
Fine-Grained Characterization of Faults

Causing Long Latency Crashes in Programs

Guanpeng Li, Qining Lu and Karthik Pattabiraman

University of British Columbia, Canada

1

Soft Errors

[Feng et. al., ASPLOS’10]

2

Soft error rate will increase by nearly an order

of magnitude as chip feature sizes decrease

from 22nm to 14nm.

Fail-stop Assumption

3

But, in reality ...

Send messages

File I/O
Take Checkpoints

4

Traditional Solutions

5

• Errors can be masked

• Allows selective protection

• No need for hardware modification

Goal: Detect and Eliminate Long-latency Crashes(LLCs) in

Program by identifying the LLC-causing locations

6

Challenges

7

Search in huge

space!

Statistical Fault Injection

• Good for resiliency characterization

• Takes long time to find LLCs

8

What we do

Code patterns leading

to LLC fall into very

few dominant patterns

Static analysis to

identify the patterns
Selective sampling to

filter out false-positives

9

Initial Fault Injection Study

• Choose 5 from 10 benchmark applications

• 1,000 random fault injections per application

• 1 fault injection per run – single bit flip

10

Fault Model

• Faults occur in computational components or

load/store units in CPU

• Assume memory and cache - ECC protected

• LLVM Fault Injector (LLFI) [Wei – DSN’14]

11

Propagation Latency (dynamic insns)

Propagation latency is application-specific
12

Patterns Leading to LLCs

13

What we do

Code patterns leading

to LLC fall into very

few dominant patterns

Static analysis to

identify the patterns

Selective sampling to

filter out false-positives

14

CrashFinder Static

Pointer Corruption LLC: Example

15

Precision

• 200 random fault injections on each static

location identified by the technique

• 10 applications from 4 benchmark suites

Precision =
True Positives

True Positives + False Positives

16

of Identified Locations by

CrashFinder Static

of Identified

Locations Leading

to LLCs

Precision =

25.42%
Large amount of false-positives, we need further filter them out!

17

What we do

Code patterns leading

to LLC fall into very

few dominant patterns

Static analysis to

identify the pattterns
Selective sampling to

filter out false-positives

18

CrashFinder Static

2 Heuristics:

H1 & H2

H1: Instruction Sampling

More efficient to sample by

unique function call sequence

[From ocean program] 19

Similar behavior in similar

control flow

H2: Bit Sampling

Sample Bit Sample Bit

Destination Register

20

{First 5 Bits}{Last 5 Bits}

What we do

Code patterns leading

to LLC fall into very

few dominant patterns

Static analysis to

identify the patterns

Selective sampling to

filter out false-positives

21

CrashFinder Static

2 Heuristics:

H1 & H2
CrashFinder

• LLVM compiler pass

• No annotation required - Fully automated

• Supports C and C++ programs

Precision =

CrashFinder

100%

CrashFinder Static

25.42%

22

Heuristics H1 & H2 remove all the false-positives !

Recall

Experiment

• 3,000 random fault injections on each

application

• Total of 10 benchmarks

Recall =
True Positives + False Negatives

True Positives

23

of LLCs Observed

of Locations

Identified by

CrashFinder

Recall =

CrashFinder

90.14%

CrashFinder Static

92.47%

24

• Able to identify most of the LLCs

• ~2% loss in recall between CrashFinder and CrashFinder Static

Speed Up

Speed Up =
Time taken by CrashFinder

Time taken by exhaustive fault injection
25

Exhaustive

Fault Injection CrashFinder

Speed Up: Orders of MagnitudeCrashFinder Static

Time: ~0.5 min

Speedup : ~13 OoM

CrashFinder

Time: ~4 days

Speedup : ~9 OoMCrashFinder gets ~90% LLCs ~ 9 orders of

magnitude faster than exhaustive fault

injections !

26

Implications: Costs and Benefits

Performance Overhead [under submission]

• ~5% by selective duplication of LLC causing

locations’ backward slices

Availability [under submission]

• Avoids ~96% of checkpoint corruptions

• About 8 times reduction in unavailability
(unavailability = 1 - availability)

27

Related Work

28

• Long-latency faults have been observed, but

noone has identified patterns leading to

them [Chandra 2002] [Gu 2003] [Yim 2009]

• Relyzer [Hari 2011], SDCTune [Lu 2014]

reduces fault injection space for SDCs
• Non-trivial to extend for LLCs which are much rarer

Summary

• Long-latency crashes (LLCs) fall into 3 dominant code
patterns, which can be identified thro’ static analysis

• Heuristics used in CrashFinder works well with ~90%
recall and 100% precision (i.e., no false positives)

• Speedup of more than 9 orders of magnitude compared
to exhaustive fault injection (current state of the art)

gpli@ece.ubc.ca

https://github.com/DependableSystemsLab/Crashfinder

29

mailto:gpli@ece.ubc.ca

