Tolerating Silent Data
Corruption (SDC) causing
Hardware Faults through
Software Techniques

UBC Karthik Pattabiraman
e Anna Thomas, Qining Lu, Jiesheng Wei, Bo Fang
Q" » University of British Columbia (UBC)

IBM Meeta S. Gupta, Jude A. Rivers, IBM Research
Research

A M D n Sudhanva Gurumurthi, AMD Research

My Research

* Building fault-tolerant and secure software systems

e Three areas

« Software resilience techniques [CASES’14][DSN’13][ISPASS’13]
* Web applications’ reliability [ICSE’14][ICSE’14][ESEM’13]
« Smart meter security [HASE’14][WRAITS’12]

» This talk: Software resilience techniques

Motivation: Variations & Errors

* Variation of device times * Feature size Vs MTTU
» Higher spread of device variations * Increase in number of bits
for future generations of technology correlated with decrease in
MTTU of the chip
; 9e+07 - : —— 600
[o 8e+07 B
2 500
7| S 7e407 | ° A
s 6 8 6es07 400 3
e 5 UE3 5e+07 A 300 f;
= 4 4e+07 y
2 S 3e407 200 £
% 2 2 2e+07 1 100
2,1 D 1407 | A 4 . o 0
0 250 150 90 65

1 100 10000 1e+06 1e+08 1e+10 le+12

Number of Devices or Paths or Evenls Chips by Device Feature Size (nm)

Source (CCC study on cross-layer reliability): www.relxlayer.org (2011)

Hardware Errors: “Solutions’

Guard-banding * Duplication
Guard-banding wastes Hardware duplication
power and performance (DMR) can result in 2X
as gap between average slowdown and/or

and worst-case widens energy consumption

due to variations

Guard-band

Average Worst-case

Why Application-level
techniques ?

Appli Level

Oper.

Overheads

Impactful Errors

Our Goal

Detect errors that cause Silent Data Corruption (SDC)
* Wrong results, Error Propagation etc.

Error Detection Coverage vs. Performance Overhead

» Achieve high SDC coverage while incurring low overhead by
selectively protecting program instructions/data

No fault injections in applying to new programs
 Fault injections take significant time and effort

Outline

Motivation and Goals

EDC Causing Error Detection [DSN’13][SELSE’13]
SDCTune: Protecting programs from SDCs [CASES’14]
Error Resilience Characterization on GPUs [ISPASS’14]

Conclusions and Future Work

Soft Computing Applications

» Expected to dominate future workloads [Dubey’07]

Original image (left) versus faulty image from JPEG decoder

8

Egregious Data Corruptions
(EDCs)

» Large or unacceptable deviation in output

&)

Goal

» Detect EDC causing faults

Pre-emptive

Application Execution

/
Selective w

\/
10

Fault model

Transient hardware faults
» Caused by particle strikes, temperature, etc.

* Assume that program data 1s corrupted

Our Fault Model
 Single bit flip, One fault per run
* Processor registers and execution units

* Memory and cache protected with ECC

11

Approach

» Step 1: Separate EDCs from Non-EDCs by fault injections

» Step 2: Heuristics 1dentifying code regions prone to EDC
causing faults

» Step 3: Automated algorithm for detector placement

Isrigg;l ;| Heuristics Algorithm
(Step 1) (Step 2) (Step 3)

12

Initial
Study

Heuristic
S

% Algorithm

Step 1: Initial Study

Monitor

Control/Pointer

Data

» Instrument code
» Fault Injection

Pointer
Control

» Correlation between data type — fault outcome

Control Pointer
Deviation Deviation
Control
Non Pointer Pointer Control
No Deviation No Deviation

N\ /

Pointer Non
Control

Non-Pointer
NonControl

Performed using LLFI [DSN’14]

13

Study S

Initial .
nitia S Heuristic % Algorithm

Data Categorization: Faults

Fault Outcome %

45.00

35.00

30.00

25.00

20.00

Outcome %

15.00

10.00

5.00

0.00

43 %
]

BENIGN
28%

EDC
6%

Non-EDC

ZSOE 43%

B NonPointer NonControl

Pointer Non Control

B Control Non Pointer

B Control Pointer

6%

CRASH

EDC

Non-EDC

BENIGN

High correlation between Control Non-Pointer and EDC/Non-EDC

14

Study S

Initial isti
> GRS %Algorithm

Step 2: Heuristics

void conv422to444 (char *src, char *dst, int height, int width, int
offset) {
for(j=0; j < height; j++){
for(1=0; 1 < width; 1++) {
ml=0<1)?70:1-1

dst[im1] = Clip[(21*src[im1])>>8];
)
if(j + 1 < offset) {
Src += w;
dst += width; }

