
Failure Prediction of Jobs in Compute Clouds: A
Google Cluster Case Study

Xin Chen⇤, Charng-Da Lu† and Karthik Pattabiraman⇤
⇤Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Email: {xinchen, karthikp}@ece.ubc.ca
†New York, USA.

Email: charngdalu@yahoo.com

Abstract—Most cloud computing clusters are built from unreli-
able, commercial off-the-shelf components. The high failure rates
in their hardware and software components result in frequent
node and application failures. Therefore, it is important to predict
application failures before they occur to avoid resource wastage.
In this paper, we investigate how to identify application failures
based on resource usage measurements from the Google cluster
traces. We apply recurrent neural networks to the resource
usage measures, and generate features to categorize the input
resource usage time series into different classes. Our results show
that the model is able to predict failures of batch applications,
which are the dominant jobs in the Google cluster. Moreover,
we explore early classification to identify failures, and find that
the prediction algorithm provides the cloud system enough time
to take proactive actions much earlier than the termination of
applications, with an average 6% to 10% of resource savings.

Keywords: Cloud reliability, Application failure, Failure
prediction

I. INTRODUCTION

Cloud systems experience failures due to their large-scale,
heterogeneity and distributed nature. Node failures in the cloud
may cause the jobs running on them to abort [1]. Also, appli-
cations may experience exceptions such as out-of-memory [2]
and software bugs. In the cloud, different applications can
share resources, and lack of resources may lead to performance
degradation and potential application failures.

In this paper, we develop a failure prediction method for
application failures of the Google cluster workload traces [3],
which contain the workload measurements of more than
12,000 nodes during a one month period. The jobs in the trace
range from single-task jobs to multi-task computations [4]. Our
goal is to predict if a certain application will ultimately fail,
without identifying the underlying reasons, from the perspec-
tive of the underlying cloud infrastructure provider. In partic-
ular, we do not distinguish the reasons behind the occurrences
of application failures, namely performance reasons (e.g., lack
of resources) and reliability related hardware/software/network
reasons.

Currently, most cloud failures are detected only when they
indeed happen. Some prior studies on large-scale system
reliability have focused on finding correlations between re-
source consumption and failure behaviour of applications.
Ganesha [5] assumes that fault-free nodes in MapReduce have
similar behaviors, and that a deviation from this behaviour
indicates a failure. Williams et al. [6] find that a fault possibly
manifests as unstable performance behaviors before a failure
occurs, thus enabling failure prediction techniques. Besides
these algorithms, Ren et al. [2] find that most of the task
failures in clouds result from out of memory exceptions,

and that job failures are mainly caused by task failures in
a commercial cloud trace. While these techniques are useful,
none of them can deal with the scale and heterogeneity of
large-scale clouds such as the Google cluster.

In this paper, we propose a prediction technique for cloud
systems that makes use of the resource usage measures of
workloads, to predict job and task failures. The main challenge
of using the resource usage time series is to discover features
that are indicative of job or task failures. Unfortunately, it
is difficult to extract the features directly from the time
series data [7]. Instead, we use Recurrent Neural Networks
(RNNs) [8], [9] to learn the temporal characteristics of the
resource usage measures such as CPU and memory usage.
Then we combine trained RNNs with various job/node/user
attributes to predict job failures. To the best of our knowledge,
we are the first to predict application (job) failures on the
Google cluster dataset and to perform early predictions.

We make the following contributions in this paper:
• We present a machine learning approach based on recur-

rent neural networks for predicting job-level and task-
level failures. We find that the historical information of
jobs from the same user or users affiliated with the same
group is essential to achieving high prediction accuracy.

• Our algorithm accurately predicts failures in selected
class of failed and finished jobs. For example, our pre-
diction achieves a true positive rate of about 40%, and
a false positive rate of 6% when run in a conservative
setting.

• We quantify the resource savings achieved by the algo-
rithm on selected batch jobs longer than 1 hour. Using
the prediction results, proactive failure management tech-
niques (e.g., killing jobs) provide 6% to 10% of relative
resource savings on average.

The rest of the paper is organized as follows. In § II we
give more details on the cluster dataset. In § III, we present
the overall design of failure prediction. § IV presents the
experimental results and analysis of predictions, followed by
limitations of this study. The related work is in §V and the
paper concludes in §VI.

II. BACKGROUND

In this section, we first describe the Google data sets, with
regard to the measured resource metrics and the attributes
considered for the prediction. We then introduce the machine
learning algorithms we use for prediction.

