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Abstract—Extreme CMOS technology scaling is causing signifi-
cant concerns in the reliability of computer systems. Intermittent
hardware errors are non-deterministic bursts of errors that occur
in the same physical location. Recent studies have found that 40%
of the processor failures in real-world machines are due to intermit-
tent hardware errors. A study of the effects of intermittent faults on
programs is a critical step in building fault-tolerance techniques
of reasonable accuracy and cost. In this work, we characterize
the impact of intermittent hardware faults in programs using fault-
injection campaigns in a microarchitectural processor simulator.
We find that 80% of the non-benign intermittent hardware errors
activate a hardware trap in the processor, and the remaining 20%
cause silent data corruptions. We have also investigated the pos-
sibility of using the program state at failure time in software-based
diagnosis techniques, and found that much of the erroneous data
is intact and can be used to identify the source of the error.

Index Terms—Intermittent hardware faults, fault propagation, fault
diagnosis, fault injection, fault model.

NOMENCLATURE

tr Intermittent fault length

ta Intermittent fault active duration

tr Intermittent fault inactive duraction
ABBREVIATIONS

CD Crash Distance

IPS Intermittent Propagation Set

MNS Masked Nodes Set

RR Re-used Registers

I INTRODUCTION

Over three decades of continuous shrinking of transistor
sizes has led to tremendous improvements in processor
performance and at the same time to large challenges
in maintaining its reliability. Studies have shown that
future processors will be more susceptible to intermittent
faults and that the rates of these faults will increase due
to technology scaling [1], [2], [3]. A recent study has
found that about 40% of real-world failures in a pro-
cessor are caused by intermittent faults [4]. Intermittent

hardware errors are bursts of non-deterministic errors
that occur at the same location (i.e., microarchitectural
component) [2]. They can occur due to variations in
the manufacturing process [5], in-progress wearout and
manufacturing residues [1], [2], [6], [7].

Fault avoidance techniques mitigate intermittent faults
by minimizing process variations [1], regulating volt-
age [8] or managing temperature [9]. Although such
techniques reduce the base rate of intermittent faults,
many such faults still occur and escape to the soft-
ware [3]. Therefore, we need mechanisms at the software
level to mitigate the impact of intermittent faults through
detection, diagnosis and recovery.

Intermittent faults lie between the extremes of tran-
sient and permanent faults. Transient faults are one-
time events that usually last for one cycle and are
unlikely to recur in the same location. Transient faults
are mainly caused by alpha particles from packaging
material, cosmic rays or thermal neutrons. Permanent
faults are caused by reproducible and irreversible hard-
ware defects that occur indefinitely in the same microar-
chitectural location. Permanent faults are mainly caused
by transistor wearout due to persistent stress conditions
such as extreme temperature. Prior work has analyzed
the effects of transient faults [10], [11], [12] and perma-
nent faults [13], [14] on programs. These analyses played
a vital role in designing fault-tolerance techniques that
mitigate the effects of errors at low performance and area
overheads.

However, intermittent faults are unlike transient faults
in that they recur at the same location and are unlike
permanent faults in that they do not persist indefinitely,
but rather occur non-deterministically. Therefore, it is
not straightforward to apply studies and techniques that
have been designed for permanent and transient faults
to intermittent ones.

In this work, we investigate the main characteristics
of intermittent faults and the implications of such char-
acteristics on error detection, diagnosis and recovery.
Further, we study the impact of intermittent faults on
programs as a first step towards building software-level
mechanisms for isolating the source of intermittent faults
(see Section VII for more details).To the best of our knowl-
edge, ours is the first comprehensive study of intermittent



faults using fault injections and a realistic set of benchmarks.

A hardware fault can affect programs in different
ways. The fault may be benign (changes to program
state are benign), cause silent-data corruption (changes
to program state are erroneous) or lead to a crash (i.e.,
hardware trap). Even if an error does lead to a program
crash, the crash may not occur immediately after the on-
set of the error, but only after some amount of time later.
In the meantime, the error may propagate and corrupt
the program state even more. It is important, in this
context, to ask: (1) What is the fraction of intermittent
faults that lead to program crashes? (2) For the faults
that do lead to crashes, how much do they propagate
within their programs before the crashes? (3) How useful
is the program state at failure time for the software-based
fault-diagnosis techniques?

In this study, we focus on faults that change program
state erroneously and hence ignore inactivated faults and
faults that are activated but are benign. Inactivated and
benign faults may occur in infrequently used locations or
locations of little importance to the program. Therefore,
these faults are likely to have little impact on the proces-
sor’s reliability. Further, we focus on errors that lead to
program crashes in this study because our experiments
indicate that more than 80% of non-benign intermittent
errors result in program crashes. Finally, we focus on
intermittent error diagnosis rather than detection and re-
covery because most diagnosis techniques for hardware
errors assume that the error is reproducible, which does
not apply to intermittent errors.

We answer the questions asked above by subjecting a
few SPEC2006 benchmark programs to a fault-injection
campaign at the microarchitecture level. Ideally, faults
are injected at the logic-level simulations or are triggered
by stressing a physical processor. However, the goal of
our study is to characterize the effects of intermittent
faults on real benchmarks, and the use of such environ-
ments is prohibitively expensive and provides limited
observability in our experiments.

We build our fault-injection tool on the top of a
microarchitectural simulator. Our tool can inject intermit-
tent faults into a variety of microarchitectural locations,
with different lengths, starting times and models. More-
over, our tool facilitates a set of analysis on programs by
supporting detailed program tracing. The contributions
of our work are as follows:

1) Building a fault-injection tool at the microarchi-
tectural level to inject intermittent faults into pro-
grams.

2) Characterizing the impact of intermittent faults
on programs through fault-injection experiments
using the SPEC2006 benchmarks.

3) Studying the relationships between intermittent-
faults parameters such as location and model on
the severity of the fault consequences.

4) Projecting the results of our study on intermittent-
errors detection, diagnosis and recovery (Sec-
tion VII).

The main results of the study are as follows:

o Between 41% and 63% (varied by benchmark) of the
faults we injected led to program crashes. Of the
remaining fault injections, between 22% and 43%
were benign, and only about 14% of injected faults
resulted in silent-data corruption (SDCs).

e 96% of the crash-causing errors lead to program
crash within one hundred thousand dynamic in-
structions.

o 87% of the crash-causing errors corrupt less than 500
data values before program crash.

e 42% of the corrupted data are not masked by other
correct data at program crash.

