
Failure Analysis of Jobs in Compute Clouds: A
Google Cluster Case Study

Xin Chen⇤, Charng-Da Lu† and Karthik Pattabiraman⇤
⇤Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Email: {xinchen, karthikp}@ece.ubc.ca
†Unaffiliated, New York, USA.
Email: charngdalu@yahoo.com

Abstract—In this paper, we analyze a workload trace from the

Google cloud cluster and characterize the observed failures. The

goal of our work is to improve the understanding of failures in

compute clouds. We present the statistical properties of job and

task failures, and attempt to correlate them with key scheduling

constraints, node operations, and attributes of users in the cloud.

We also explore the potential for early failure prediction, and

anomaly detection for the jobs.

Based on our results, we speculate that there are many oppor-

tunities to enhance the reliability of the applications running in

the cloud, such as pro-active maintenance of nodes or limiting

job resubmissions. We further find that resource usage patterns

of the jobs can be leveraged by failure prediction techniques.

Finally, we find that the termination statuses of jobs and tasks

can be clustered into six dominant categories based on the user

profiles.

Index Terms—Job failure, distributions, failure prediction,

cloud reliability, anomaly detection

I. INTRODUCTION

Cloud systems experience frequent failures due to their
large-scale, heterogeneity and distributed nature. Node failures
in the cloud may cause the jobs running on them to abort [1].
One of the main challenges in cloud systems is to ensure
the reliability of job execution in the presence of failures [2].
Cloud applications may span thousands of nodes and run for
a long time before being aborted, which leads to the wastage
of energy and other resources.

In this paper, we conduct a failure analysis of the Google
cluster workload traces [3], which contain the workload mea-
surements of more than 12,000 nodes during a one month
period. The jobs in the trace range from single-task jobs to
multi-task computations [4], [5]. In particular, our goal is to
understand the characteristics of job failures in order to im-
prove the dependability of the underlying cloud infrastructure
from the perspective of cloud providers. Further, we want
to explore the potential for failure prediction and anomaly
detection in cloud applications in order to avoid wastage of
resources by jobs that ultimately fail. Finally, we would like to
understand the effect of job scheduling and node maintenance
on the failures.

Many prior studies on large-scale system reliability focus
on hardware/software failures and their causes [6], [7], [8].
While these are valuable, they do not provide much insight
into failures experienced by end users. Application failures

have been analyzed in popular systems such as Hadoop [9],
[10] and distributed scientific workflows on Amazon EC2 [11].
However, these studies are limited to MapReduce or scientific
computations, and are difficult to extrapolate to generic clouds
such as the Google cluster. In comparison, our work focuses
on failure characteristics from the jobs’ perspective, and covers
broader classes of jobs than MapReduce or scientific computa-
tions. To the best of our knowledge, we are the first to perform
failure characterization in a large-scale, generic cloud system,
from the job and user perspectives.

The reliability of cloud applications can be affected by the
job type, cloud configurations, and the dynamic states of the
cloud system. We consider the following four aspects in our
analysis of cloud failures: (1) application factors, which are
the programs, number of tasks in a job, and the job owners;
(2) cloud factors, which are node failures and maintenances;
(3) configurations, which include scheduling constraints, and
the policy on how many times a failed task can be resubmitted;
(4) real-time execution status, which means runtime CPU and
memory resource usage. While the Google dataset provides
comprehensive logs of each job’s resource consumption and
failures in the month-long period, it hides specifics about the
nature of the job, as well as the physical nodes that the jobs
are running on (due to privacy reasons). Therefore, we cannot
factor these into our analysis.

We make the following contributions in this paper:
• We analyze the basic patterns and statistical properties of

job failures in the Google dataset.
• We correlate the termination of jobs and tasks with

job and cloud attributes, such as scheduling constraints,
configurations and nodes used. The results show how
application failures are affected by job parameters and
configurations.

• We identify differences in resource usage between failed
and successful jobs with different scheduling constraints
and number of tasks. We then investigate how early in
the job lifetime such differences manifest, to aid failure
prediction techniques.

• We perform clustering on user attributes to understand
user-specific job and task failures. We also explore the
attributes of users that may be correlated with failures.

• We discuss the implications of our findings on future

cloud systems that have similar characteristics as the
Google cluster.

Our major findings are as follows:
• In the Google cluster workload traces, there is a signif-

icant consumption of resources due to failed and killed
jobs.

• Job and task failures manifest differently with respect to
job and cloud attributes.

– Task resubmissions in failed jobs are much higher
than those in finished jobs on average.

– Both low and high priority jobs experience on aver-
age 3 times as many failures as other priority jobs.

– Node maintenance and updates are correlated with
smaller ratios of task failures on nodes.

• Differences in resource consumption exist between task
submissions of failed and finished jobs. For jobs with
multiple task submissions, at least 34.8% of the jobs
have significant differences between the resource con-
sumptions of failed and finished tasks. In most cases, the
differences exist just halfway into a job’s execution (for
long running jobs).

• User profiles can be clustered into 6 dominant groups,
and they are correlated with job failures.

Our study finds that there is significant wastage of resources
in the Google cluster due to failed jobs. We also find that there
are many opportunities to save resources in the cluster, if that
is a desired goal. For example, failure prediction techniques
can yield great benefit as they can lead to early termination
of jobs (excluding those for debug/test) that are likely to fail
ultimately. We find that such prediction schemes are not only
feasible, but can yield high accuracy even just halfway into a
job’s execution (for long running jobs). We further find that
user attributes play a major role in the overall reliability of a
job, and that users can be clustered into a handful of dominant
classes, which can be used for anomaly detection.

The rest of this paper is organized as follows. §II describes
the Google cluster dataset. §III characterizes the failures from
many perspectives, followed by a detailed discussions of
implications and limits of this study in §IV. The related work
is in §V and the paper concludes in §VI.

II. BACKGROUND

A. Google Dataset
The Google cluster workload traces [3] are one of the first

and few publicly available traces from large cloud systems
(about 12,500 compute nodes over 29 days). The dataset con-
tains the following periodically profiled resource usage met-
rics: CPU usage (average and peak), memory usage (canonical,
assigned, and peak), page cache (unmapped and total), disk I/O
time (current and peak), disk usage, cycles per instruction, and
memory accesses per instruction. All these measurements are
normalized by the respective maximum values measured.

