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Abstract—To programmatically interact with the user interface
of a web application, element locators are used to select and
retrieve elements from the Document Object Model (DOM). Ele-
ment locators are used in JavaScript code, Cascading stylesheets,
and test cases to interact with the runtime DOM of the webpage.
Constructing these element locators is, however, challenging due
to the dynamic nature of the DOM. We find that locators
written by web developers can be quite complex, and involve
selecting multiple DOM elements. We present an automated
technique for synthesizing DOM element locators using examples
provided interactively by the developer. The main insight in our
approach is that the problem of synthesizing complex multi-
element locators can be expressed as a constraint solving problem
over the domain of valid DOM states in a web application. We
implemented our synthesis technique in a tool called LED, which
provides an interactive drag and drop support inside the browser
for selecting positive and negative examples. We find that LED
supports at least 86% of the locators used in the JavaScript code
of deployed web applications, and that the locators synthesized
by LED have a recall of 98% and a precision of 63%. LED is
fast, taking only 0.23 seconds on average to synthesize a locator.

Keywords: Program synthesis, Programming by example,
Element locators, CSS selectors, Web applications

I. INTRODUCTION

Over the past few years, the number of web applications
has exploded. These web applications consist of three parts,
namely 1) HTML code that is used to define the Document
Object Mode (DOM), 2) CSS stylesheets that are used to
define the layout of the web page, and 3) JavaScript code
that interacts with and updates the DOM tree for the web
application. DOM element locators define the rules required
to traverse the DOM tree defined by the HTML. Both CSS
and JavaScript utilize these rules and the information present
in the DOM tree to interact with the elements present in it.

Writing DOM element locators is a complex task for
developers as (1) they need a mental model of the valid DOM
elements in each DOM state that they want to access, and (2)
they need to find the common properties that are shared by the
elements they want to access (to be inclusive), but also those
that are not shared by any other element in the DOM state
(to be exclusive). Developers typically perform this task by
manually inspecting different elements of the DOM in the state
of interest, and formulating DOM element locators through
trial and error. This often leads to bugs and inconsistencies.

IThe Document Object Model is a cross-platform and language-independent
convention for representing and interacting with objects in HTML, XHTML
and XML documents.
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For example, in our prior work [26], we found that 65% of
the client-side JavaScript errors within a web applications are
caused by faulty interactions between JavaScript and DOM.

In this paper, we present an automated approach to syn-
thesize DOM element locators that can be used to select
multiple DOM elements within JavaScript or /CSS code. We
leverage program synthesis techniques to convert the problem
of DOM element locator synthesis into a constraint solving
problem. Our technique falls in the category of Programming
by example (PBE), which involve generating code based on
input-output examples provided by the developer[23], [9],
[14], In our case, the input is provided as positive and negative
examples of DOM elements. We devise a mathematical model
for translating the examples to constraints that are then fed
into a Satisfiability (SAT) solver. The output of the solver
is converted back to the DOM element locators that can be
used as parameters to DOM API methods within JavaScript
code. The synthesized code snippets are then ranked based on
programmer-provided criteria and presented to the program-
mer. These can be used in JavaScript/CSS code that may be
used within the web application to select the relevant DOM
elements.

Our code synthesis technique is implemented in a tool called
LED (Live Editor for DOM). LED has a visual interface that
is interposed on the web application, allowing developers to
interactively provide (i.e., drag and drop) examples of DOM
elements they wish to select in a given DOM state. Developers
can also augment the input with negative examples to further
refine the synthesized code. LED also provides the developers
the ability to configure the type of DOM element locators
(such as minimum length, maximum length, selection scope)
that they want to generate.

Prior work has explored the problem of constructing DOM
element locators in JavaScript applications [11], [2], [5]. How-
ever, their focus has been on generating selectors for test
cases in automated testing frameworks such as Selenium.
The main difference between our work and these is that the
work on test case generation is concerned with accessing a
single element, while our work is concerned with selecting
multiple DOM elements. This is an important difference as
programmers often access multiple DOM elements with a
single locator, as we show later in the paper. Another major
difference between LED and prior work is that we not only
capture the DOM elements required by the developer, but also
the DOM elements that the developer does not to select. 7o the
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Fig. 2: Overview of the DOM structure for the running example.

best of our knowledge, we are the first to propose an automated
approach for DOM element locator synthesis that can select
multiple DOM elements based on examples provided by the
programmer.

Our work makes the following contributions:

o A discussion of the problem of synthesizing JavaScript
code that interacts with multiple DOM elements in one
or more DOM states of the web application.

« An example based automated approach to analyze multi-
ple DOM elements and generate constraints based on the
provided examples, which are then input to a SAT solver.

« An implementation of our approach in an open source
tool called LED.

o An empirical evaluation to validate the proposed tech-
nique, demonstrating its efficacy and real-word relevance.
Our examination of real world web applications indicate
that LED can support 86% of the total DOM element
locators used by web developers. Further, developers
often write complex locators to choose multiple DOM
elements. The results of our empirical evaluation on three
web applications show that LED can achieve a recall of
98% and precision of 92%, with a maximum execution
time of 0.5 seconds.