15

Study S

Initial isti
EEAES Heuristic % P

Step 2: Heuristics

Faults affecting branches with large amount of data within branch

body, has a higher likelihood of resulting in EDC outcomes

void conv422to444 (char *src, char *dst, int height, int width, int
offset) {
for(j=0; j < height; j++){
for(i=0; 1 < width; 1++) {
ml=0<1)?70:1-1

» Fault in offset
dst[im1] = Clip[(21*src[im1])>>8]; [iaaS iy
h
if(j + 1 < offset) {]
SIC += W; ngh EDC
dst += width; } Likelihood

16

Step 2: Heuristics ™~

Faults affecting branches with large amount of data within branch

body, has a higher likelihood of resulting in EDC outcomes

void conv422to444 (char *src, char *dst, int height, int width, int
offset) {

L0 § < height 141 » Fault in
or(j=0; j < height; j It of
for(i=0; i < width; i++) { 11;6511 }(1)

ml=3G<1)?70:1-1 ot

.d.s.t[iml] = Clip[(21*src[im1])>>8];

;
if(j + 1 < offset) {
src += w;

dst += width; }

Low EDC

Likelihood

17

Initial Heuristic
Study

% Algorithm

Step 3: Algorithm

Application Performance Overhead

SourC‘i'COde ¢ Execution Profile
i

Automated Detector Placement Algorithm

{

Data Variables or Locations to Protect

18

Initial Heuristic]
Study >) % Algorithm

Step 3: Algorithm

SApphce&tlodn Performance Overhead
Ourci ode l Execution Profile
EDC :
IR)
Compiler — Ranking > Selecjclon
: Algorithm
Algorithm

Data Variables or Locations to Protect

!

Backward slice replication

19

Experimental Setup

» Six Benchmarks from MediaBench, Parsec Suite
» Fidelity Metric: PSNR, scaled distortion [Misailovic’12]

» Performed fault injections using LLFI [DSN’14]

» 2000 fault injections, one fault per run (1.3% at 95% CI)
» Validated with respect to assembly-level injectors for EDCs

» Measured EDC coverage under varying performance
overhead bounds of 10, 20 and 25%

20

Experimental Framework

Choose

dynamic data
Instance at

random

Inject
Random

Single bit flip

Exception

Crash

Compare
faulty &
fault-free
outcome

Benign

Execute
Application

alue Changg

No Change

EDC

High deviation

Fidelity
Metric

l

Low Deviation

Non-
EDC

21

Coverage Evaluation

Pre-emptive
Detection

100

Average EDC Coverage of 82% versus 56%

under 10 % performance overhead

EDC Coverage (%)

10

Blackscholes X264 Canneal Swaptions JPEG MPEG

Benchmark ' '
enchmarks Higher 1s better

22

Benign+ Non EDC Coverage (%)

(TR = S SR S S S
QO N Oy 0 O

(on B =R =) B v

Coverage Evaluation

Selective

Detection

“'Non-EDC Coverage

M Benign Coverage

|

Blackscholes X264 Canneal Swaptions JPEG MPEG2

Benchmarks .
Lower 1s better

23

Coverage 1n Perspective

EDC EDC Detected
404 % 331%

EDC
0.72 %

CRASH
38.40%
Non-EDC
21.38%

BENIGN
36.19%

BENIGN
36.19%

Our technique detects most EDC causing errors for a
fraction of the cost of full duplication

24

Outline

Motivation and Goals

EDC Causing Error Detection [DSN’13][SELSE’13]
SDCTune: Protecting programs from SDCs [CASES’14]
Error Resilience Characterization on GPUs [ISPASS’14]

Conclusions and Future Work

25

SDCTune: Goals

* Earlier work on EDC causing errors showed feasibility of
selectively protecting critical data

* Can we extend this to SDCs 1n general-purpose applications
which are not as error resilient ?