A. Google Dataset
The Google cluster workload traces [3] are one of the first

and few publicly available traces from large cloud systems.
Spanning a total of 29 days, around 670,000 jobs and 26
million tasks running on about 12,500 compute nodes are
logged in the trace. Figure 1 shows the infrastructure of the
clusters.

Fig. 1: General Infrastructure

In the trace, a job consists of at least one task, and each
task is constrained by scheduling and resource usage limits.
The resource isolation and usage measurement are achieved
by setting up separate Linux containers (LXC) for different
tasks.

A job or task has several possible termination statuses
(called “event types” in the trace.) These are: (1) evicted, (2)
killed, (3) failed (due to an exception or abnormal condition),
and (4) finished (successfully terminated). A job being evicted
is a very rare event. Also, no information is provided on
whether jobs are killed due to reliability problems. Therefore,
we focus mainly on finished and failed jobs in our work.
Specifically, we consider two kinds of failures, as shown in
Table I.

Failures Trace
Event

Description

Job
failure

Job fail
event

A job is descheduled due to task failures.

Task
failure

Task fail
event

A task is descheduled due to a task failure (e.g.
exceptions or software bugs).

TABLE I: Definitions of job, task and node failures.

The Google dataset contains periodically profiled resource
usage metrics as a time series. Such resource measures consist
of CPU usage (average and peak), memory usage (mean,
assigned, and peak), page cache (unmapped and total), disk I/O
time (mean and peak), disk usage, cycles per instruction, and
memory accesses per instruction. All these measurements have
been normalized by the respective maximum values measured.

In our earlier work [10], we found that the following
attributes were correlated with job failures. Our prediction
algorithm will leverage these attributes.

1) Task Priority Task priority is one of the scheduling
constraints, and determines whether a task is scheduled
on a node. General categories are production, batch, and
free (low priority batch). The production and free jobs
experience much less ratios of failures than the batch
jobs.

2) Task Resubmission During the life cycle of a job, its
tasks can be resubmitted and rescheduled multiple times
after abnormal terminations, i.e. failures, evictions or
being killed. The ratios of jobs with tasks that execute
more than once for failed and finished jobs are 35.8%
and 0.9% respectively. In terms of the maximum of task
resubmissions, failed and finished jobs have around 400
and 150 resubmissions, respectively.

3) Resource Usage: We also found that there are dif-
ferences in resource consumption between failed and
finished task submissions within the same job. At least
34.8% of them show statistically significantly different
resource consumptions (mean CPU and memory usage)
between failed and finished submissions.

4) User Profile The centroids of user profiles groups are
correlated with the ratios of job failures to all job
termination statuses in the clustering results.

B. Recurrent Neural Networks (RNNs) and Ensemble Methods
Traditional representative techniques, such as the Hidden

Markov Models (HMM) and distribution-based methods, have
been applied to the time series data in other failure prediction
techniques [11]. Different from those data, the Google cluster
has a large amount of high dimensional and noisy data that can
have dependencies on prior data segments. These properties
make the above techniques a poor fit for the Google cluster
data. For example, HMMs assume no dependencies exist in
the time domain. For distribution-based methods, the hetero-
geneity or changing mean/variance characteristics make the
methods difficult to mimic the data. In comparison, recurrent
neural networks (RNNs) [8] can capture the temporal relations
in the trace. Further, because RNNs are based on feedforward
networks with connections between inputs and outputs, they
can handle varying lengths in the time domain. Therefore, we
use RNNs in our prediction algorithm.

The Google trace is also extremely diverse in terms of
the attributes of the programs, machines and users. Ensemble
methods built on single estimators can capture such diversity
with robustness [12]. A common selection for the construction
is to use the tree-based model as a single estimator with a
vector of features. Each estimator can be trained with a ran-
dom subset of the entire training data. Empirically, ensemble
methods tend to generate better results when the data has a
significant diversity. Therefore, we use ensemble methods for
prediction.

III. METHODOLOGY

In this section, we introduce the general framework for the
problem, shown in Figure 2.

Fig. 2: General Framework

The framework consists of four stages as follows: (1)
monitoring and storing the system and application metrics,
(2) processing the data to structured formats containing their
spatial and temporal information, (3) predicting the failures
using machine learning techniques, and (4) failure remediation
management based on prediction results. In the Google cluster
trace, the system and application metrics are already provided
to us. Therefore, we focus on the data processing (2nd) and
prediction (3rd) stages. We defer failure remediation based on
prediction results to future work.