In the trace, every job contains the job name, its resource
requirements and the number of tasks in it. A job consists
of at least one task, and each task is also constrained by

scheduling and resource usage limits. These constraints and
limits are present in the trace. The resource isolation and
usage measurement are achieved by setting up separate Linux
containers (LXC) for different tasks. Around 670,000 jobs and
26 million tasks are logged in the trace.

B. Job/Task Termination Statuses

A job or task has several possible termination statuses
(called “event types” in the trace.) These are: (1) evicted, (2)
killed, (3) failed, (4) finished, and (5) lost. Evicted means
that the system is unable to satisfy the job or task’s resource
requirements, and hence the job or task is not scheduled. Killed
means that the job or task was killed either by the user or by
the system administrator, or the job(s) on which it is dependent
was terminated abnormally. Failed means that the job or task
did not finish execution, and was terminated by an exception or
abnormal condition. Finished means the job or task completed
execution successfully. Lost means that the record indicating
the job termination is missing. Among the above five types,
finished jobs are the most frequent (57.6%), followed by killed
(40.7%), and failed jobs (1.7%). A job being evicted or lost
is a very rare event. Therefore, we focus mainly on finished,
killed and failed jobs in this study.

In the paper, we consider three kinds of failures, as shown
in Table I. Figure 1 shows the number of job failures over
the one month period of the trace. An average of 14.6 jobs
fail in a hour, and the minimum and maximum are 0 and 177
jobs, respectively. There is also a rough weekly pattern in the
job failures, with failures dipping roughly in weekly intervals,
probably due to weekly clean-ups.

Fig. 1: Failed jobs in the period of one month

TABLE I: Definitions of job, task and node failures.

Failures Trace
Event

Description

Job
failure

Job fail
event

A job is descheduled due to task failures.

Task
failure

Task fail
event

A task is descheduled due to a task failure (e.g.
exceptions or software bugs).

Node
failure

Machine
remove
event

A node failure leads to the machine being
removed from the cluster. Node failures are
clubbed together with node maintenance, as they
can not be distinguished in the trace.

C. Trace processing

The traces are originally stored in comma separated value
files of approximate 200GB, and the data attributes are rep-
resented by key-value pairs. We read in these traces into
a MySQL database for ease of analysis. Due to the large
scale involved, we deploy databases on Amazon Web Ser-
vices (AWS) [12] for queries, and leverage machine learning
packages in Python [13] for the analysis.

III. CHARACTERIZATION OF FAILURES

In this section we first characterize the durations of failed,
finished and killed jobs, followed by the distribution of job re-
source consumptions. We then study the effects of scheduling
constraints on the jobs, and the effect of node maintenance/re-
moval on failures. Further, we investigate correlations between
resource usage and the termination status (success/failure) of
a job. Finally, we examine similarities among users and user-
centric failure characteristics.

A. Basic Failure Distributions

We observe that the job durations of failed, finished and
killed jobs follow a heavy-tailed distribution as shown in
Figure 2. The majority of jobs terminate within 2000 seconds
from start (less than an hour), while the longest failed job
lasts for 25 days (almost 29 days including the time to be
scheduled.) In addition to the terminated jobs, around 0.5% of
the jobs do not terminate in the trace period, and they are not
considered in this study.

Among distributions we attempted to fit, we find that the
log-normal distribution has the best fit on all the three job ter-
mination types, and the parameters are shown in Table II. Our
goodness of fit criterion is the Kolmogorov-Smirnov (KS) test.
Based on this fitting, we find that finished jobs have shorter
lengths than both failed jobs and killed jobs, on average. We
speculate three possible reasons for this phenomenon. First,
many short jobs are consecutively executed by a few users, and
the vast majority of these jobs finish successfully. Second, jobs
may hang/freeze and thus get killed after running out of the
allocated time or resources. Third, some debug/test jobs can
run for a long time before being killed during the development
cycle.

Fig. 2: Distribution of duration of failed, finished and killed jobs

TABLE II: Fitting of log-normal distribution on job duration. µ and �
are the parameters in log-normal distribution, and KS is the maximal
distance between distributions in the test.

Type Mean Duration (Hour) µ � KS
Failed 2.297 -2.785 1.593 0.06
Finished 0.181 -3.454 1.555 0.11
Killed 1.609 -2.557 1.297 0.06

We also plot the CPU/memory usage of jobs in Figure 3.
They also have a heavy-tailed distribution, and follow a log-
normal distribution with parameters in Table III. The average
CPU and memory consumptions of finished jobs (per second)
are around half of those in failed and killed jobs. Overall,
the amount of CPU and memory consumed by failed jobs are
2.5 and 6.6 times those consumed by finished jobs. Therefore,
we posit that effective failure prediction strategies to prevent
resource wastage are needed.

Fig. 3: Distribution of normalized CPU/memory usage of failed,
finished and killed jobs. The original units of CPU and memory are
core-seconds/second and bytes. Both measurements are normalized
by the respective maximal measured value.

TABLE III: Fitting of log-normal distribution on CPU/memory usage.

Type Mean Resources µ � KS
Failed (CPU) 0.0080 -6.018 1.426 0.059
Finished (CPU) 0.0047 -6.890 2.088 0.049
Killed (CPU) 0.0089 -6.247 2.149 0.079
Failed (memory) 0.0044 -7.203 1.751 0.118
Finished (memory) 0.0017 -7.702 1.682 0.381*

Killed (memory) 0.0035 -6.878 1.209 0.078
* 0.381 is KS value for the entire distribution, while KS value

decreases to 0.082 after removing the biased beginning part.

B. Task Resubmissions

During the life cycle of a job, its tasks can be resubmitted
and rescheduled multiple times after abnormal terminations,
i.e. failures, evictions or being killed. A task can also be re-
executed if the user so chooses. We examine the effects of task
resubmission on the termination statues of tasks and jobs.