I RELATED WORK

A survey of previous work on hardware faults character-
ization and tolerance is provided in this section. We find
that research in intermittent errors characterization and
tolerance techniques is still in its infancy. We also find
that software-based techniques are promising, hence this
work is directed toward showing their potential.

II.1 Fault-Characterization Studies

1. Intermittent faults: Pan et al. [15] proposed the In-
termittent Vulnerability Factor (IVF) to characterize the
sensitivities of different microarchitectural units to inter-
mittent faults. IVF is based on the Architectural Vulnera-
bility Factor (AVF) metric, which is an analytical measure
of the vulnerability of microarchitectural units to soft
errors [16]. However, Wang et al. [17] found that the AVF
technique overestimates the vulnerability of units to soft
errors by two to three times compared to an equivalent
fault-injection experiment. Such overestimates can lead
to vastly more conservative designs than necessary, thus
incurring unnecessary power and performance over-
heads. Therefore, we use a fault injection based approach
to study the impact of intermittent faults on processors.

Gracia et al. [18] studied the behavior of intermittent
faults in a VHDL model of a commercial microcontroller
using Bubblesort algorithm. They found that intermittent
fault length! is the most influential variable in error
propagation. However, they did not consider the impact
of intermittent faults on programs executing on the pro-
cessor, which is important for developing fault-tolerance
mechanisms.

In our previous work we performed a preliminary
study of intermittent faults using functional simulation
[19]. We focused on small benchmarks and a very re-
stricted fault model that represent intermittent faults as
bit-flips. Moreover, our study in [19] did not explore
the impact of fault masking on software-based diagnosis
techniques. In a follow-up work, we compared the effect
of transient and intermittent faults on programs [20]. As
in the prior study, we characterized small benchmarks

1. Fault length is the full duration of the fault or ¢;, in Figure 1.



on a microarchitectural simulator using a restricted fault
model.

2. Permanent faults: Li et al. [13] performed a study
similar to ours for permanent faults. They found that
95% of the injected faults can be detected by monitoring
for a hardware trap, hang or excess operating system
calls. The remaining 5% are benign faults that do not
affect the program state. They also found that 86% of the
detected faults can be detected within 100K instructions.

Karimi et al. [14] injected transient and perma-
nent faults into the control logic of an RTL simulator
augmented with a functional simulator. Although their
simulator supports arbitrary fault-starting points and
lengths they did not consider intermittent faults.

3. Transient faults: The effect of transient faults on
programs is a well-studied topic [10], [11], [12]. For
example, Gu et al. [10] conducted massive fault-injection
campaigns into Linux-kernel to study the impact of tran-
sient faults. They found that programs do not necessarily
crash immediately but often continue executing as the
error propagates. They also show that most transient
errors cause a crash within 10 cycles. Further, other
work has evaluated the effects of hardware faults on
software [21], [22]. For example, Huang et al. found that
the impact of a hardware fault depends on the fault
location and time and is software specific.

Summary: Unlike permanent faults, intermittent faults
do not persist indefinitely but rather occur non-
deterministically. Moreover, unlike transient faults, in-
termittent faults tend to recur in the same location.
Therefore, the results of permanent or transient-faults
characterization cannot be generalized to intermittent
faults and a new characterization study is required.

1.2 Fault-Tolerance Techniques

Current fault-diagnosis techniques for intermittent faults
require circuit-level changes [23], special hardware
recorders [24], [25], or periodic testing [7] (such periodic
tests cover only a class of intermittent faults that man-
ifest themselves under reduced frequency guardbands).
All these techniques impose high area or performance
overheads even for fault-free devices. Other mechanisms
such as SWAT by Li et al. [26], and the work by Pel-
legrini and Bertacco [27] are invoked only upon fault
detection (hence, do not result in performance overhead
for fault-free cores). Li et al. [26] diagnosed hardware
faults by monitoring the application for abnormal events
and initiating error diagnosis only upon error detection.
Pellegrini and Bertacco [27] technique monitored the
usage of the processor’s functional units and ran tests
only for the units used by the application. However,
both works focus on permanent hardware faults and
assume that the fault occurs during the testing period.
This assumption does not apply to intermittent faults.
As for intermittent error recovery, Wells et al. [3]
proposed to recover from intermittent errors in software
by suspending the faulty core and using a virtualization

layer to manage over-committed systems. They assumed
that hardware circuits are used to detect intermittent
errors. These circuits incur power and area overheads,
and are not suitable for commodity systems. In our
previous work [28] we evaluated the impact of different
intermittent error recovery scenarios on the processor
performance. These scenarios describe different possible
actions that can be taken when an intermittent error is
detected or if the error leads to a crash. The scenarios are:
(1) restoring program state to the last checkpoint only, (2)
restoring to the last checkpoint in addition to disabling
the faulty microarchitectural unit or (3) restoring to the
last checkpoint in addition to disabling the faulty core.
We found that disabling the faulty microarchitectural
unit results in better performance if the intermittent error
has high frequency, and if it occurs in non-critical units.

The work in this paper is geared towards understand-
ing the propagation of intermittent faults in software
programs, and thus design efficient fault tolerance mech-
anisms for them. To our knowledge, there has been
no prior work on software mechanisms for intermittent
fault tolerance.

Il INTERMITTENT FAULTS: BACKGROUND,
MODELING AND FAULT INJECTION

In this section, we define intermittent faults, discuss
their root causes and rates of occurrence (Section IILI).
We then propose intermittent fault models at the mi-
croarchitecture level (Section IILII). Finally, we build our
fault injection tool based on the microarchitectural fault
models (Section IILII).

.1 Background

Definition We define an intermittent fault’ as one that
appears non-deterministically at the same hardware lo-
cation, and lasts for one or more (but finite number
of) clock cycles. This is consistent with definitions in
prior work [2], [3]. The main characteristic of intermittent
faults that distinguishes them from transient faults is
that they occur repeatedly at the same location, and are
caused by an underlying hardware defect rather than
a one-time event such as a particle strike. However,
intermittent faults appear non-deterministically (unlike
permanent faults) and only under extreme operating
conditions. Similar to Gracia et al. [18], we characterize
an intermittent fault using the following parameters:

o Fault length: the full duration of a fault (¢1).

e Fault active duration: the duration at which the
fault manifests itself to the instructions that use the
defective hardware part (¢4).