Data Processing The goal of this stage is to formulate
the collected performance data into layered application-centric

structures, which are required by machine learning models.
The original tables of system and application metrics cover
task resource usage measures and various attributes of the
jobs, tasks, nodes and users in separate files. To integrate
the data, we join the table files of system and application
metrics. Each job is associated with performance data in
its all tasks, the job/task/node/user attributes, and the failure
data (or termination status mentioned in §II). The outcomes
of spatial/temporal data have a two-level format: (1) job-
level structured data with the job termination status as the
classification target, and (2) task-level structured data with
the task termination status as the classification target. At
the task level, the resource usage data are organized in the
chronological order.

Failure Prediction This stage predicts the termination
statuses of tasks and jobs taking the two-level temporal/spatial
data as inputs. Figure 3 describes the modules in this stage.
The job modelling module trains the predictor, which is com-
posed of RNN based estimator extracting temporal features at
the bottom and ensemble methods combining different single
estimators at the top. In the test phase, the predictor can be
trained from jobs from either all users or one user. Then in the
job-level prediction module, the termination statuses of a job
and its tasks are predicted. After a certain period (e.g., 1 day),
all recent data are retrained in the parameter update module.

Fig. 3: prediction modules

Recurrent Neural Networks (RNNs)
Given a input sequence of resource usage x =

(x1, x2, ..., xT

), the standard RNN calculates sequences of
states in the hidden layer h = (h1, h2, ..., hT

), and sequences
of outputs y = (y1, y2, ..., yT). The problem is considered as
an instance of the general classification problem. Then the
computation has the following iteration equations [8].

h
t

= H(W
xh

x
t

+W
hh

h
t�1 + b

h

) (1)

y
t

= softmax(W
hy

h
t

+ b
y

) (2)

where W
xh

, W
hh

, W
hy

are weight matrices, b
h

, b
y

are biases
matrices, H is the hidden layer function (e.g. tanh), and
softmax is a logistic function (e.g. tanh).

The objective function in the RNN problem for a single
pair (x, y) is f = L(ŷ, y), where L is a distance measurement
function between the prediction ŷ and the target y. Examples
of L include the squared error and edit distance. The overall
objective function is the average normalized individual objec-
tive function of all data points in the entire set, or practically
in the same user.

E =

1

N

NX

n=1

L(ŷ
n

, y
n

) (3)

where N denotes the number of sequences, and ŷ
n

and y
n

are the prediction sequence and the corresponding target
termination statuses.

The traditional RNN has a serious drawback for data with
long-term dependencies: The error-signals could exhibit expo-
nential decay as they are back-propagated through time, which
leads to long-term signals being effectively lost as they are
overwhelmed by un-decayed short-term signals. To overcome
this issue, we need to capture long-term dependencies. We
use the Hessian-free optimization [13] to model the temporal
connections between hidden states. In this way, we further
model the long-term dependencies of resource measurements
on prior measurements, and better capture the temporal char-
acteristics of resource usage within an application, particularly
those long-running ones.

Prediction of Jobs Prediction is conducted for each job,
and the goal is to identify the termination status. Algorithm 1
describes the prediction algorithm.

Input: Two-level data of jobs
Output: Termination statuses of the jobs/tasks

1 select the ensemble predictor;
2 foreach job do
3 select the predictors;
4 foreach task in job do
5 extract task features/usage time series;
6 predict the task termination status;
7 end
8 generate job feature vector;
9 predict the job termination status;

10 end
Algorithm 1: Prediction Framework

IV. EVALUATION

A. Experimental Setup
The traces are originally stored in comma separated value

files of approximate 200GB, and the data attributes are rep-
resented by key-value pairs. We read in these traces into a
MySQL database for ease of data processing, and store the
transformed two-level data of job traces. Then we leverage
machine learning packages in Python [14], [15] to implement
the prediction modules.

Finer-Grained Selection of Data One of the challenges in
the prediction is the heterogeneity of workloads. To reduce the
variance between jobs in a category, we divide the entire trace
into multiple categories based on the following criteria:
priority: batch, free (i.e. separated from batch for reliability
reasons) and production.
job length: short (shorter than 10 minutes), medium (10
minutes 1 hour), and long (longer than 1 hour).
task number: single-task jobs, and multi-task jobs.

In terms of priority, the number of production jobs are much
less than that of batch (priority free included) jobs. In addition,
some production jobs that consume a lot of resources do not
terminate in the monitoring period, we only consider the batch
jobs for the prediction. In terms of job length, the number of
long/medium jobs is one quarter of the number of short jobs,
but long/medium jobs consume much more resources. In terms
of task number, the number of single-task jobs is 3 times more
than the number of the corresponding multi-task jobs, while
the multi-task jobs consume much more resources on average.