In the entire dataset, the ratios of jobs with tasks that execute
multiple times for failed, finished and killed jobs are 35.8%,
0.9%, 14.1%, respectively. As expected this ratio is low for
finished jobs, which rarely have failing tasks and hence do

not need to reexecute them. Across all categories, we observe
that around 76% of the jobs have tasks re-executed at most 4
times. Some systems such as Hadoop MapReduce have limits
on the number of task resubmissions, or the user sets a limit on
the resubmissions. However, we speculate that in the Google
cluster, there is no system-wide limit on resubmission, nor are
users mandated to set such limits, and hence it is possible for
resubmitted tasks to fail over and over again.

Fig. 4: Numbers of failed, finished and killed jobs with task re-
executions. The x-axis is the maximum resubmission time of all tasks
in a jobs. A value of 1 means that all tasks in the job are executed
once. The y-axis is the cumulative distribution function (CDF).

Figure 4 shows the CDF of task resubmissions on single-
task and multi-task jobs for each of the job types. The
percentages of failed, finished and killed jobs that consists
of multiple tasks (i.e., multi-task jobs) are 17.8%, 4.24%
and 53.3%, respectively. In terms of the average number of
task resubmissions, the finished jobs have the smallest value,
followed by killed jobs, and failed jobs. In each category of
jobs, we observe that multi-task jobs have more average re-
submissions than their single-task counterparts. Besides, only
0.3% of finished jobs submit tasks more than 10 times, while
around 9.5% of failed jobs submit tasks more than 10 times.
We also observe that the maximum of task resubmissions in
a killed job can be as high as 9062 times (single-task) and
1417 times in (multi-task). In comparison, the maximum of
task resubmissions in failed and finished jobs are around 400
and 150 respectively. We speculate that such excessive task re-
executions are not useful (except when debugging or testing),
and lengthy failed or killed jobs can be preemptively stopped
before more resources are wasted.

C. Scheduling Constraints

We also examine jobs by the scheduling criteria and
constraints as they may serve different purposes and have
divergent behaviours. Jobs and tasks are assigned scheduling
classes based on the urgency, the latency sensitivity, and the
resource access policies. Production jobs and latency sensitive
jobs are likely to be in a higher scheduling class, while non-
production or non latency sensitive jobs are likely to be in the
lowest class.

Figure 5 shows the distribution of failed, finished and killed
jobs for different scheduling classes. The proportion of killed

jobs varies across scheduling classes, with the non-latency-
sensitive-job class 0 having the highest number of killed jobs.
(similar results have also been observed in prior work [14]).
However, we find that the ratio of failed jobs to finished jobs
is steadily low across most of the scheduling classes, and
hence scheduling class does not correlate with job failures.
This implies the need to find factors other than scheduling
class to characterize failures.

1

10

100

1000

10000

100000

1000000

0 1 2 3

N
u

m
b

e
r

o
f

jo
b

s

Scheduling class

Failed jobs

Finished jobs

Killed jobs

Fig. 5: Failed, finished and killed jobs in different scheduling classes

A more fine-grained categorization of scheduling attributes
is the task priority, which determines the nodes assigned to the
task, and the turnaround on the task. The priority is associated
with only tasks, and not with jobs. The priorities are grouped
into five classes [4] ranging from 0 to 11, as described in
Table IV.

TABLE IV: Task priorities.

Priority

Number

Task Pur-

pose

Level Note

0-1 Free Lowest Resources are rarely charged.
2-8 Batch Middle Mainly for batch jobs.
9 Normal pro-

duction
High Dominant in production priorities;

usually latency-sensitive tasks.
10 Monitoring High Monitor the health of other jobs.
11 Infrastructure Highest Storage/disk IO services

Normally, all tasks of a job have the same priority. However,
14 out of 925 users have jobs with tasks of two or more
priorities. We do not consider such jobs, and group the
remaining tasks and their resubmissions by their priorities and
termination statuses. The grouping is shown in Figure 6.

Fig. 6: Task submissions by priority and termination status

As seen in Figure 6, a large number of low-priority tasks
are evicted, possibly due to the over commitment of resources.
We also see a large number of task failures in the two lowest

priorities. A prominent percentage of tasks of the highest
priority are killed, likely because either the requirements of
the tasks are not easily fulfilled or because they have hard real-
time constraints. On the contrary, most of the middle or batch
priorities do not have many tasks that abnormally finished, and
they have the highest average ratio of finished jobs in all three
priority groups. This is because middle-priority jobs tend to be
batch jobs, and we speculate that they often perform routine
tasks, and are hence less likely to fail.

The above graph includes task resubmissions, and may
hence be biased towards low-priority tasks that have a lot of
submissions. To counteract the effect of resubmission, we plot
the distribution of tasks after discarding resubmitted tasks in
Figure 7. As before, we observe a high number of failed tasks
in low- and high-priorities. The ratio of failed tasks in low
priorities is low, but the same ratio is three times the average
of failure ratios in the middle priorities. This shows that, even
ignoring resubmissions, both low- and high-priority tasks are
vulnerable to evictions, kills, and failures.

Fig. 7: Task submissions by priority and termination status (excluding
resubmissions)

D. Node Failures

Node dependability is an important aspect in understanding
the overall dependability of the cloud. However, studying node
dependability becomes quite complicated when virtualization
allows multiple containers to share a common physical node.
The failures may occur due to faults in the hardware, or
container software/instances. Unfortunately, the Google trace
does not provide design details of the physical machines and
containers, and hence it is not possible to track the reliability
issues to either physical nodes or containers. However, we can
measure: (1) the availability of machines from the perspective
of users and (2) the effects of physical node/container relia-
bility on overall task reliability.

In the Google cluster, each machine is identified by a unique
ID. Machines may be added and removed from the cluster due
to both maintenance or failures. We call the period ranging
from an “add machine” event to an “remove machine” event
or the end of the trace as a machine cycle. A machine may
have multiple cycles if it is repeatedly removed and added.

Figure 8 shows the CDF of the number of machine cycles in
the trace. 59.1% of all the machines are never removed from
the cluster, and 27% are removed exactly once. More than

99% of machines have less than 6 machine cycles. However,
there are some machines that have a high number of cycles.
For instance, one machine is removed and added 165 times,
and hence has 165 cycles.

Fig. 8: Distribution of machine cycles.