2. We follow the standard fault, error, failure terminology in Avizie-
nis et al. [29]. A fault is the physical defect in the device/circuit, an
error is the corruption of program data due to the fault, and a failure
is the program crashing, generating erroneous results or hanging as a
result of the error.



o Fault inactive duration: the duration at which the
fault does not manifest itself to the instructions that
use the defective hardware part (¢).

o Fault location: the physical location of the fault. It
consists of a microarchitectural unit and a bit.

o Fault model: a representation of the fault at the
microarchitecture level. Different models represent
different root causes (Section IILII).

Figure 1 shows an example of an intermittent fault
with the above parameters.
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Fig. 1: The fault model used in this work. ¢, is the fault
length, t 4 is the fault active duration and ¢; is the fault
inactive duration.

Causes The major cause of intermittent faults is device
wearout, i.e., the tendency of solid-state devices to de-
grade with time and stress. Wearout can be accelerated
by aggressive transistor scaling which makes processors
more susceptible to extreme operating condition such as
voltage and temperature fluctuations [1], [5]. Many well
studied transistor failure mechanisms such as dielectric
breakdown, negative bias temperature instability (NBTI),
hot-carrier injection (HCI) and electromigration [5] occur
due to wearout. In-progress wearout faults are typically
intermittent as they depend on the operating conditions
and the circuit inputs. In the long term, these faults may
eventually lead to permanent defects.

Another cause of intermittent faults is manufacturing
defects that escape VLSI testing [2]. Often, deterministic
defects are flushed out during this testing and the ones
that escape are non-deterministic defects, which emerge
as intermittent faults.

Finally, design defects can also lead to intermittent
faults, especially if the defect is triggered under rare sce-
narios or conditions [30]. We do not model design defects
because they do not usually follow specific patterns, i.e.,
each defect affects the processor in a different way.

Table 1 summarizes the major causes of intermittent
faults that we consider in this study.

Occurrence Rates Few field studies have been con-
ducted to monitor intermittent-faults rates. Constanti-
nescu [2] found that 6.2% of the hardware errors in
memory subsystems are intermittent. However, he did
not present any data for processor faults. A recent study
by Nightingale et al. [4] analyzed error logs sent by Mi-
crosoft Windows Error Reporting program from 950,000
personal computers. They found that, of the hardware
errors reported about microprocessors, approximately
39% are intermittent. However, they only consider a
small class of processor errors, and only those that cause
operating-system crashes. As a result, their study is

limited to certain types of intermittent errors that occur
in the field.

IIl.2 Microarchitectural Fault Models

We rely on prior work to build approximate intermittent
fault models at the microarchitecture level. The intermit-
tent faults considered in this work are caused by temper-
ature/voltage fluctuations, wearout and manufacturing
defects. Moreover, the focus of this work is on faults
that occur in the processor. We do not consider errors
that occur in the memory and input/output hierarchy.
Memory and input/output hierarchy errors are usually
tolerated by Error Correcting Codes (ECC) and Cyclic
Redundancy Checks (CRCs).

Modelling intermittent faults at the microarchitectural
level is challenging because we need to abstract the
effects of the faults to the microarchitecture. Unfortu-
nately, to the best of our knowledge, there has not been
prior work in this area. Most prior work that model
in-progress wearout faults, do so at the RTL-level or
gate-levels, where faults manifest themselves as delays
in transistor-switching times [35]. However, the need to
run real workloads and monitor the execution for large
number of cycles makes it impractical for us to use
these low-level simulators. Therefore, we came up with
a microarchitectural fault model in Table 2. We make the
following assumptions in the modeling:

o At any time, a microarchitectural unit may be af-
fected by at most a single intermittent fault. Also
at any time, at most a single microarchitectural unit
may be affected by an intermittent fault. These two
assumptions are justified because intermittent faults
are relatively infrequent compared to the typical
execution time of many applications.

o In-progress wearout effects (Dielectric breakdown,
NBTI, HCI and electromigration) manifest them-
selves as stuck-at last value (Smolens et al. [7]). We
assume that the delay caused by the fault is longer
than a clock period; otherwise it will not affect the
output of a transistor.

o Electromigration faults also manifest themselves as
intermittent stuck-at zero/one and dominant 0/1.
Although these faults occur in interconnects, we as-
sume that they will ultimately lead to similar faults
in the register destinations of the interconnects.

o Manufacturing defects manifest as intermittent
stuck-at zero/one and dominant 0/1 (Gracia et
al. [18]).

.3 Fault Injection Tool

We couple our fault-injection with a simulation envi-
ronment. A key challenge in our study is to find a
simulation environment that is (1) feasible (simulation
finishes in reasonable time), (2) accurate (good repre-
sentation of the actual faults), (3) observable (to moni-
tor the internal program and processor states) and (4)



TABLE 1: Description of different intermittent failure mechanisms.

Failure Cause

Description

Dielectric breakdown

Thin gate oxide results in the gate becoming more vulner-
able to high voltages. Manufacturing traps in these gates
get invariably charged as current flows in the oxide. These
charged traps start conducting large currents with time.
This current leads to thermal damage to the transistor and
creates more traps. Over time, the traps accumulate and
create a conductive path between the transistor metal and
substrate. This path increases leakage current in the transis-
tor and leads to soft gate-oxide breakdown. With persistent
stress conditions more traps formulate, and over time this
conductive path becomes a cross section throughout the
gate and connects current from the substrate to the metal.
This is called hard gate-oxide breakdown [31].

Negative bias temper-
ature instability

Thin gate oxide and high temperatures may result in the
silicon-hydrogen bonds in the interface between the gate
oxide and the substrate to break. This releases hydrogen
ions and the vacant positions in the gate can formulate
holes. These holes change the transistor characteristics by
increasing the threshold voltage, therefore transistor will
get slower over time [32].

