Failure Analysis of Jobs in Compute Clouds: A Google Cluster Case Study

Xin Chen, and Karthik Pattabiraman

University of British Columbia (UBC)

Charng-Da Lu, Unaffiliated

Compute Clouds

Infrastructure as a Service

Compute Clouds

Data & Storage Clouds

- Access to computational resources.
- Increasing cloud adoption in the scientific community.

Application Failures

- High failure rate in cloud clusters
- Isolation of resources not guaranteed
- Resources and power wasted in failures

```
Application application_1392853856445_0900 failed 2 times due to AM Container for appattempt_1392853856445_0900_000002 exited with exitCode: 143 due to: Current usage: 337.6 MB of 1 GB physical memory used; 2.2 GB of 2.1 GB virtual memory
```

Pervious Studies on Failures

System Failures

- HPC [Martino et al., DSN 14'], [El-Sayed et al., DSN 13']
- Cloud hardware reliability[Vishwanath et al., SoCC 10']

Application Failures

Hadoop [Kavulya et al., CCGrid 10'], [Ren et al., IISWC 12']

Research Question

What are the characteristics of job failures in a production compute cloud?

Technical Challenges

- A large number of heterogeneous applications
- Different types of failures
- Different factors contributing to failures
- Other challenges
 - Few data-sets of production clouds, missing information

Dataset used in this paper

- Google cluster workload traces [Wilkes2012]
 - Originally released for job scheduling studies
 - Publicly available:
 - https://code.google.com/p/googleclusterdata/
 - One month data on production cluster of 1,2500 nodes
 - Includes both failure data and periodic resource usage data
- Hides important information such as nature of jobs, users, spatial locations of tasks etc. due to privacy reasons
 - Limited in the kinds of studies we can do
 - Root causes of failures is not provided

First paper to analyze job & task failures in Google cluster data

Google Clusters: Failures

- Records we use
 - Job failures, task failures, and node failures
 - Other attributes and usage of jobs, tasks and nodes

12,500 nodes for 1 month

Job Failures: Google Data

- ▶ An average of 14.6 jobs fail in an hour > 10,000 job failures
- ▶ Failed jobs constitute about 1.5% of the total jobs (670,000)

Why study job failures?

Normalized CPU or memory (done by Google)

Overall usage: failed jobs Vs. finished jobs

CPU - 2.5X memory -6.6X

Factors leading to Cloud Application Failures

Configuration

Application

- Nature of program (e.g., purposes)
- Users

Scheduling constraints

 Policy (e.g., how many times a failed task can be resubmitted)

Real-time status

- Job/task termination status
- Runtime resource usage

Cloud

- Node failure (e.g., HW/SW/network)
- Node maintenance
- Lack of resources

Factors leading to Cloud Application Failures

Configuration Factor: Task Resubmissions

Task resubmission

Frequent task resubmissions may waste resources and obs. energy, particularly in failed and killed jobs.

fail finish kill

Configuration Factor: Priority

Priority determines the nodes assigned to the task.

- Low-priority and high-priority jobs experience high failure rate
 - Result holds even when disregarding resubmissions

Factors leading to Cloud Application Failures

Cloud Factor: Node Failure

Cloud Factor: Node Failure (Cont.)

Average of failed task ratio VS number of machine cycles

Factors leading to Cloud Application Failures

Status Factor: Resource Usage

Distinctions in the task resource usages

Early Failure Manifestation

Differences between failed and finished executions manifest much earlier than the termination.

• Test if two samples significantly differ

► The differences in resource consumption are significant even halfway into the job → potential for failure prediction

Factors leading to Cloud Application Failures

Application Factor: Users

K-means clustering on termination status (fail, finish, kill, evict)

- Correlations between failures and attributes help identify features to indicate high ratios of failures.
- clusters)

Summary of Findings

Significant resource consumption due to failed jobs

Job and task failures manifest differently

- High number of task resubmissions in failed jobs
- Both low and high priority jobs 3 times as many failures
- Node maintenance and update improve reliability

Differences in resource consumption exist

- Many of the jobs have significant differences between failed and finished task submissions
- Differences manifest even halfway into a long job's execution

User profiles can be clustered into 6 dominant groups

Implications

Failure Prediction Scheduling updates

Anomaly Detection

- Early failure prediction at infrastructure provider level
 - A lot of resource usage by failed jobs
 - Over submitted task executions
 - Significant potential for early prediction
- Removals or updates of containers (rejuvenation)
- User based clustering used for anomaly detection

Threats to Validity

Internal threats

- Anonymized names of users and applications
- No information on root causes
- Normalized resource usage

External threats

Limited to Google clusters

Related Work on Google Failure Data

▶ [Di et al., ICPP 13']

- Job-specific information and the termination statuses of tasks.
- Our paper: unique job IDs, and correlation between the clusters of failures with user profiles

▶ [Guan et al., SRDS 13']

- Very low average correlations of raw resource usage to failures.
- Our paper: much higher correlations and more significant differences between failures and successful terminations

▶ [Garraghan et al., HASE 14']

- The node and task failures' statistical distributions
- Our paper: Job and task failures
- Do not use job and cloud system attributes to understand the correlations between job failures and attributes.

Conclusion

- Cloud applications require high reliability
- Failure characterization study of Google data
 - Factors: application, cloud, configuration, and real-time status.
 - Implications for prediction, scheduling and anomaly detection

Future work

- To analyze a more comprehensive set of failures in a wider range of cloud systems
- To perform comprehensive failure prediction [RSDA'14]

Contact me for the data/questions: karthikp@ece.ubc.ca