To calculate the availability of the cluster, the period in a cy-
cle is regarded as the uptime of the system, and the period be-
tween two cycles is the downtime. We aggregate the total up-
time E[total uptime] and total downtime E[total downtime]
over all machines, and denote the availability by the ratio of
total uptime to entire time.

Availability = E[total uptime]
E[total uptime]+E[total downtime]

We find that the Google cluster has an average availability of
99.82% across all nodes.

To better understand the influence of machine cycles on
task failures, we compute the correlation between the average
ratio of failed tasks and the number of machine cycles. Only
7 out of the 12,500 machines have more than 30 cycles, and
we regard these as outliers. For the remaining machines, we
plot the average ratio of failed tasks in each machine cycle in
Figure 9. We calculate the Pearson correlation coefficient by
comparing the average of failed task ratio with the number of
machine cycles. The correlation coefficient is �0.52 (p-value
= 0.003), suggesting a medium negative correlation between
ratio of failed tasks and the number of machine cycle. We
speculate that the machine rejuvenation (removals/additions)
may be the cause for the lower ratio of failures.

Fig. 9: Average ratio of failed tasks v.s. machine cycles. The x-axis is
the machine cycle number. In cycle number k, data points in the kth
cycle are chosen from the machines that have no less than k cycles.
The y-axis is the ratio of failed tasks.

A machine can also update its available resources and
configurations during its life cycle. We plot the average task
failure rate in a machine cycle against the number of machine
removals in Figure 10, and those machines with frequent
updates are plotted in red. As can be seen, high frequency
of updates (more than 5 times) occur only on machines with
few life cycles (less than 8 times). The task failure rate is
at a relatively low level in these nodes despite the fact that
removals are not frequent. This is likely because machines
that are removed were updated when they were offline. We
speculate that updating may be another strategy to enhance
the reliability in addition to machine removals.

Fig. 10: The failure rate in a machine life cycle. The y-axis is the
mean failure rate in a machine life cycle, and the x-axis is the number
of machine removals. Every machine life cycle is represented by a
blue dot, and the machines having more than 5 updates are plotted
in red.

E. Resource Usage
In this section, we explore the correlations between job

resource usage and job failures. We perform the analysis at
two levels, i.e., job level and task level.

1) Usage at the job level: We focus on CPU and memory
usage in these experiments. Figure 11 shows the CPU and
memory usage in failed and finished jobs under a combination
of three factors, namely priority class, single/multi-task jobs
and job length. The priority classes considered are batch, free
and production. The jobs are classified into single-task and
multi-task jobs. For the multi-task jobs, the average resource
usage is divided by the number of tasks, to ensure that the
usage is not skewed by the number of tasks. We classify jobs
based on their length as follows: short jobs are shorter than
10 minutes; medium-length jobs are between 10 minutes and
1 hour; long jobs are longer than 1 hour. The combinations of
different options add up to a total of eighteen categories.

In all three priority groups, the multi-task jobs generally
have more average resource consumption per task, than their
single-task counterparts. Because we normalize this on a per
task basis, the difference is not because of the higher number
of tasks. Further, the difference is most marked between
single-task and multi-task jobs that are medium-length or long.

We also observe differences between memory usages of
failed versus finished jobs. In general, failed jobs consume
slightly more memory than finished jobs for 14 of the 18

0

0.01

0.02

0.03

0.04

0.05

single-task
short

single-task
medium

single-task
long

multi-task
short

multi-task
medium

multi-task
long

N
o

rm
al

iz
e

d
 r

es
o

u
rc

e
 u

sa
ge

 failed (CPU) failed (memory) finished (CPU) finished (memory)

(a) batch priority jobs

0

0.005

0.01

0.015

0.02

0.025

0.03

single-task
short

single-task
medium

single-task
long

multi-task
short

multi-task
medium

multi-task
long

N
o

rm
al

iz
e

d
 r

e
so

u
rc

e
 u

sa
ge

 failed (CPU) failed (memory) finished (CPU) finished (memory)

(b) free priority jobs

0

0.05

0.1

0.15

0.2

single-task
short

single-task
medium

single-task
long

multi-task
short

multi-task
medium

multi-task
long

N
o

rm
al

iz
e

d
 r

e
so

u
rc

e
 u

sa
ge

 failed (CPU) failed (memory) finished (CPU) finished (memory)

(c) production priority jobs

Fig. 11: CPU and memory usage of jobs under different combinations
of job and scheduling parameters.

categories. Only 4 out of the 18 categories are different: multi-
task short batch jobs, single-task medium/long production
jobs, and multi-task short production jobs. In contrast to
memory usage, CPU usage does not vary as much between
failed and finished jobs. In the 18 categories, 12 of them have
similar average memory usage, i.e. the ratios of the usage
in failed jobs to those in finished jobs range from 0.5 to
2. Seventeen of all the categories have similar average CPU
usage. An exception is the short batch group, which accounts
for almost one-third of the total jobs, in which failed jobs have
lower CPU usage than finished jobs.

To further remove the effects of the heterogeneity among
jobs and priority groups, we study the variations among jobs
that are resubmitted. Some resubmitted jobs fail, while others
finish successfully, and we examine differences in their re-
source consumptions. The Google manual says that restarting
a job will usually generate a new job ID but keep the same
job name and user name [3]. So we select all unique jobs with
the same job names, and compare the resources consumed by
the failed executions and their finished counterparts.

Figure 12 shows the differences between failed and finished
jobs that are resubmitted. Failed jobs are found to generally
have less CPU and memory usage than the finished counter-
parts in all three priority groups. Specifically, around 60% to
83% of failed jobs have lower resource usage, i.e., on the left
of the red line, in all priorities. For the rest of jobs, finished
jobs consume more resources, but the ratios are still close to

Fig. 12: Ratios of resource (CPU and memory) consumed by failed
jobs to that consumed by finished jobs in resubmitted jobs. The
resource is calculated by dividing the total job resource by the number
of task. The x-axis shows the ratio of average resource in failed
jobs to that in finished jobs, and the y-axis represents the cumulative
distribution function (CDF). The vertical line in red shows the ratio
equals 1.