Hot carrier injection

Short transistor channel lengths increase the transistor’s
speed but at the same time increase the electrical field in
the channel. With high voltages, this may lead to some
electrons or holes gaining enough kinetic energy to get
injected from the substrate into the gate oxide. This leads
to a degradation in the transistor’s threshold voltage [33].

Electromigration Small wire geometry and high electrical fields may lead the
metal atoms to migrate from one place (which may lead to
open circuit) and pile up in other places (which may lead
to short circuit with other wires) [34].

Manufacturing This includes process, voltage and temperature variations

defects (PVT) [1] and residues in cells [2].

TABLE 2: Intermittent faults” causes and models.

Fault mechanism

Causes Gate-level models

Dielectric breakdown

Infant-mortality
Thin gate oxide
High voltage

Intermittent delay

Thin gate oxide

Microarchitectural models

Intermittent stuck-at-last-value

Negative bias temperature instability

High temperature

Intermittent delay

Intermittent stuck-at-last-value

Hot carrier injection

Short channel length
High Voltage

Intermittent delay

Intermittent stuck-at-last-value

Electromigration

Small wires geometry
High temperature
High current density

Intermittent delay
Intermittent open
Intermittent short

Intermittent stuck-at-last-value
Intermittent stuck-at-zero/one
Dominant-0/1 bridging

Manufacturing defects

Intermittent open
Intermittent short

Intermittent stuck-at-zero/one
Dominant-0/1 bridging




repeatable (to perform replays). In prior work, logic-
level or RTL-level simulations have been used to study
intermittent faults [7], [18]. However, due to the very
detailed simulations, only very small programs can be
used in these simulations. Since the goal of our study
is to characterize real benchmarks (SPEC2006), we use
a relatively fast microarchitectural simulation. At the
same time, we implement approximate fault models
to represent intermittent faults at the microarchitecture
level (see Table 2 for more details about our fault model).

We build our fault-injection tool based on the Sim-
pleScalar simulator (Alpha sim-outorder) [36], [37],
which is a cycle-accurate simulator. This is a detailed mi-
croarchitectural simulator with branch predictor, caches
and external memory. It models an Alpha processor, a
RISC ISA. We choose this simulator because it models
the majority of the microarchitectural components of
interest to our study and is widely used in the com-
puter architecture community. In addition to the features
available in SimpleScalar, we have added the following
functionalities:

Inject intermittent hardware faults at the microarchi-
tecture level. The user can specify the following param-
eters for every fault:

1) Fault start and end cycle.

2) Fault location, which consists of a combination of
a microarchitectural component and a bit position
within the component’s output. The available com-
ponents are (a) the fetch unit, both the fetched
instruction and the PC, (b) the destination register
of the integer ALU, multiplier and divider, the
destination register of the FP adder, multiplier,
divider, comparator, square root, and FP-to-integer
converter, (c) the load-store unit read address, write
address and data, and (d) the load-store queue data
and address.

3) Fault activity and inactivity durations.

4) Fault models which include
one/zero/last-value and Dominant-0/1.

Stuck-at-

Emulate hardware traps. The implemented traps are
divide by zero, data overflow, invalid instruction, invalid
PC, invalid memory address and invalid memory align-
ment. This is required for accurate accounting of number
of program crashes. Basic SimpleScalar does not have
this feature.

Record crash dump file in the event of a crash. This
file includes the contents of the register file, memory
footprint and PC at crash time, hardware-trap type and
crash distance®. Our simulator also records a detailed
trace of the running program. The trace consists of a list
of executed instructions, with the following information
recorded for each instruction: instruction type (unary,
binary, jump, branch, load or store), PC, input registers
values and output registers values.

Replay the execution and analyze the effects of an

3. Crash distance is the number of dynamic instructions that execute
from the start of the error until program crashes.

intermittent error that caused a crash by using a faulty
run and the corresponding replay. The output of this
analysis includes: (1) propagation set, (2) masked nodes
set (MNS) and (3) reused registers (RR)*. Moreover, this
analysis can distinguish between a crash (activation of a
hardware trap), silent data corruptions (erroneous data
in registers and memory when program finishes), and
benign runs (injected faults with no erroneous data).

IV METHODOLOGY

In this section, we first define metrics to quantify the
impact of intermittent faults in programs (Section IV.I).
We then demonstrate the metrics through an example
(Section IV.II).

V.1

A node is a value produced by a dynamic instruction
during program execution. A node can be a data value or
a memory address. Further, a node can be read multiple
times but is written only once during execution.

A faulty run is a program execution during which an
intermittent fault is injected, and activated (i.e., read by
the program).

A replay is a re-run of the instructions that executed
during the faulty run. No faults are injected during the
replay.

A crash node is the node at which a program crashes
due to an intermittent error.

The Crash Distance or C'D is the number of nodes
that are generated by a program from the start of an
intermittent fault until a crash node is reached.

The Intermittent Propagation Set or /PS is the set of
nodes to which an intermittent error propagates until a
crash node is reached.

The Masked Nodes Set or M VS is the set of nodes to
which an intermittent error propagates until a crash node
is reached. However, these nodes contain correct values
because of error masking. Error masking can happen due
to (1) logical instructions, such as AND/OR instructions,
(2) test and set instructions, such as branch if less than
zero instruction (BLTZ) or (3) the fault model does not
change the bit value, e.g. a stuck-at-zero in a bit whose
value is zero.

MNS can be found by comparing the node values in the
IPS in the faulty run with the corresponding values in
the replay. If an erroneous node has the same value in
faulty run as that in the replay, then the erroneous value
has been masked.

The Faulty Registers is the set of registers that have
erroneous values when the program crashes.

The Re-used Registers or RR is the number of reg-
isters that had erroneous values but were overwritten
by correct values before a crash occurs. RR can be
found by RR = |Registers(IPS) — Registers(MNS) —
Registers(FaultyRegisters)|, where Registers(s) means

Terms and Definitions

4. More details are available in Section IV.I.



the set of destination registers used to store s set of
nodes.

IV.2 Example

We demonstrate how to compute the CD, IPS, MNS
and RR of an intermittent error using an example code
fragment shown in Table 3.

The second column of the table shows the node values
that result from executing the corresponding instruction
in a faulty run (the run affected by the error). The third
column shows the node values that result from executing
the corresponding instruction during the replay run
(error-free run). The last column shows the mapping
from instructions to nodes. Note that, for this example
only, we assume a loop-free program and hence there is
a one-to-one mapping between nodes and instructions.