Design of the Predictor The predictors are evaluated in
the following aspects:

Prediction coverage: The target jobs include long and part
of the medium jobs, especially in the categories of heavy
resource consumptions. Predicting failures of long jobs can
yield higher benefits.
Prediction times: The prediction should be conducted early
so that proactive actions can be taken.
Prediction metrics: We define a good predictor as generating
high true positive rate (TPR) and low false positive rate (FPR)

TPR =

successful failure predictions

failures

(4)

FPR =

finished predicted as failures

finished

(5)

For the classification problems of two classes, TPR and FPR
can be denoted by sensitivity and 1� specificity.
Resource savings: To estimate the potential resource savings
benefited from the prediction, we consider a simple proactive
strategy of saving resources, i.e. killing the jobs that are
predicted to fail (as permitted by users). Assuming that a job
can be killed at most once, we use the following metrics:
R+: resource saved by stopping failed jobs
R�: resource wasted by stopping finished jobs
R

all

: resource consumed by failed and finished jobs
R

ratio

, which represents the relative resource savings is
therefore calculated as:

R
ratio

=

R+ �R�

R
all

(6)

We select the multi-task/single-task batch long jobs, and
predict at the half times of job lengths. Figure 4 plots the
potential relative resource savings (i.e. CPU usage) with
respect to TPR and FPR.

(a) Multi-task batch long jobs

(b) Single-task batch long jobs

Fig. 4: Approximate relative savings in CPU usage in the predictor
designs

Given the same values of TPR and FPR, the relative re-
source savings can be rather different in the two categories. In

the best case, about 32% and 13% of the CPU usage could be
saved respectively; and in the worst case, about 15% and 35%
of the CPU usage could be wasted. To save more resources,
TPR is more important in multi-task long batch jobs, while
FPR is more important in single-task long batch jobs. In the
predictor design, we can have trade-offs between TPR and
FPR by varying classification thresholds, and come up with
a conservative predictor (low TPR/FPR) and an aggressive
predictor (high TPR/FPR). Separate predictors can be used
in different categories to maximize the resource savings.

Neural Network Setup In the training of neural networks,
we do not use all the resource usage measures as inputs, but
we limit ourselves to 5 popular measures: mean CPU usage,
mean memory usage, unmapped page cache, mean disk I/O
time, and mean disk usage. Each measure is represented by
a class in the input sequences, and thus the inputs have 5
classes of measures at any single time point. The original
sampling intervals range from a few seconds to a few minutes.
Therefore, we choose time ranges of 15 seconds, 1 minute and
5 minutes, and average the resource usage measurements in
these ranges.

For the target sequences, we consider task termination
statuses in the failed and finished jobs. To represent the
severity of task events, we assign weights of 1, 2, 3, and 4, to
the categories finished, evicted, killed, and failed respectively.
Note that task failures are labelled with 4, as they have the
highest severity.

Experiments on the Workloads Considering the large size
of the original data, we conduct the following tests in the
first half of the data: (1) We select the failed and finished
medium/long jobs, and partition them into training and test
sets in the chronological order. At different time slots (quarter,
half and the end) within a job, we make the predictions at the
task level and job level, and calculate the prediction metrics.
(2) We conduct early prediction at the quarter and half times in
jobs longer than 1 hour, and then calculate the relative resource
savings.
B. Results

Task Level At the task level, we classify the termination
statuses of task submissions based on the attributes and
performance data. In all the target classes, the status finish
is considered as one class, and the other three classes, i.e.
evict, kill and fail, are considered as a single class due to the
reliability and severity. We evaluate the task level classification
in Figure 5.

Fig. 5: Task level results of metrics

We observe that the classification achieves around 84% of
the accuracy, 86% of the sensitivity and 80% of the specificity.
With the high true positive rate and low false positive rate, the
task level classification serves as the foundation of job level
prediction.

Job Level At the job level, we classify the termination
statuses of jobs into two classes: fail and finish. Figure 6

shows the prediction results of the conservative and aggressive
predictors at different time slots of the jobs.

(a) Conservative predictor

(b) Aggressive predictor

Fig. 6: Job level results of metrics

We observe distinct prediction results from the two predic-
tors at the end of jobs. The conservative predictor has a low
FPR of less than 10%, and TPR stays more than 40%. In
comparison, the aggressive predictor has around 72% of TPR
and 56% of FPR.