1. However, a tiny portion of jobs contradict this observation,
contributing to the long tails in the distributions. One notice-
able example is a series of jobs from one user repeating for
more than 27 days, in which the resource consumption of the
failed jobs is 1000 times that of the finished jobs.

2) Usage at the task level: At the task level, we mainly
consider task executions (submissions). We separately gather
the resource usage of failed task executions and finished task
executions. Different from comparing jobs, all task executions
are compared within the same job. The resource usage data
are normalized by dividing by the maximum value in a certain
resource measurement.

To determine if resource usage samples from two kinds of
task executions are significantly different, we use the Mann-
Whitney U or the rank-sum test [15], and measure the p-values
of the comparison. A p-value less than 0.05 shows that the two
samples significantly differ. The rank-sum test does not require
samples to be normally distributed, and is hence more widely
applicable than other statistical tests.

We select the jobs containing failed, finished and killed
tasks and study CPU and memory consumption, as inputs
to the test. For example, all CPU usage samples in failed
and finished executions are the inputs to the rank-sum test
to check if distributions of the executions are significantly
different in CPU usage consumption. We calculate the p-values
of rank-sum tests on normalized resources between each pair
of categories. Figure 13 shows the results.

Figure 13a shows the result of running the rank-sum test
between failed and finished task executions, for each category.
We find that 54.8%, 34.8%, and 93.2% of the p-values are
smaller than 0.05 in the free, batch, and production priority
classes, respectively. This result implies that most of the
production jobs have vastly different resource usage between
failed and finished task executions. Batch and free priority
classes also have significant differences in CPU/memory usage
of tasks in a large portion of jobs.

Figure 13b, 13c depict how the killed task executions are

(a) failed and finished executions

(b) failed and killed executions (c) killed and finished executions

Fig. 13: p-values of normalized resource usage in the rank-sum tests
of each pair of categories.

significantly different from the failed and the finished tasks.
The average ratios of low p-values in failed/killed test and
finished/killed test decrease to around 34% and 28% in all
priorities. Production jobs experience the most drops of 43%
and 23% respectively.

Early Failure Prediction: The above analysis shows that
there are significant differences in resource consumption be-
tween failed and finished jobs, suggesting that failure pre-
diction techniques can leverage these differences. We now
examine how early in a job’s lifetime do these differences
manifest, for jobs that exhibit such differences. To explore
the possibility of early failure prediction, we examine the
differences between failed and finished executions earlier than
the termination. Only jobs longer than 10 minutes are selected
as we believe that shorter jobs are unlikely to benefit from
early prediction. Figure 14 shows the ratios of tests that have
p-value of no more than 0.05, and samples are collected from
the beginning to 50%, 80% and 90% of the total execution
time of the job.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50% total time from
the beginning

80% total time from
the beginning

90% total time from
the beginning

total time

R
at

io
s

o
f

sm
al

l p
-v

al
u

e
 (

<0
.0

5
)

free

batch

production

Fig. 14: p-values of normalized resource usage in the rank-sum tests
of failed and finished executions. The resources from beginning to
50%, 80% and 90% of the running time in jobs longer than 10
minutes are collected.

We find that the ratio of jobs with small p-values (< 0.05)

for all three priorities remain steady after 50% of the job’s
execution right until the very end. The decrease in accuracy
at half-time compared to the full execution time is negligible.
Therefore, for jobs that exhibit differences in their resource
consumption, the differences in consumption are significant
even halfway into the job.

F. User-centric Analysis
The goal of this analysis is to identify user-specific features

that may be correlated with job failures. In the trace, around
700 out of all 933 users have completed jobs and terminated
tasks. Further, 334, 397, and 670 users execute failed jobs,
finished jobs, and killed jobs respectively.

We would like to have more insights on how user behaviors
are correlated with the failures, to understand possible relia-
bility issues for different user classes. However, we do not
consider the interactions between jobs from different users
or job dependencies, as the Google dataset lacks informa-
tion about the computation represented by jobs/tasks and
the dependencies between jobs. Instead, to get an overall
understanding, we cluster the users based on the characteristics
and termination status of the jobs submitted by them.

We perform K-means clustering [16] on a user feature vec-
tor, consisting of ratios of the failed, finished and killed jobs
and tasks. Regarding a user as a data object, the objective is to
find the optimal division of data so that a data object is similar
to other objects in the same cluster but dissimilar to objects
from other clusters. A common measure of dissimilarity s is
the Euclidean distance between two data points. The average
of s over all points in the dataset, called Silhouette score [17],
evaluates how appropriate are the clusters. A Silhouette score
close to 1 indicates an excellent clustering. We vary the
number of sets from 2 to 10, and find that the best Silhouette
score of 0.75 is achieved when 6 sets are selected. The
centroids of the 6 clusters and statistics of jobs and resources
in each cluster are shown in Table V.

In Table V, the clusters have the following properties.
1) Users in Cluster 1 have more than 87% of jobs being

killed, and the ratio of killed tasks is as high as 81%.
Further, these users submit the largest average number
of jobs in all 6 clusters.

2) Three clusters having many jobs executed are Clusters
2, 3 and 5. The corresponding ratios of killed jobs are
greater than 50%, while the ratios of killed tasks is low
in these clusters.

3) Users in cluster 3 have the longest median job length of
4448 hours, and 42.5% of these jobs fail at the end. This
leads to potentially significant wastage of resources.

4) Cluster 4 has the highest ratio in the finished jobs/tasks
among all the clusters, of about 83%. Further, each job
has a median number of 2755 tasks in this cluster.

5) Cluster 5 contains the most evicted jobs and tasks
among all clusters. The sixth cluster has a balanced ratio
between the failed jobs and finished jobs.

Table V also shows the attributes of resource usage for
each cluster. The resource usage statistics concern the average

CPU and memory usage measurements per unit time. CPU
usage is found positively correlated with ratios of finished
jobs/tasks, but no obvious pattern applies to memory usage.
We also inspect the user behaviour of executing production
jobs and batch jobs, and select users who run more than 20%
of production jobs in the entire period. The vast majority of
these users are grouped into Cluster 1, 3 and 5. Cluster 1 in
particular has about 60% of the production users. This implies
strong correlations between user behaviours of submitting jobs
and the outcomes of application reliability. This similarity
can be potentially leveraged by anomaly detection and failure
prediction systems.