In the example code fragment, elements at indices 15
and 45 of an array (starting at Array_Addr) are loaded
into registers R4 and R5, respectively (node 1, 2, 4, 5).
Then, these two registers are added and the result is
stored in R6 (node 6). An immediate value of 77 is stored
in R3 (node 3). The result in R6 is then logically ANDed
with R3 (node 7). Next, an immediate value of 23 is
stored in R1 (node 8). Finally, R6, which is an index in
the same array, is used to load the corresponding array-
item to R2.

Assume that an intermittent stuck-at-zero error affects
the third bit in the destination register of the first three
instructions in Table 3. This error results in a crash at
node 9 due to invalid memory address. We want to
compute CD, IPS, MNS and RR of this error.

Recall that IPS is the set of nodes to which an in-
termittent error propagates. Next, we will follow the
error propagation for each of the first three erroneous
instructions and add the erroneous nodes that result
from the error propagation to a set that will form IPS. As
for the error that affects node 1, it includes at least the
node at which the error occurs, namely node 1. Node 1
has a successor node 4, node 4 is used to compute node
6. Node 6 is, in turn, used to compute nodes 7 and 9.
Hence, IPS so far is {1, 4, 6, 7,9}. Similarly, we can follow
the propagation of node 2 and find that it manifests the
error to nodes {2,5,6,7,9}. While node 3 propagates to
nodes {3, 7}. Therefore, IPS = {1,2,3,4,5,6,7,9}.

As for CD, it is the number of nodes generated from
the start of the intermittent fault at node 1 until the crash
node 9, i.e.,, CD = 8.

To find the MNS, we compare the values of all nodes
that appear in IPS with the corresponding nodes in
the replay. We find that all nodes have different values
except for node 7, which has the same value in the faulty
run and in the replay run. Hence, the error has been
masked, by logical AND instruction, and M NS = {7}.

To find the RR, we check the destination registers
for nodes that appear in IPS. We find that according
to IPS, R1-7 should include erroneous data. Next, we
check MNS and notice that R7 (node 7) has a masked

Fig. 2: The fault model used in characterizing faults. We
focus on one set of active and inactive durations that
occur within seconds.

error, therefore, R1-6 should include erroneous data.
However, R1 is not in the faulty registers (registers
whose values are erroneous at crash time). Formally,
RR ={1,2,3,4,5,6,7} — {7} — {2,3,4,5,6}| = 1. There-
fore, RR =1.

TABLE 3: Code fragment to illustrate IPS, CD, MNS and
RR computation.

Code fragment Node Node Node
value value No.
at at
faulty | replay
run

mov R1, #15 11 15 1

mov R2, #45 41 45 2

mov R3, #77 73 77 3

1d R4, R1, | 681 10 4

Array_Addr

1d R5, R2, | 504 9 5

Array_Addr

add R6, R5, R4 1185 19 6

and R7, R6, R3 1 1 7

mov R1, #23 23 23 8

1d R2, R6, | CRASH | 950 9

Array_Addr

V EXPERIMENTAL SETUP

We used fault injections at the microarchitecture level
to characterize intermittent faults. In this section, we
describe our experimental setup.

Fault Parameters We follow the fault model described
in the previous section (Section IIlI). However, at the
microarchitecture level, we cannot model the recurrence
of intermittent faults in hours or days because it is
prohibitively expensive to do so. Rather we focus on
one set of active and inactive durations that occur within
seconds (circled and in bold font in Figure 2). As a result,
we choose the parameters in our experiments to capture
a single burst.

Table 4 shows the parameter values we use in our
experiments. Each fault-injection experiment involves
choosing a fault parameter in the specified range based
on uniform distribution. Note that due to the limited
information known about intermittent errors character-
istics, we were not able to find the exact active and
inactive duration. Therefore, we experiment with many



active/inactive durations that range from 5 cycles to
20,000 cycles. We chose these numbers because voltage
fluctuations last from 5 to 30 cycles [38], while tem-
perature fluctuations may last hundreds of thousands
of cycles [9] (voltage and temperature fluctuations are
leading causes of intermittent faults).

Benchmarks: We used 7 integer and 4 FP benchmarks
from the SPEC CPU 2006 suite for our evaluation. We
could not compile the rest of SPEC2006 benchmarks to
run in our Alpha simulator, and hence did not use them.
We did not cherry-pick these benchmarks based on our
results.

Experiment: We used our fault injection tool described
in Section IILIII to conduct our experiments. Our proce-
dure to perform fault characterization has two steps:

() Running benchmarks: For each experiment we
ran a benchmark twice. In the first run we injected an
intermittent fault (faulty run), while in the second run
we did not inject faults, but rather replayed the first
run with the same instruction stream (replay run). For
both runs, the tool collected program traces and the most
recent contents of the register file and memory footprint.

For each benchmark program we injected 3000 faults.
We computed confidence bounds on the results with
95% confidence. Only one fault is injected in each ex-
ecution to ensure controllability. We used the standard
SimpleScalar simulator’s parameters for the processor
and memory configuration (Table 5).

Each benchmark was forwarded for 2 billion instruc-
tions to remove initialization effects. Then, an inter-
mittent fault is injected. After the injection, the tool
ran the benchmark for 1 million instructions®. We did
not run benchmarks to completion (as this is a very
time-consuming process in our tool). We rather relied
on analyzing the trace files of the faulty run and the
corresponding replay to find if a fault results in SDC.

(2) Analyzing runs: Our tool compares and analyzes
trace files, register files and memory footprints collected
in the first step. The purpose of this analysis is to find
how the run terminates (SDC, benign or crash). In case
of a crash the tool finds CD, IPS, MNS and RR values
for the run.

VI REsuULTS

In this section, we present the results of characterizing
intermittent faults on programs by fault injection. We
first study how a program is affected by an intermittent
fault upon termination, by classifying the terminations
into crashes, SDCs and benign terminations. Since pro-
gram crashes are the most common effect of an error, we
dig more into this category by finding the CD and IPS
for the crash-causing errors (Section VLI).

We then attempt to answer the question of whether
the erroneous data in a program are partially erased

5. This number is reasonable because we find that only 2% of the
crash-causing faults have a crash distance of more than one million
dynamic instructions (Section VI).