* Challenge:

* Not feasible to identify SDCs based on amount of data
affected by the fault as was the case with EDCs

* Need for comprehensive model for predicting SDCs based on
static and dynamic program features

26

Main Idea

e Start from “Store” and “Cmp?”’ instructions
propagate backward through data dependencies
-"Store” and “Cmp” are the end of visible data-
dependency chain at the compiler levels

* Predict P(SDC | Store or Cmp)
» Extract the related features by static/dynamic analysis

* Quantify the effects by classification and regression
» Estimate SDC rate of different “Store” and “Cmp” instructions

27

Approach: Overview

Classification

 Classify the stored values and comparison values according to
the extracted features (through static analysis)

* Organize the features as a decision tree with each feature
corresponding to a branch

Regression

* Within a single category, SDC rate may exhibit gradual
correlations with several features

» Use linear regression for the classified groups to estimate the
SDC rate within a node of the tree

28

Approach: Decision Tree

All stored values

m

Addr NoCmp Addr Cmp Cmp NoAddr || NoCmp NoAddr
b\ £\ £~ O\
Not used in Masking | ... /hsCm
operations ResCmp NoAddr NoAd drp

Global IiesCmp Non-Global
NoAddr ResCmp NoAddr |

Accumulative
UnresCmp NoAddr

Example: Linear Regression for a Leaf

PSDCI=—-012+data width+0.878

29

Non-Achmulative
UnresCmp NoAddr

Approach: Instruction Selection

Select instructions for Protected Set
* Knapsack problem: value: estimated P(SDC,I), weight: P(I)
* A set of instructions to protect for a given overhead bound

* Replicate static backward slices of the instructions to protect

Test coverage on training programs

* Measure the coverage for different overhead bounds and tune
the model

* Apply the model to a different set of programs to evaluate it

30

Experimental Methodology

Testing and using phase

Measure real
coverage on

testing
programs

Benchmarks

Training programs

Testing programs

p Descripti Benchmark Prosram | Descrintion | Berchmark
rogram escripuon suite g P suite
IS Integer sorting NAS Lbm Fluid Parboil
LU Linear algebra | SPLASH2 cymamies
' Incar algebra Gzip Compression SPEC
Bzip2 Compression SPEC Large-scale
: Price portfolio Ocean ocean SPLASH
waptions
Swap of swaptions PARSEC movements
Breadth-First :
Molecul
Water © ecu. a SPLASH?2 Bfs search Parboil
dynamics Combinatorial
Conjugate Met optimization SPEC
CG gradient NAS . Quantum
method Libquantum computing SPEC

32

Experiments

» Estimate overall SDC rates using SDCTune and
compare with fault injection experiments

* Measure correlation between predicted and actual

* Measure SDC Coverage of detectors inserted using
SDCTune for different overhead bounds

* Consider 10, 20 and 30% performance overheads

* Compared performance overhead and efficiency
with full duplication and hot-path duplication

 Efficiency = SDC coverage / Performance overhead

33

§ 7 ¢ Training
e 6 programs
2 §5
w» g
§ § 4 B Tesing
4R 3 program
o [P}
5 B2
v :
g 1 — Linear
== 0 regression
for
0 1 2 3 4 5 6 7 training
Rank of overall SDC rates by fault injection experiment programs
Training programs Testing programs
Rank correlation® 0.9714 0.8286

P-value** 0.00694 0.0125

34

SDC-Tune Based Detectors:
SDC Coverage

Training programs

Testing programs
100% = _

90% = Overhead
S 80% 1 bounds
S 70% -
L 60% - N10%
S 50% i
> 40% m20%
Y 30%
= 50% B30%
10%
0% | B Hot-path

SDC coverage ranges from 45% to 87% for the training
programs as overhead goes from 10 to 30%, while for testing
programs it ranges from 39% to 75% for the same overhead.

35

Full Duplication and Hot Path
Duplication: Overhead

Performance overhead

Training programs Testing programs
100%
90%
80%
70%
60%
50%
40% -
30% -
20% -
10% -

|
I
|
I
: ® Full

I duplication

M Hot-path
duplication

Q
SN
|

Q < (G < . QO o (7
O S C AN T R A
¥ RN & o O

(_)s Qo’b N Qo'b
) ('\\Q \:\0 ;00
«(b\ '\Q’%

Full duplication and hot-path duplication (top 10% of paths)
have high overheads. For full duplication it ranges from 53.7%
to 73.6%, for hot-path duplication it ranges from 43.5 to 57.6%.

36

Detection Efficiency of

1Cation

Testing programs

Detectors Vs. Full Dupl

Overhead
bounds

X
o
—

V7227222222222

C I A e it el e T T I Yy SN [—

V7222222222222

ining programs

Tra

MWW S !Mmn NN N O
(Np] < ™ N i o

AJUANIYJH UO013INI(PIZI[BWLION

1cation

Detection efficiency of the detectors normalized to full dupl

1e2 R7~v 2 U and 1 RAx at the 109/

A H.Ulll’

209% and 30% overheads

37

hd o A AALA ALAA L .U LA QAL L1V AU /U, d T /U ALAIA UV /U UVeCLIIVCOAAGUU,.

