Fine-Grained Characterization of Faults
Causing Long Latency Crashes in Programs

Guanpeng Li, Qining Lu and Karthik Pattabiraman

University of British Columbia, Canada

UBC

W 1

Soft Errors

Soft error rate will increase by nearly an order
of magnitude as chip feature sizes decrease

from 22nm to 14nm.

[Feng et. al., ASPLOS'10]

Fail-stop Assumption

Fault Occurrance
I

I Activation
: .
I I
v L 4
A
O —

A Time
I

Failure

But, in reality ...

Send messages

File 1/O
Take Checkpoints

Fault Occurrance

Activation

v v v Y
.{;

:
* —
<--- _ -
* A Time

<¢, “mm————

Failure

Traditional Solutions

» Duplication

Hardware duplication
(DMR) can result in 2X
slowdown and/or energy
consumption

» Guard-banding

Guard-banding wastes
power and performance

as gap between average
and worst-case widens

due to variations

Guard-band

Average Worst-case

Why Software ?

Goal: Detect and Eliminate Long-latency Crashes(LLCs) in

Program by identifying the LLC-causing locations

Impactful Errors

Challenges

Statistical Fault Injection

« Good for resiliency characterization
« Takes long time to find LLCs

What we do

ode patterns leading
o LLC fall into very

(SN

Static analysis to
identify the patterns ==

Selective sampling to
filter out false-positives

Initial Fault Injection Study

* Choose 5 from 10 benchmark applications
» 1,000 random fault injections per application

1 fault injection per run — single bit flip

10

Fault Model

* Faults occur in computational components or
load/store units in CPU

* Assume memory and cache - ECC protected

 LLVM Fault Injector (LLFI) [Wel — DSN'14]

& 2 ®

=R 3 x93 = X
o o (=) = o o o o o
o @0 ~ 2 n < m ~

Propagation Latency (dynamic insns)

- 2

T

Propagation latency is application-specific

12

Patterns Leading to

Dthers
Pointer

Corruption
LLC
20%

Loop

Corruption
LLC

56%

LLCs

m Pointer Corruption LLC
W Loop Corruption LLC
m State Corruption LLC

m Others

13

What we do

Code patterns leading
to LLC fall into very
few dominant patterns

=

CrashFinder Static

atic analysis to
identify the patterns

[

Selective sampling to
filter out false-positives

14

RN E LN -

Pointer Corruption LLC: Example

static unsigned int state[N+1);
static unsigned int s«next;

unsigned int reloadMT (void)
1
register unsigned int «; tate;
» - » l' ';
. - 44 [
unsigned int randomMT (void)

unsigned int y;

[From sjeng program]

Others

Rco, Pointe

i Corruption
LLC
20%

Loop
Corruption
LLC
56%

m Pointer Corruption LLC

® Loop Corruption LLC

m State Corruption LLC

w Others

15

Precision

200 random fault injections on each static
location identified by the technique
10 applications from 4 benchmark suites

of Identified
Locations Leading

to LLCs True Positives

of Identified Locations by True Positives + False Positives
CrashFinder Static

Precision =

100%

True Positives

b

True Positives + False Positives

F{*‘é & {)@"‘P & ;}E":& ﬁ@‘*q
E CRASHFINDER STATIC

EE%

17

What we do

Code patterns leading
to LLC fall into very
few dominant patterns

-

CrashFinder Static

Static analysis to
identify the pattterns

elective sampling to
filter out false-positives

18

H1: Instruction Sampling {=. =
Similar behavior in similar o
control flow GIF i e

More efficient to sample by i
unique function call sequence et = ialan

copy_black()

[From ocean program]

H2: Bit Sampling

Destination Register
63th Bit 0th Bit

Low Bit Range
{Last 5 Bits} {First 5 Bits}
Sample Bit Sample Bit

20

What we do

CrashFinder Static

Code patterns leading Static analysis to
to LLC fall into very = identify the patterns
few dominant patterns

CrashFinder

* LLVM compiler pass
* No annotation required - Fully automated

 Supports C and C++ programs

Selective sampling to
filter out false-positives

2 Heuristics:
H1 & H2

21

True Positives

P r eC I S I O n — True Positives + False Positives

CrashFinder
100%

LNV
LIS

S CRASHFINDER STATIC R CRASHFINDER

Recall

Experiment
« 3,000 random fault injections on each
application

 Total of 10 benchmarks

of Locations

dentified by True Positives
CrashFinder

True Positives + False Negatives

of LLCs Observed

23

True Positives

Recall =

True Positives + False Negatives

CrashFinder Static

92.47% CrashFinder

. 90.14%

* Able to identify most of the LLCs

e ~2% loss in recall between CrashFinder and CrashFinder Static

k. -
&£ & & & ¢¢~ & & < L&ﬂ & &

B CRASHFINDER STATIC NCRASHFINDER 24

Speed Up

Exhaustive

Fault Injection

/\/‘\/\A

Speed Up

Long-latency Faults

Time taken by CrashFinder

Time taken by exhaustive fault injection

25

Speed Up: Orders of Mag v

Time: ~0.5 min
Speedup : ~13 OoM

18
16

14 CrashFlnder
Timoa: A1 Aavg

CrashFinder gets ~90% LLCs ~ 9 orders of
magnitude faster than exhaustive fault

B CRASHFINDER STATIC @ CRASHFINDER

26

Implications: Costs and Benefits

Performance Overhead [under submission]
« ~5% by selective duplication of LLC causing
locations’ backward slices

Avalilability [under submission]
* Avoids ~96% of checkpoint corruptions
* About 8 times reduction in unavailabllity

(unavailability = 1 - availability)

27

Related Work

Long-latency faults have been observed, but
noone has identified patterns leading to
them [Chandra 2002] [Gu 2003] [Yim 2009]

Relyzer [Hari 2011], SDCTune [Lu 2014]

reduces fault injection space for SDCs
Non-trivial to extend for LLCs which are much rarer

28

Summary

« Long-latency crashes (LLCs) fall into 3 dominant code
patterns, which can be identified thro’ static analysis

« Heuristics used in CrashFinder works well with ~90%
recall and 100% precision (i.e., no false positives)

« Speedup of more than 9 orders of magnitude compared
to exhaustive fault injection (current state of the art)

gpli@ece.ubc.ca

https://github.com/DependableSystemsLab/Crashfinder

29

mailto:gpli@ece.ubc.ca