TABLE 4: Fault-injection parameters.

Fault Parameter

Value/Range

Location-bit

A bit position chosen ran-
domly from 0 to 63 in a
microarchitetural unit.

Location-unit

Fetch Unit (instruction,
PC), integer ALU, multi-
plier, divider, LSU (data,
read address, write ad-
dress), FPU and LSQ
(data, address).

Start cycle

A cycle chosen randomly
from 1 to 1,000,000 cycle.

Length (¢1)

5, 50, 1000, 50,000,
100,000, 500,000 or
1,000,000 cycle.

Activity duration | 5, 50, 100, 500, 10,000 or
(ta) 20,000 cycle.

Inactivity duration | 5, 50, 100, 500, 10,000 or
(tr) 20,000 cycle.
Microarchitectural Stuck-at-one/zero/last-
Model value and Dominant-0/1.

TABLE 5: Simulator configuration parameters.

Configuration Parameter | Value
ALUs/Multipliers/Dividers! from each type
FPUs
Fetch/decode/execute/cominjter cycle
rate
Branch prediction type perfect
Register update unit size | 16

Load-store queue size 8

Register file 32 integer regs,

32 FP regs
Instruction/Data L1 16KB each
L1 hit latency 1 clock cycle
L2 (Unified) 256KB

L2 hit/miss latency 6/18 clock cycles

by correct data at the time of the crash (note that if
erroneous data is completely erased then there will be
no crash). This information is critical for any software-
based technique that diagnoses an error by analyzing the
program crash dump file. This factor is characterized by
the MNS and RR (Section VLII).

Finally, we study the effect of the various intermit-
tent fault parameters on the severity of the error con-
sequences (Section VLIII). These parameters are fault
length, fault model and fault location (Section IILI).

VI.1 Impact of Intermittent Faults on How Programs
Terminate, CDs and IPSs

In this experiment we injected 3000 faults in each
benchmark, one at a time, using the parameters in



Table 4.

Program terminations: We find that 73% of the in-
jected faults are activated (not shown in figures). An
activated fault means that the faulty location was used
by the program. Inactivated faults happen due to faults
injected in bits that are not used or faults that do not
change the bit’s value. We do not consider inactivated
faults in computing the percentages below - this is stan-
dard practice in fault injection studies. Note that other
studies of transient faults [10] and permanent faults [13]
have also found that many faults are not activated.

Out of the activated faults (Figure 3), an average of
53% of the errors lead to program crash, while 14%
lead to SDC and 33% of the faults were benign (i.e.,
had no effect on the program). In other words, of the
intermittent faults that are non-benign (i.e., 67% of total
faults), 79% result in a program crash. Thus, a program
crash is the dominant effect of activated intermittent faults.
This motivates us to focus on crash-causing faults for the
rest of this section.

Crash mSDC m Benign

100% -
90% -
80% -
70% -
60% -
50% -

40% -
30% - —

20% +— —
10% —

0% S
mcf gcc

T T T d

bzip2 astar perlbench dealll soplex

Fig. 3: Intermittent fault impact on how programs termi-
nate. The results are obtained with confidence interval of
95% and error margin of £4% for crashes, £2% for SDCs
and +4%for benign runs.

Crash distances: Our results show (Figure 4) that
an average of 50% of the injected faults crash within
100 dynamic instructions from the start of the error,
22% crash between 100 and 1,000 dynamic instructions,
24% between 1,000 and 100,000 dynamic instructions,
2% crash between 100,000 and 1,000,000 dynamic in-
structions and the remaining 2% crash after 1,000,000
dynamic instructions. These results show that the dominant
effect of an intermittent error is to cause a program crash soon
after the error occurrence.

Cardinality of the Intermittent Propagation Set (IPS):
The IPS cardinality corresponds to the number of po-
tentially corrupted nodes in the program, which in
turn points to the severity of the failure. We plot the
cardinalities of the IPS in Figure 5. We find that an
average of 68% of the crashes have IPS cardinalities of
less than 100 nodes, 19% have IPS cardinalities between
100-500 nodes, 5% have IPS cardinalities between 500-
1,000 nodes and the remaining 8% crash after corrupting
more than 1,000 nodes in the program. Therefore, the

Crash Distance  w 51000000

m<1000000 W <100000 <1000  W<100
100% -
90%
80% -
70% -
60% -
50% - —
40% -
30% |
20%
10%

0%

mcf gee  bzip2  astar  perl.

Fig. 4: Crash-distance
intermittent faults.

dealll soplex sjeng hmmer milc  |bm

ranges for crash-causing-

majority of the crash-causing intermittent errors cause
limited change to the internal state of program. This is
because of their relatively short crash distances as can
be seen above.

Card. of Intermittent Propagation Set m >10000

H<10000  m<1000 <500 m<100

mcf gee bzip2  astar  perl.  dealll hmmer  milc Ibm

Fig. 5: IPS-cardinality
intermittent faults.
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Summary: We find that the majority of intermittent
errors that are activated, cause the program to crash.
However, most program crashes take place soon after the
error occurrence and there is limited error propagation
before the crash. The impact of this behavior on fault
tolerance techniques in discussed in Section VII.

V1.2 Impact of Error Masking

As we show in Section VII, software-based fault diag-
nosis techniques rely (completely or partially) on the
failure dump or the state of the program at the time
of crash/error detection to learn about what caused the
error and to find the best way to recover from that error®.
We refer to the traces left by the error on the program
state as “clues”. In this subsection, we quantify how
many clues are erased prior to the program crash due
to masking (MNS) and re-using registers (RR). Note that
RR and MNS do not include the faulty node itself - refer
to Section IV.I for more details.

6. Software-based diagnosis techniques can also collect data about
programs during program execution, we do not cover dynamically
collected data as it is technique dependent.



Re-used registers: We study the number of re-used
registers at the time the program crashes, regardless of
whether the error propagated other registers before the
register was overwritten. For example, if a faulty register
#3 is used to update register #12 before it is overwritten
with correct data, then we count it as re-used register.
The results are shown in Figure 6.

u CorrectRegs FaultyRegs M Re-usedRegs

80%

hmmer  milc Ibm

mcf gee bzip2

astar perlbench dealll  soplex sjeng

Fig. 6: Distribution of number of correct, faulty and re-
used registers at crash time. The results are obtained
with confidence interval of 95% and error margin of +3%
for correct registers, +2% for re-used registers and £2%
for faulty registers.