IV. DISCUSSION

In this section, we discuss the implications of our results,
followed by the threats to the validity of the study.

A. Implication of the Results
Much of this section is based on our speculation and

anecdotal experience, and is not backed up empirically.
Our analysis results are useful for failure-aware resource

provisioning [18], failure prediction, and resource provision-
ing policies. Such policies have been used in failure-aware
scheduling and energy-aware scheduling [19] to mitigate the
effects of failed and killed jobs. We find that finished jobs
have much shorter running times and consume fewer resources
than failed and killed jobs in §III-A. This implies that a lot
of resources may be wasted on jobs that do not finish, except
those that are for debugging or testing purposes. Nevertheless,
this indicates the need for early failure prediction at the
infrastructure provider level.

We also found that the termination statuses of jobs are
influenced by the job’s pre-launch attributes (namely, priority
and resubmission rule) in §III-B. For example, failed and
killed jobs have high number of resubmissions. To save
resources, it may be a good idea to limit the number of job
resubmissions (for some classes of jobs) if a job is predicted
to fail or terminate unsuccessfully, especially for automated
resubmissions.

Another issue is that low-priority jobs contend for resources
with high-priority jobs, making it more likely for high-priority
jobs to possibly fail and thus waste resources. Further, both
low- and high-priority jobs experience high failure ratios
(§III-C), and hence there is a need for a scheduler that can
adjust job priorities based on their failure histories.

Although Google does not disclose how they maintain
and update machines in the cluster, we find that machines
and containers that experience removals or updates are less
prone to failures (§III-D), suggesting that these operations
improve reliability. This is similar to the idea of software
rejuvenation [20], but at the container level.

We also observed correlations between the resource con-
sumption of jobs and their propensity for failure in §III-E.
While these correlations depend on the job’s priority class and
whether the job is single- or multi-task, there are significant
differences between the resource consumptions of failed and

TABLE V: K-means clustering on users profiles. The features for clustering are the ratios of evict, fail, finish and kill events in both jobs
and tasks. The statistics of job attributes and resource usage are in average, and # represents the number of a variable. In the user attributes,
a user is called production user if the production jobs account for more than 20% of its all jobs.

Centroids of Features Statistics

Cluster Ratios of Jobs Ratios of Tasks Job Attributes Resource Usage User Attributes
Evict Fail Finish Kill Evict Fail Finish Kill # Job # Tasks/Job Length CPU Memory # Produc-

tion User
User

C1 0 0.0604 0.0633 0.8763 0.0705 0.0554 0.0644 0.8097 443 536.8 790.98 0.00076 0.00263 56 224
C2 0 0.0498 0.316 0.6341 0.0645 0.0398 0.6816 0.214 238.79 1525.85 1035.57 0.01376 0.0039 2 184
C3 0 0.425 0.0741 0.5009 0.0597 0.7307 0.0499 0.1597 281.18 227.81 4448.71 0.0034 0.00713 16 63
C4 0 0.0444 0.8367 0.1188 0.0439 0.0441 0.8012 0.1108 18.43 2755.82 705.96 0.00545 0.00526 2 84
C5 0.0079 0.1846 0.0664 0.741 0.7 0.0559 0.08 0.164 349.6 69.74 753.32 0.0019 0.00614 13 126
C6 0 0.0395 0.8127 0.1477 0.1221 0.2946 0.1818 0.4015 28.82 952.47 664.8 0.00176 0.00998 5 19

finished tasks, both in CPU and memory consumption, so
a good failure prediction could help the resource scheduler
allocate the resources differently among predictably faulty
and successful jobs. Further, when these correlations manifest,
they do so as early as 50% into the job’s run time, thereby
indicating the potential for early failure prediction for long
jobs. We define a threshold of 1 hour, to filter long jobs
and apply the failure prediction algorithm. Such jobs can last
anywhere from a few hours to a few days, so one can wait till
the threshold, and still get significant resource savings.

Finally, we find that job failure behaviour can be clustered
into six categories based on the users submitting the jobs,
and that each category has distinctive patterns in terms of job
attributes and resource consumption in §III-F. This information
can be used in anomaly detection, for example, to detect
jobs that deviate significantly from the characteristics of their
categories and perhaps terminate them early. This would allow
more efficient resource utilization in the cluster.

B. Threats to Validity

Our study focuses on the Google cluster, and hence may
not be generalizable to other cloud infrastructures. This is
an external threat to the validity. One way to mitigate this
threat is to study other cloud infrastructure failures. However,
there is no publicly available failure data from real-world cloud
deployments on the same scale as the Google cluster.

The main internal threat to validity is that the Google dataset
is both incomplete and anonymized (out of privacy concerns).
In particular, there are four limitations:

1) It is not clear that who the users are, what their work-
flows are, and why the users were running the jobs.
Therefore, it is difficult to say anything about the effect
of failures on the overall user experience.

2) A job can fail either because of performance reasons
(e.g. lack of resources) or reliability reasons (hardware/-
software/network failures) or simply for testing/debug-
ging purposes. The traces do not have enough informa-
tion to infer the job failure causes.

3) The dataset does not have program or application infor-
mation, such as whether the programs were MapReduce
jobs. It does not have any information about the job
schedulers, or other software running on the nodes.

4) The resource consumption is normalized by the cor-
responding maximum values, and the raw values are

not provided. Hence, we cannot understand the reasons
behind why certain consumption patterns are correlated
with failures.

To mitigate the above threat, we need more information about
the traces, but unfortunately, this is not publicly available.

There is a construct threat to validity in that we have
assumed that resource conservation is a desired goal for the
users of the cluster. However, this need not be the case as
the cluster may be used purely for debugging or testing tasks,
where job failures are the expected behaviour. As such, this
threat can be mitigated if we knew what the cluster is used
for, but this is not the case.

Finally, there is a threat regarding the reproducibility of
the results and our conclusions. We have made all our data
publicly available, and also the scripts used to generate them,
to mitigate this threat1.

V. RELATED WORK

We classify related work into three broad categories as
follows.