Outline

Motivation and Goals

EDC Causing Error Detection [DSN’13][SELSE’13]
SDCTune: Protecting programs from SDCs [CASES’14]
Error Resilience Characterization on GPUs [ISPASS’14]

Conclusions and Future Work

38

GPU Error Resilience: Motivation

GPUs have traditionally been used for error-resilient workloads

» E.g. Image Processing

GPUs are used 1n general-purpose applications, 1.e. GPGPU
« Small errors can lead to completely incorrect outputs

ATATTTTTTCTTGTT
TTTTATATCCACAAA
CTCTTTTCGTACTTT
TACACAGTATATCGT
GT

Error >

ATATTTTTTCTTGT
TTTTATATCCACA
CTCTTTTCGTACTTT
TACACAGTATATCGT
GT

39

GPU Fault Injection: Challenges

Challenge 1: Scale of GPGPU applications

 GPGPU applications consist of thousands of threads, and
injecting sufficient faults in each thread will be very time
consuming

Challenge 2: Representativeness

* Need to execute application on real GPU to get hardware error
detection

* Need to uniformly sample the execution of the application to
emulate randomly occurring faults

40

Addressing Challenge 1: Scale

* Choose representative threads to inject faults into

* Group threads with stmilar numbers of instructions into
equivalence classes and sample from each class (or from
the most popular thread classes)

* Hypothesis: Threads that execute similar numbers of
instructions have similar behavior — validated by injection

C Equivalence ()

class 2 Equivalence
class 2

Equivalence class 1

41

Addressing Challenge 2:
Representativeness

* We use a source-level debugger for CUDA®
GPGPU applications called CUDA-gdb

* Advantage: Directly inject into the GPU hardware

* Disadvantage: Requires source-code information to set
breakpoints for injecting faults

* Qur solution: Single-step the program using CUDA.-
gdb and map dynamic instructions to source code

42

Fault injection Methodology:
GPU-Qin

Breakpoint hit PC hit Final result
l | | | |
Native I Single-step I*I Single-step | Native !
execution ‘l’ execution ' I execution ' execution :I,
¢ __ _ ___ '
I |
: Activation
window
Fault

injection

43

Experimental Setup

NVIDIA® Tesla C 2070/2075

12 CUDA benchmarks comprising 15 kernels

 Rodinia, Parboil and Cuda-SDK benchmark suites

Only consider activated faults — faults read by application

Outcomes
Benign: correct output
Crash: hardware exceptions raised by the system

Silent Data Corruption (SDC). incorrect output, as obtained by
comparing with golden run of the application

Hang: did not finish in considerably longer time

44

Overall Characterization Results

Benchmarks

SDC Rates vary significantly across
benchmarks (from 2 to 40%), which is much

higher than in CPU applications (typically
between 5 and 15%

45

Hypothesis: Algorithmic Categories

Resilience Benchmarks Measured SDC Dwarf(s) of

Category parallelism

Search-based MergeSort 6% Backtrack and
Branch+Bound
Bit-wise Operation | HashGPU, AES 25% - 37% Combinational
Logic
Average-out Effect | Stencil, MONTE 1% - 5% Structured Grids,
Monte Carlo
Graph Processing | BFS 10% Graph Traversal
Linear Algebra Transpose, MAT, 15% - 25% Dense Linear
MRI-Q, SCAN- Algebra, Sparse
block, LBM, SAD Linear Algebra,
Structured Grids

46

Implications of our Results

* Wide variation in SDC rates across GPGPU applications,
much more than CPU applications

* Need for application specific fault-tolerance

* Correlation between algorithm and error resilience
* Can be used to obtain quick estimates without FI
* Can be used to customize level of protection provided

47

Outline

Motivation and Goals

EDC Causing Error Detection [DSN’13][SELSE’13]
SDCTune: Protecting programs from SDCs [CASES’14]
Error Resilience Characterization on GPUs [ISPASS’14]

Conclusions and Future Work

48

Conclusion

Selective protection of instructions in applications for both
detecting both EDCs and SDC's

 Protection configurable based on max performance overhead
* Can provide high detection coverage for most severe errors

GPGPU applications have wider variations in SDC rates
compared to CPU applications

* Correlation between algorithmic properties and application error
resilience = mapping to dwarves

* Development of new algorithms for resilient computation

Fault Injectors at http://github.com/DependableSystemsLab

49

Future Work

* Understanding effect of algorithm on shared memory
parallel applications on the CPU

* Similar correlations as GPGPU apps [FTXS’14]

» Effect of compiler optimizations on the error resilience of
applications [AER’13]

» Identify safe optimizations for given error resilience targets

* Theoretical foundations of programs’ error resilience

* PVF analysis combined with heuristics-based analysis

50