We find that, on average, 14% of registers are re-
used, 12% of the registers are faulty because of error
propagation, and the remaining 74% of the registers
are not modified by the error. Therefore, out of the
registers that store erroneous data at some point during
program execution, 54% are overwritten with correct
data, and the remaining 46% have erroneous data at
crash time. These results can be explained by the short
crash distances observed in Figure 4, which implies that
programs affected by intermittent errors do not execute
long enough after the error occurrence to overwrite a
large number of registers.

Masked nodes set: On average, 58% of erroneous
nodes are masked and the remaining 42% of nodes will
contain erroneous data at crash time (Figure 7). As we
mentioned in Section IV.I, nodes masking occurs due to
(1) logical instructions, such as AND/OR instructions,
(2) test and set instructions, such as branch if less than
zero instruction (BLTZ) or (3) the fault model does not
change the bit value, e.g. a stuck-at-zero in a bit whose
value is zero. Although the majority of the erroneous
nodes are masked by the time the program crashes, the
absolute number of nodes that are not masked in any
run is 60, on average. Therefore, with careful design,
software-based diagnosis technique may still be able to
use erroneous data to tolerate faults with reasonable
accuracy.

Summary: We find that 46% of the erroneous registers
are not overwritten with correct data, and 42% of the
erroneous nodes are not masked. Therefore, much of
the data corrupted in a crashed program is intact and
software-based diagnosis approaches are feasible. Nev-
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Fig. 7: Distribution of number of masked and non-
masked nodes at crash time. The results are obtained
with confidence interval of 95% and error margin of
£3%.

ertheless, these approaches should be designed carefully
to accommodate for the lost “error clues” on the program
final state before crash.

V1.3 Impact of Intermittent Fault Properties on the
Severity of the Faults

In this subsection, we study the relationships between
the intermittent fault length, model and location on the
way a program terminates. Since the observations are
similar across all benchmarks, in this section we focus
on one SPEC2006 benchmark, namely astar, to illustrate
these differences.

Fault length: As for the fault length impact (Figure
8), we plot the same data that we collected in the
previous subsection but we classify it according to the
fault length. We note that short faults of 50 cycles lead
to small percentage of crashes (34%). The percentage
of crashes increases with longer errors until it reaches
a threshold of 60% at error length of 50,000 and does
not increase afterwards. This implies that the longer
the error, the more nodes that are affected by it and
the sooner the program crashes until the error length
reaches a threshold. After the threshold an intermittent
fault behaves more like a permanent fault irrespective
of how much longer the fault lasts. We find that
the increase in crashes saturated beyond a certain
error length due to (1) errors injected into less critical
locations, such as infrequently used entries in the
load-store queue and (2) error models that are less
likely to change the injected bit (e.g., stuck-at-zero).

Fault model: In Figure 9, we plot the same data
we collected in the previous subsection, but this time
we classify it according to the fault model used. Our
data show how the percentages of crashes, SDCs and
benign runs vary with the fault model. We do not see
a significant difference in number of crashes across the
different models, except in two cases. The stuck-at-one
and last-value models have relatively higher percentage
of crashes ( 67%). This is because these two models are
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Fig. 8: Effect of intermittent fault length on how pro-
grams terminate.

more likely to change the injected bit. Note that unused
bits have zero by default. Therefore, the stuck-at-one
fault model will flip the unused bit, while stuck-at-last
value will prevent updates to the bit if it is either zero
or one.
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Fig. 9: Effect of intermittent fault model on how pro-
grams terminate.

Fault location: We classify the fault injection data we
collected in the previous sub-section according to the
fault location. In general, the location that is used more
frequently in a benchmark will be the most vulnerable
unit for that particular benchmark. For example, if the
benchmark is memory-intensive, the LSU will be one of
the critical units for that benchmark. However, we find
that some locations are vulnerable for all benchmarks.
We report results for one integer benchmark ( astar,
Figure 10) and one FP benchmark ( dealll, Figure 11).
Other integer and FP benchmarks show similar behavior
to the one described above.

In Figures 10 and 11, we only show the activated faults
for the locations that result in program crashes. Locations
that are not depicted (e.g., FP-to-Integer converter) did
not lead to significant number of crashes because these
locations generate values that are not critical in programs
or they did not lead to activated faults due to very
infrequent use.

Our data shows that the Fetch-Inst location results in
relatively more crashes than other locations for both
integer and FP benchmarks (82%, on average). Moreover,
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although FP benchmarks use the FPU unit heavily, most
faults injected into the FP units result in benign faults.
This is due to application masking which includes faults
injected into bits that are not used by the application,
especially the higher bits of a 64-bit registers and faults
injected into registers used in evaluating logical opera-
tions. This result is consistent with the observation made
by Li et al. [13], who reported 44% benign faults when
permanent faults are injected into FP units.
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Fig. 10: Effect of intermittent fault location on how
integer programs terminate ( astar in this figure).
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Fig. 11: Effect of intermittent fault location on how FP
programs terminate ( dealll in this figure).

Summary: We find that the percentage of crashes is
sensitive to the intermittent fault length and location,
but not significantly to the fault model used. Increasing
the fault length causes an increase in the percentage of
crashes until a certain threshold fault length, beyond
which the percentage of crashes saturates. The impact
of the fault model and the fault location is largely
determined by how much corruption the corresponding
model causes (stuck-at-one causes more corruption than
stuck-at-zero, for example) and the criticality of the
location at which the fault occurs (IntALU causes more
crashes than LSQ-PC, for example).

VIl DiISCUSSION

Our goal in this work is to study the usefulness
of software-based techniques to diagnose and recover
from intermittent hardware errors. While hardware tech-
niques are transparent to the software, they have the
following disadvantages:



1) Incur considerable performance or power over-
heads. For example, periodic testing techniques [7],
[39], [40] can diagnose permanent and some types
of intermittent faults caused by wearout. However,
they incur high performance overhead even for
fault-free cores, as the processor needs to be halted
while the tests are executed (e.g., Constantinides et
al. [40] report overheads of 30% for running online
tests).