The Effects of Selection on Predictors and Predicting
Times In Figure 6, the metrics, particularly sensitivity, grad-
ually increase as the prediction time advances, and they do
not reveal significant differences across the quarter, half times
and the end. It indicates that the jobs have a high possibility
of being correctly predicted at the half times if they could be
predicted at the end.

We further evaluate the resource savings using the two
predictors at the quarter and half times in jobs longer than
an hour. Figure 7 shows the relative resource savings of CPU
usage, memory usage and task hour in the three most heavy
resource consuming job categories: multi-task batch long jobs,
multi-task batch medium length jobs, and multi-task free long
jobs.

We find that the overall savings in the CPU usage, memory
usage and task hours are around 6% to 9% for this predictor
at the half times in batch jobs. In comparison, the aggressive
predictor either saves or wastes more resources. For example,
the aggressive predictor saves about 4.3% and 10% more
resources than the conservative predictor at the half times in
the multi-task batch long and medium-length jobs. However,
it wastes an additional 17% resources in the multi-task batch
medium-length jobs.

In all the three job categories, the conservative predictor
at the half time is the only predictor that generates positive
savings, and can hence be regarded as a stable predictor.
Meanwhile, conservative predictors are more friendly to users
and job schedulers, as they do not kill jobs unless they are
absolutely certain of the job’s failure.

User Based Optimization
In this experiment, to reduce the heterogeneity of the

training data, we use the previous jobs from the same user
to build the model. Only users with more than 1000 jobs are
considered for this optimization, while the other users continue
to use the model derived from the entire set of users. Figure 8
shows the resource savings of the user-based optimization,
compared with the original conservative predictor at the half
times.

Fig. 8: Resource savings of original predictor and user-based opti-
mization

The overall savings in the user-based optimization, i.e. CPU
usage, memory usage and task hour, are around 7% to 10.7%
for this predictor at the half times in batch jobs. The extra
saved resources are achieved through an additional 11% of
increase in the true positive rate at the job level. Since the
jobs from the same user may have higher similarity than two
random jobs, finer grained categorization of the data may yield
better results.

C. Limitations of Our Study
There are two aspects of limitations, one with regard to the

trace itself, and the other with regard to our prediction and
mitigation strategy.

The Trace
1) The resource consumption is normalized by the maximal

values of the resource consumption, and hence some of
the original features are lost.

2) Although job failures are identified, the fundamental
reasons, i.e. performance reasons or hardware/software
related reasons are not distinguished. As a result, we
cannot further separate the dataset to provide finer-
grained predictions.

Mitigation Strategy
1) The basic proactive fault management we propose is to

simply kill the jobs that are predicted to fail. However, if
the prediction is wrong, it wastes resources as the killed
jobs would probably be restarted.

2) The failure prediction may not work when the failures
happen soon after the faults manifest. It is difficult to
predict early enough to avoid the failure in these cases.

V. RELATED WORK

A. Failure Prediction
Online failure prediction based on runtime monitoring is a

popular research area. There has been a variety of models
and methods that use the current state of a system and,
frequently, past experience as well, for example the work
by Salfner et al. [11]. Prior failure diagnosis and prediction
have been studied in supercomputers and cloud clusters [1],
[16], [5], [6]. Liang et al. [1] use tagged logs from the
BlueGene machine to discover failures recurrences and cor-
relations between fatal and non-fatal events, and thus predict
failures. Using workload traces from The Grid Workload
Archive project [17], Fadishei [16] et al. find correlations
between job failures and attributes including CPU intensity,
memory usage, CPU utilization, queue utilization, exit hour
and migration of jobs. Pan et al. [5] use the differences in
the behavior of faulty and normal nodes in a MapReduce
environment to identify failures. However, problems arise
when nodes are heterogeneous or few similar nodes can be
treated as references. Williams et al. [6] empirically analyze

(a) multi-task batch long (b) multi-task batch medium (c) multi-task free long

Fig. 7: Relative savings of resources (CPU usage, memory usage and task hour) in the groups of high resource consumption

the fault-free and faulty performance data from a replicated
middleware-based system, and find that unstable performance
is a precursor of failures. They build a black-box method,
and predict failure in a window ahead of impending crash
failures. In summary, these works predict system failures, or
are confined to particular classes of jobs. In contrast, our work
is the first to predict application failures in a diverse workload
in the cloud.