Failure analysis. Prior studies characterize failures in
supercomputers and clouds from the perspective of system
failures [6], [7] and application failures [9], [21]. ElSayed
et al. [6] perform a comprehensive statistical analysis on
supercomputer logs from Los Alamos National Labs. They
also explore the impact of environment issues on failures.
Vishwanathan et al. [7] explore the hardware reliability of
clouds. They find that disks are the main culprit in node
failures. Unlike our work, these studies focus on hardware
reliability rather than job failures, which can be caused by
hardware, software and configuration failures.

Kavulya et al. [9] analyze logs from Hadoop applications
and characterize their job patterns and the failure causes. Ren
et al. [10] study the logs collected from Hadoop clusters
running e-commerce applications. In contrast to these datasets,
the Google dataset has a more diverse workload, and hence
our findings are applicable to a broader range of cloud
applications.

Failure characterization and prediction Prior results on
failure analysis or characterization have been applied to fail-
ure diagnosis and prediction [22], [23], [24]. Using work-
load traces from The Grid Workload Archive project [25],

1http://www.ece.ubc.ca/⇠xinchen/cluster trace/data.zip.

Fadishei [22] et al. find correlations between job failures
and attributes including CPU intensity, memory usage, CPU
utilization, queue utilization, exit hour and migration of jobs.
Pan et al. [23] use the differences in the behavior of faulty
and normal nodes in a MapReduce environment to identify
failures. Williams et al. [24] empirically analyze the fault-free
and faulty performance data from a replicated middleware-
based system, and find that unstable performance is a precursor
of failures. While these works have all investigated the rela-
tionship between resource consumption and job failures, they
have been confined to particular classes of jobs. In contrast,
our work is the first to explore such correlations in a diverse
workload in a production cloud.

Oliner et al. [26] demonstrates that failure-aware schedul-
ing can be effective even with modest prediction accuracy.
They show that improved scheduling of parallel jobs has
a significant impact on the job response time and overall
system utilization. Liu et al. [27] focuses on adjusting the
placement of active or running jobs in response to failure
prediction, and proposes an application-level job migration
and processor swapping approach to diminish the impact of
failures. Our work is orthogonal to the above techniques, as
it deals with failure characterization, but can facilitate failure
aware scheduling and placement.

Google cluster dataset There have been a number of studies
on the Google cluster dataset focussing on the workload char-
acterization and machine utilization. Liu et al. [14] perform
a statistical analysis of node, job and task level workload
with respect to resource utilization. Reiss et al. [5] study the
heterogeneity of tasks in the Google dataset. They find that
the resources and the tasks executed vary widely. Khan et
al. [28] propose an accurate characterization that can faithfully
reproduce the performance of historical workload traces in
terms of key performance metrics, such as task wait time
and machine resource utilization. Zhang et al. [29] propose a
model for runtime task resource usage that is able to reproduce
aggregate resource usage and scheduling delays. They find that
using the mean and coefficient of variation within each task
can generate synthetic workload traces, reproducing accurate
resource utilizations and task waiting time. Di et al. [30]
compare the differences between the Google data center and
a Grid system. They find that the Google dataset exhibits
finer granularity resource allocation with respect to CPU and
memory than the selected Grid system. The main difference
between these papers and ours is that none of them study
failures or failure-related attributes.

Recently, there have been three studies on understanding
failures in the Google dataset. We explain the differences
between these papers and ours below.

Di et al. [31] use job-specific information and the termi-
nation statuses of tasks, and apply the K-means clustering
to characterize the jobs. However, their analysis is based on
logical job names, which are not guaranteed to be unique.
The application properties may be dominated by a few jobs,
and hence bias the results. In contrast we use job IDs which
are guaranteed to be unique, and provide a higher coverage

on characterizing jobs and tasks. Further, rather than simply
clustering task events to get centroids of clusters, we correlate
the clusters of failures with user profiles, and we consider
job events as well. Finally, job attributes such as priorities,
resubmissions and run time are not considered in their paper,
while they are considered in ours.

Guan et al. [32] use principal component analysis on the
task resource consumption to identify the features most likely
to influence failures. They find that the average correlations
of the raw resource usage to the failures are around 0.07 in
all tasks. In contrast, we perform finer grained analysis on
different classes of jobs and resources, and we find much
higher correlations and more significant differences between
failures and successful terminations. For example, in our
analysis, at least 34.8% of the jobs have significant differences
between the resource consumptions of failed and finished
tasks.

In very recent work, Garraghan et al. [33] study the node
and task failures’ statistical distributions. However, distribu-
tions are not enough to characterize machine and task failures,
as the workload is highly diverse. In contrast, we use job
and cloud system attributes to understand the correlations
between job failures and attributes. They also label the node
maintenance as failures. However, the work by Reiss et al. [5]
has shown that node maintenance is mostly planned downtime,
and hence different from failures. Finally, they do not consider
the correlations between resource consumption of the jobs and
their failures, while we do.

VI. CONCLUSION AND FUTURE WORK

This paper investigates the characteristics of failed and
killed jobs in Google’s production cloud system. We charac-
terize failures of jobs with respect to their attributes, and study
the effects of attributes, such as priority, task submissions, and
resource consumptions, on job failures. Failed and finished
jobs and tasks have different characteristics of resource usage,
and these differences have a high probability of manifesting
well before the jobs’ end.

Our study points to the importance of failure prediction for
resource provisioning and scheduling in compute clouds. In the
future, we will leverage the findings of this paper to develop
anomaly detection and early failure prediction algorithms for
better cloud utilization and reliability. In addition, we plan to
extend our study to a wider range of cloud systems.

ACKNOWLEDGEMENTS

This work was funded in part by the Natural Science and
Engineering Research Council of Canada (NSERC) through
the DIVA network and the Discovery Grants Program. The
experimental environment was supported by Amazon AWS
Education Research Grants, and the Canada Foundation for
Innovation (CFI). We would like to thank Marcus Carvalho,
Lauro Costa and Sathish Gopalakrishnan for their helpful
suggestions. We also thank the anonymous reviewers and the
shepherd of ISSRE 2014 for their insightful comments.

REFERENCES

[1] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo,
“BlueGene/L failure analysis and prediction models,” in International
Conference on Dependable Systems and Networks (DSN), 2006, pp. 425
– 434.

