

•  Need to uniformly sample the execution of the application to
emulate randomly occurring faults

40

Addressing Challenge 1: Scale

•  Choose representative threads to inject faults into

•  Group threads with similar numbers of instructions into
equivalence classes and sample from each class (or from
the most popular thread classes)

•  Hypothesis: Threads that execute similar numbers of
instructions have similar behavior – validated by injection

41

Addressing Challenge 2:
Representativeness

•  We use a source-level debugger for CUDA®
GPGPU applications called CUDA-gdb
•  Advantage: Directly inject into the GPU hardware

•  Disadvantage: Requires source-code information to set
breakpoints for injecting faults

•  Our solution: Single-step the program using CUDA-
gdb and map dynamic instructions to source code

42

Fault injection Methodology:
GPU-Qin

43

Native
execution

Breakpoint hit

Single-step
execution

PC hit

Fault
injection

Single-step
execution

Activation
window

Native
execution

Final result

Experimental Setup

•  NVIDIA® Tesla C 2070/2075

•  12 CUDA benchmarks comprising 15 kernels
•  Rodinia, Parboil and Cuda-SDK benchmark suites

•  Only consider activated faults – faults read by application

•  Outcomes
•  Benign: correct output

•  Crash: hardware exceptions raised by the system

•  Silent Data Corruption (SDC): incorrect output, as obtained by
comparing with golden run of the application

•  Hang: did not finish in considerably longer time

44

Overall Characterization Results

0%
10%
20%
30%
40%
50%

SD
C

 r
at

e

Benchmarks

45

Hypothesis: Algorithmic Categories

•  Resilience correlated with algorithmic properties
•  Mapping to dwarves of parallelism [Berkeley’07]

46

Resilience
Category

Benchmarks Measured SDC Dwarf(s) of
parallelism

Search-based MergeSort 6% Backtrack and
Branch+Bound

Bit-wise Operation HashGPU, AES 25% - 37% Combinational
Logic

Average-out Effect Stencil, MONTE 1% - 5% Structured Grids,
Monte Carlo

Graph Processing BFS 10% Graph Traversal

Linear Algebra Transpose, MAT,
MRI-Q, SCAN-
block, LBM, SAD

15% - 25% Dense Linear
Algebra, Sparse
Linear Algebra,
Structured Grids

Implications of our Results

•  Wide variation in SDC rates across GPGPU applications,
much more than CPU applications
•  Need for application specific fault-tolerance

•  Correlation between algorithm and error resilience
•  Can be used to obtain quick estimates without FI

•  Can be used to customize level of protection provided

47

Outline

•  Motivation and Goals

•  EDC Causing Error Detection [DSN’13][SELSE’13]

•  SDCTune: Protecting programs from SDCs [CASES’14]

•  Error Resilience Characterization on GPUs [ISPASS’14]

•  Conclusions and Future Work

48

Conclusion

•  Selective protection of instructions in applications for both
detecting both EDCs and SDCs
•  Protection configurable based on max performance overhead
•  Can provide high detection coverage for most severe errors

•  GPGPU applications have wider variations in SDC rates
compared to CPU applications
•  Correlation between algorithmic properties and application error

resilience à mapping to dwarves
•  Development of new algorithms for resilient computation

Fault Injectors at http://github.com/DependableSystemsLab
49

Future Work

•  Understanding effect of algorithm on shared memory
parallel applications on the CPU
•  Similar correlations as GPGPU apps [FTXS’14]

•  Effect of compiler optimizations on the error resilience of
applications [AER’13]
•  Identify safe optimizations for given error resilience targets

•  Theoretical foundations of programs’ error resilience
•  PVF analysis combined with heuristics-based analysis

50