B. Google Data Set

There have been a number of studies on the Google clus-
ter dataset focussing on the workload characterization and
machine utilization. Reiss et al. [4] study the heterogeneity
of tasks in the Google dataset. They find that the resources
and the tasks executed vary widely. Recently, studies have
focused on detecting anomalies in the Google dataset. For
example, Guan et al. [18] propose a principal component
analysis based algorithm to identify anomalies (failures) by
monitoring performance metrics. Their algorithm is essentially
built on dimension reduction, which is oriented to their self-
collected data with hundreds of dimensions, but show much
less accuracy in the Google trace with only 12 dimensions of
resource measures. Their goal is equivalent to the task level
classification in our algorithm, while we have higher accuracy.
More importantly, we predict job failures and propose applying
early prediction results to save resources. In recent work, we
have characterized the Google data set with regard to its failure
behavior and potential for failure prediction [10]. However, we
did not consider a specific failure prediction technique in that
work, nor do we evaluate the efficacy of different techniques.

VI. CONCLUSIONS AND FUTURE WORK

We present an approach, which builds on the recurrent
neural network and the ensemble methods, for predicting
failures via various attributes and performance time series
data in the Google cluster traces. We successfully predict the
termination statuses of tasks and jobs. Experiments show a true
positive rate of more than 84% and a false positive rate of 20%
at the task level. At the job level, 6% - 10% of resources are
saved using early prediction for long batch jobs at the halfway
points of their executions.

As future work, we plan to improve the prediction accuracy
by fully implementing the parameter update model and adding
more features in the learning module. Also, reducing the false
positive rate can help the proactive failure management based
on prediction results become more effective and save more
resources. We would like to extend the prediction framework
to general cloud clusters beyond the Google cluster.

Acknowledgements: This work was funded in part by the
Natural Science and Engineering Research Council of Canada
(NSERC), and the Amazon AWS Education Research Grants.

REFERENCES

[1] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo,
“BlueGene/L failure analysis and prediction models,” in International
Conference on Dependable Systems and Networks (DSN), 2006, pp. 425
– 434.

[2] Z. Ren, X. Xu, J. Wan, W. Shi, and M. Zhou, “Workload characterization
on a production hadoop cluster: A case study on taobao,” in Workload
Characterization (IISWC), International Symposium on. IEEE, 2012,
pp. 3–13.

[3] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema,” Google Inc., Mountain View, CA, USA, Technical
Report, Nov. 2011, revised 2013.05.06.

[4] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. Kozuch, “Het-
erogeneity and dynamicity of clouds at scale: Google trace analysis,” in
Proceedings of the Third ACM Symposium on Cloud Computing. ACM,
2012, p. 7.

[5] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Ganesha:
Blackbox diagnosis of mapreduce systems,” SIGMETRICS Perform.
Eval. Rev., vol. 37, no. 3, pp. 8–13, Jan. 2010.

[6] A. Williams, S. Pertet, and P. Narasimhan, “Tiresias: Black-box failure
prediction in distributed systems,” in Parallel and Distributed Processing
Symposium. IEEE International, 2007, pp. 1–8.

[7] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classifica-
tion,” ACM SIGKDD Explorations Newsletter, vol. 12, no. 1, pp. 40–48,
2010.

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[9] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised
feature learning and deep learning for time-series modeling,” Pattern
Recognition Letters, vol. 42, pp. 11–24, 2014.

[10] X. Chen, C.-D. Lu, and K. Pattabiraman, “Failure analysis of jobs
in compute clouds: A google cluster case study,” in the International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2014.

[11] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction
methods,” ACM Comput. Surv., vol. 42, no. 3, pp. 10:1–10:42, Mar.
2010.

[12] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition, ser.
Springer series in statistics. Springer, 2009.

[13] J. Martens and I. Sutskever, “Learning recurrent neural networks with
hessian-free optimization,” in Proceedings of the 28th International
Conference on Machine Learning, 2011, pp. 1033–1040.

[14] scikit-learn: Machine learning in python. [Online]. Available:
http://scikit-learn.org/stable/

[15] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python for
Scientific Computing Conference (SciPy), Jun. 2010.

[16] H. Fadishei, H. Saadatfar, and H. Deldari, “Job failure prediction
in grid environment based on workload characteristics,” in Computer
Conference, 14th International CSI, 2009, pp. 329–334.

[17] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and
D. H. J. Epema, “The grid workloads archive,” 2008.

[18] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring metric
subspace in cloud computing infrastructures,” in Reliable Distributed
Systems (SRDS), International Symposium on. IEEE, 2013, pp. 205–
214.