2) May initiate fault tolerance for faults that do not
impact the application. For example, periodic test-
ing and built-in-self-test [41] techniques examine
all parts of the processor, even those parts that are
rarely or never used by applications.

3) Typically do not support intermittent errors, which
are non-deterministic in nature, and hence not
easily reproducible.

Thus, there is a compelling need to develop inter-
mittent fault tolerance techniques at the software level
to complement existing hardware techniques. Software
techniques have the following advantages: (1) work
for non-deterministic faults, (2) do not require special
hardware support, (3) do not run extra tests on the
faulty processor (however, software-based techniques
will require logging of the processor state, which incurs
overhead), and (4) take into account the characteristics
of the application, to only tolerate faults that affect the
application. This is why we need software-level charac-
terization of intermittent faults, as this paper has done.

We discuss below the impact of our characterization
on software-based detection, diagnosis and recovery
techniques. We also consider the impact of the sensitivity
study.

Detection: Software-based detection techniques re-
quire careful placement of error detectors to prevent
error propagation in programs. Our findings suggest
that such techniques can be efficient because only 4%
of intermittent errors propagate extensively (beyond one
hundred thousand instructions) and hence require spe-
cialized detection techniques. However, since the IPS
cardinality is less than 500 data values for 88% of the
crash-causing errors, one should carefully place error de-
tectors to cover the critical error propagation paths [42].
This requires analysis of the error propagation paths
in the application. Software-anomaly based detection
mechanisms that monitor hardware traps as indications
of errors have been proposed for permanent errors [13].
Our results suggest that they would likely be effective
for intermittent faults too, because the majority of such
faults result in hardware traps or exceptions.

Diagnosis: Software diagnosis techniques aim to iden-
tify the fault-prone microarchitectural unit by analyzing
the crash dump files caused by a fault [43]. For diagnosis
to be efficient, it is important that the fault has limited
propagation before causing programs to fail, and that
there is sufficient information available in the crash
dump file about the fault. Software-based diagnosis tech-
niques can be efficient for intermittent faults because (1)
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the propagation sets for intermittent errors are limited to
a few hundreds of dynamic instructions, (2) about 42%
of the erroneous data is not masked, and about 46% of
the erroneous registers are not overwritten by correct
data. This means that many error “clues” that can be
found on the program state are intact and can be used in
isolating the defective microarchitectural part. However,
more work is needed to learn more about how much of
the microprocessor state is observable at the software-
level and which parts of the processor can be diagnosed
using such high-level software-based techniques.

Recovery: Checkpointing is a commonly used tech-
nique for recovering from transient faults. For check-
pointing to be effective, it is important that errors cause
programs to crash quickly, as otherwise, the error may
propagate to a checkpoint and corrupt it. This would
render the recovery process ineffective. Our results show
that checkpointing techniques that gather checkpoints on
the order of a few hundreds of thousands of instructions
will be effective in recovering from intermittent errors.
This is because the crash distances of such errors are
less than a few hundreds of thousands of instructions
and hence the error is unlikely to corrupt a checkpoint.
Unlike transient faults, intermittent faults are likely to
recur at the same microarchitectural location, and hence
we need to reconfigure the processor around the faulty
microarchitectural unit after restoring the program to
the last stored checkpoint. We have shown in our previ-
ous study [28] that diagnosing and disabling the fault-
prone microarchitectural component will result in higher
performance than disabling the entire fault-prone core.
Therefore, it is important to accurately diagnose the
intermittent error after its occurrence and couple the
checkpointing technique with fine-grained reconfigura-
tion around the microarchitectural unit that caused the
fault.

Sensitivity: In the sensitivity study, we found that
both the intermittent fault length and location affect the
percentage of faults that result in crashes. In particular,
the processor’s front-end is the most vulnerable part
of the processor for both integer and FP benchmarks.
Therefore, the processor designer can reduce the number
of crashes that are caused by intermittent faults by hard-
ening the front-end components (using larger transistors,
for example). Further, errors in the LSU/LSQ affect the
memory addresses used to read/write data, and hence
this unit is vulnerable to intermittent faults and should
be protected as well.

Moreover, we found that short faults lead to fewer
crashes than longer ones. However, short faults may
become longer if the extreme operating condition persist.
Therefore, robust error detection techniques for short
faults are necessary to avoid data corruption that would
happen when the error becomes longer. On the other
hand, if the processor is used for non-critical tasks and
the application can tolerate limited data corruption, a
short intermittent fault can be ignored (when a crash
occurs, the program restored is to the last checkpoint)



until the error progresses to permanent one.

VIII CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the impact of intermittent-
hardware faults on programs through fault-injection
experiments by monitoring how the injected programs
terminate and measuring the crash distance and the
error propagation for the failure (i.e., crash) causing
errors. These factors are important because the further
the point of failure is from the error origin and the
more the error propagates, the more difficult it is to
tolerate such an error. We find that the majority of
the non-benign intermittent faults cause programs
to crash. Further, the crash occurs within a hundred
thousand dynamic instructions of the fault start for
96% of the crash-causing faults; hence large crash
distances are infrequent. Finally, the number of dynamic
data values corrupted by intermittent faults is less than
500 data values for about 88% of the crash-causing faults.

With the goal of examining the feasibility of software-
based fault tolerance mechanisms, we study the useful-
ness of program’s register file and memory footprint
at crash-time in diagnosing intermittent errors. We ac-
complish this by measuring two parameters for each
crash-causing error: number of erroneous data values
masked by instructions and number of erroneous regis-
ters overwritten with correct values prior to crash. This
is important because the more erroneous data values
(or registers) that are masked (or overwritten) before
the crash, the smaller the number of “clues” available
about the error, and hence the higher the inaccuracy of
software-based diagnosis techniques. Our results suggest
that software-based diagnosis and recovery techniques
can be efficient for intermittent faults.

As future work, we plan to build and evaluate
software-based techniques for diagnosing and recover-
ing from intermittent hardware faults. We also plan to
extend our fault-injection mechanism to model other
kinds of intermittent faults such as those caused by
design errors. Finally, we will investigate the design
of hardware-based mechanisms to support application-
specific fault-tolerance for intermittent faults.
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