[2] C. Pham, P. Cao, Z. Kalbarczyk, and R. K. Iyer, “Toward a high
availability cloud: Techniques and challenges,” in Dependable Systems
and Networks Workshops (DSN-W), 2012 IEEE/IFIP 42nd International
Conference on. IEEE, 2012, pp. 1–6.

[3] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema,” Google Inc., Mountain View, CA, USA, Technical
Report, Nov. 2011, revised 2013.05.06. Posted at URL.

[4] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Towards understanding heterogeneous clouds at scale: Google trace
analysis,” Intel science and technology center for cloud computing,
Carnegie Mellon University, Pittsburgh, PA, USA, Tech. Rep. ISTC–
CC–TR–12–101, Apr. 2012.

[5] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. Kozuch, “Het-
erogeneity and dynamicity of clouds at scale: Google trace analysis,” in
Proceedings of the Third ACM Symposium on Cloud Computing. ACM,
2012, p. 7.

[6] N. El-Sayed and B. Schroeder, “Reading between the lines of failure
logs: Understanding how hpc systems fail,” in Dependable Systems and
Networks (DSN), 2013 43rd Annual IEEE/IFIP International Conference
on, 2013, pp. 1–12.

[7] K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing
hardware reliability,” in Proceedings of the 1st ACM symposium on
Cloud computing. ACM, 2010, pp. 193–204.

[8] F. Dinu and T. Ng, “Understanding the effects and implications of
compute node related failures in hadoop,” in Proceedings of the 21st
international symposium on High-Performance Parallel and Distributed
Computing. ACM, 2012, pp. 187–198.

[9] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of
traces from a production mapreduce cluster,” in Cluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM International Conference
on, 2010, pp. 94–103.

[10] Z. Ren, X. Xu, J. Wan, W. Shi, and M. Zhou, “Workload characterization
on a production hadoop cluster: A case study on taobao,” in Workload
Characterization (IISWC), 2012 IEEE International Symposium on.
IEEE, 2012, pp. 3–13.

[11] T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve, F. Silva, and
K. Vahi, “Failure analysis of distributed scientific workflows executing
in the cloud,” in Proceedings of the 8th International Conference
on Network and Service Management. International Federation for
Information Processing, 2012, pp. 46–54.

[12] Amazon web services (aws) - cloud computing services. [Online].
Available: http://aws.amazon.com/

[13] scikit-learn: Machine learning in python. [Online]. Available: http:
//scikit-learn.org/stable/

[14] Z. Liu and S. Cho, “Characterizing machines and workloads on a
google cluster,” in Parallel Processing Workshops (ICPPW), 2012 41st
International Conference on, 2012, pp. 397–403.

[15] J. McKean and T. Hettmansperger, Robust nonparametric statistical
methods. CRC Press, 2011.

[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition, ser.
Springer series in statistics. Springer, 2009.

[17] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[18] B. Javadi, J. Abawajy, and R. Buyya, “Failure-aware resource provision-
ing for hybrid cloud infrastructure,” Journal of parallel and distributed
computing, vol. 72, no. 10, pp. 1318–1331, 2012.

[19] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem, “Energy
aware scheduling for distributed real-time systems,” in Proceedings of
the 17th International Symposium on Parallel and Distributed Process-
ing. IEEE Computer Society, 2003, pp. 21–2.

[20] D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and M. Scarpa,
“Workload-based software rejuvenation in cloud systems,” IEEE Trans-
actions on Computers, vol. 62, no. 6, pp. 1072–1085, 2013.

[21] K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s adolescence:
An analysis of hadoop usage in scientific workloads,” Proc. VLDB
Endow., vol. 6, no. 10, pp. 853–864, Aug. 2013.

[22] H. Fadishei, H. Saadatfar, and H. Deldari, “Job failure prediction
in grid environment based on workload characteristics,” in Computer
Conference, 2009. CSICC 2009. 14th International CSI, 2009, pp. 329–
334.

[23] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Ganesha:
Blackbox diagnosis of mapreduce systems,” SIGMETRICS Perform.
Eval. Rev., vol. 37, no. 3, pp. 8–13, Jan. 2010.

[24] A. Williams, S. Pertet, and P. Narasimhan, “Tiresias: Black-box failure
prediction in distributed systems,” in Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, 2007, pp. 1–8.

[25] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and
D. H. J. Epema, “The grid workloads archive,” 2008.

[26] A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta, and A. Siva-
subramaniam, “Fault-aware job scheduling for bluegene/l systems,” in
Parallel and Distributed Processing Symposium, 2004. Proceedings.
18th International. IEEE, 2004, p. 64.

[27] Y. Li, P. Gujrati, Z. Lan, and X.-h. Sun, “Fault-driven re-scheduling for
improving system-level fault resilience,” in Parallel Processing, 2007.
ICPP 2007. International Conference on. IEEE, 2007, pp. 39–39.

[28] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization
and prediction in the cloud: A multiple time series approach,” in Network
Operations and Management Symposium (NOMS), 2012 IEEE, 2012, pp.
1287–1294.

[29] Q. Zhang, J. Hellerstein, and R. Boutaba, “Characterizing task usage
shapes in googles compute clusters,” Proceedings of LADIS, pp. 2–3,
2011.

[30] S. Di, D. Kondo, and W. Cirne, “Characterization and comparison
of cloud versus grid workloads,” in Proceedings of the 2012 IEEE
International Conference on Cluster Computing, ser. CLUSTER ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 230–238.

[31] S. Di, D. Kondo, and F. Cappello, “Characterizing cloud applications
on a google data center,” in Parallel Processing (ICPP), 2013 42nd
International Conference on. IEEE, 2013, pp. 468–473.

[32] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring metric
subspace in cloud computing infrastructures,” in Reliable Distributed
Systems (SRDS), 2013 IEEE 32nd International Symposium on. IEEE,
2013, pp. 205–214.

[33] P. Garraghan, P. Townend, and J. Xu, “An empirical failure-analysis of a
large-scale cloud computing environment,” in High-Assurance Systems
Engineering (HASE), 2014 IEEE 15th International Symposium on.
IEEE, 2014, pp. 113–120.

