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Soft Errors

[Feng et. al., ASPLOS’10]
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Soft error rate will increase by nearly an order 

of magnitude as chip feature sizes decrease 

from 22nm to 14nm.



Fail-stop Assumption
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But, in reality ...

Send messages

File I/O
Take Checkpoints
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Traditional Solutions

5



• Errors can be masked

• Allows selective protection

• No need for hardware modification

Goal: Detect and Eliminate Long-latency Crashes(LLCs) in 

Program by identifying the LLC-causing locations
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Challenges
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Search in huge 

space!



Statistical Fault Injection

• Good for resiliency characterization

• Takes long time to find LLCs
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What we do

Code patterns leading 

to LLC fall into very 

few dominant patterns

Static analysis to 

identify the patterns
Selective sampling to 

filter out false-positives

9



Initial Fault Injection Study

• Choose 5 from 10 benchmark applications

• 1,000 random fault injections per application

• 1 fault injection per run – single bit flip
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Fault Model

• Faults occur in computational components or 

load/store units in CPU

• Assume memory and cache - ECC protected

• LLVM Fault Injector (LLFI) [Wei – DSN’14]
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Propagation Latency (dynamic insns)

Propagation latency is application-specific
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Patterns Leading to LLCs
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What we do

Code patterns leading 

to LLC fall into very 

few dominant patterns

Static analysis to 

identify the patterns

Selective sampling to 

filter out false-positives
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CrashFinder Static



Pointer Corruption LLC: Example
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Precision

• 200 random fault injections on each static 

location identified by the technique

• 10 applications from 4 benchmark suites

Precision    =
True Positives

True Positives + False Positives
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# of Identified Locations by 

CrashFinder Static

# of Identified 

Locations Leading 

to LLCs



Precision =

25.42%
Large amount of false-positives, we need further filter them out!
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What we do

Code patterns leading 

to LLC fall into very 

few dominant patterns

Static analysis to 

identify the pattterns
Selective sampling to 

filter out false-positives
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CrashFinder Static

2 Heuristics:

H1 & H2



H1: Instruction Sampling

More efficient to sample by 

unique function call sequence

[From ocean program] 19

Similar behavior in similar 

control flow



H2: Bit Sampling

Sample Bit Sample Bit 

Destination Register
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{First 5 Bits}{Last 5 Bits}



What we do

Code patterns leading 

to LLC fall into very 

few dominant patterns

Static analysis to 

identify the patterns

Selective sampling to 

filter out false-positives
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CrashFinder Static

2 Heuristics:

H1 & H2
CrashFinder

• LLVM compiler pass

• No annotation required - Fully automated

• Supports C and C++ programs



Precision = 

CrashFinder

100%

CrashFinder Static

25.42%
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Heuristics H1 & H2 remove all the false-positives !



Recall

Experiment

• 3,000 random fault injections on each 

application

• Total of 10 benchmarks

Recall      =
True Positives + False Negatives

True Positives
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# of LLCs Observed

# of Locations 

Identified by 

CrashFinder



Recall = 

CrashFinder

90.14%

CrashFinder Static

92.47%
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• Able to identify most of the LLCs

• ~2% loss in recall between CrashFinder and CrashFinder Static



Speed Up

Speed Up    =
Time taken by CrashFinder

Time taken by exhaustive fault injection
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Exhaustive 

Fault Injection CrashFinder



Speed Up: Orders of MagnitudeCrashFinder Static

Time: ~0.5 min

Speedup : ~13 OoM

CrashFinder

Time: ~4 days

Speedup : ~9 OoMCrashFinder gets ~90% LLCs ~ 9 orders of 

magnitude faster than exhaustive fault 

injections !
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Implications: Costs and Benefits

Performance Overhead [under submission]

• ~5% by selective duplication of LLC causing 

locations’ backward slices

Availability [under submission]

• Avoids ~96% of checkpoint corruptions

• About 8 times reduction in unavailability
(unavailability = 1 - availability)
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Related Work
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• Long-latency faults have been observed, but 

noone has identified patterns leading to 

them [Chandra 2002] [Gu 2003] [Yim 2009]

• Relyzer [Hari 2011], SDCTune [Lu 2014] 

reduces fault injection space for SDCs
• Non-trivial to extend for LLCs which are much rarer



Summary

• Long-latency crashes (LLCs) fall into 3 dominant code 
patterns, which can be identified thro’ static analysis

• Heuristics used in CrashFinder works well with ~90% 
recall and 100% precision (i.e., no false positives)

• Speedup of more than 9 orders of magnitude compared 
to exhaustive fault injection (current state of the art)

gpli@ece.ubc.ca

https://github.com/DependableSystemsLab/Crashfinder
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