II. MOTIVATION

In this section, we first provide a running example to
demonstrate the problems faced by web developers. We then
discuss the challenges involved in synthesizing DOM element
locators using our approach.

A. Running Example

Figure [T| presents the screenshot of a navigation menu from
the Apple [3]] website. The DOM tree structure of the menu
is presented in Figure [2] Certain elements and class names
have been omitted for the sake of simplicity. Each node within
the DOM tree represents a DOM element. We use the CSS
selector notation to present the DOM tre Words proceeded
with ‘# represent ID attributes, ‘. represents classes attributes,
and words without any prefixes represent the type of DOM

2We use the terms DOM element locators and CSS selectors interchange-
ably in the rest of this paper.

1 var elems = document.querySelectorAll ('#gn-store, #gn—<—
mac, #gn-ipod, #gn-iphone, #gn-ipad, #gn-itunes"') ;

2

3 for (var i=0; i<elems.length; i++) {

4 elems[i] .addEventListener ('onmouseover',
")

5 elems[i]
)i

'changeColor<+—

.addEventListener ('onmouseout', 'restoreColor'<>
6}

7

8 function changeColor () {

9 //change element color here

10 }

11

12 function restoreColor () {

13 //restore element color here

14 }

Fig. 3: JavaScript code required to perform the sample task

TABLE I: Subset of types of DOM element locators available to developers

Type Example Description
#id #globalnav Select an element with
id="globalnav”.
.class .apple Select all elements with
class="apple”.
% * Select all DOM elements.
element 1i Select all <li> elements.
element, element ul,li Select all <ul> and <li>
elements.
element>element ul>1i Select all <li> elements where
the parent is a <ul> element.

element. Every DOM element will have a type associated with
it, while class names and IDs are optional attributes. IDs are
required to be unique within the DOM tree and can be used
to refer to a specific DOM element.

Sample task. Assume the user needs to highlight the menu
item elements, excluding the logo and search box, when the
mouse hovers over the menu.

Solution. Figure [3| shows the JavaScript code required to
perform the given task. At Line 1, we can see that the
developer needs to pass a DOM element locator as a parameter
to the DOM API function. The traditional way of writing
DOM element locators involves the following steps; 1) load
the web application, 2) navigate to a particular DOM state,
3) analyze the available DOM elements, and 4) write a DOM
element locator using the information attached to each DOM
element.

B. DOM element locators and Challenges

Table [l provides a subset of types of DOM element locators
that can be used by web developers to select the DOM
elements. A complete list of types of DOM element locators
can be found on the w3schools website [8]. Developers can
use any of these DOM element locators depending upon the
type of task as well as the information available in the DOM
tree. Developers can also use additional information such as
class names attached to each element in the DOM element
locator.

For the running example, Table lists a subset of the
possible DOM element locators that can be used to select
elements 5-10 in the Figure E} However, all of the DOM
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Fig. 1: Screenshot of navigation menu from Apple website

TABLE II: Subset of possible DOM element locators used to select elements 4-11
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element locators are not equally precise and durable. For
example, locator 1 points to elements 5-10 only, whereas
locators 2-8 point to additional elements including element 4
and 11 as well. Similarly, a DOM element locator that includes
all selectors along the path from root node to target DOM
element (e.g., locators 3.4), is precise, but fragile to minor
modifications in the DOM tree. On the other hand, a DOM
element locator that excludes the hierarchical information and
only uses locators attached to target DOM element (e.g.,
locators 1,2) is resistant to DOM tree manipulations, but
sometimes cannot precisely locate the target DOM element.

Therefore, writing a DOM element locator is a non-trivial
task and requires a significant amount of effort by the devel-
oper. Further, since a single web application often involves
multiple developers, each responsible for different parts of
the application, the developer needs to carefully analyze and
select the elements that she wants to interact with. This
process is time consuming, and is a major source of errors for
many web applications [26]]. Despite all these issues, however,
DOM element locators are heavily used by developers to
obtain references to DOM elements within the JavaScript code.
Therefore, the developers need automated tools that can 1)
assist them in generating locators to obtain references to DOM
elements, and 2) provide an immediate feedback on the quality
of their locators used and the elements selected by that DOM
element locator.

C. Goal

In this work, we present a technique to synthesize DOM
element locators that may be used as parameters to DOM API
methods within JavaScript code that interacts with DOM. The
overall goal of this paper is to assist the web developers in
writing DOM element locators for JavaScript/CSS code that
interacts with DOM. In general, a good DOM element locator
should satisfy the following criteria:

o The dependency of DOM element locator on the DOM
hierarchy should be minimum, so that minor changes in
the DOM should not invalidate the locator.

o The DOM element locator should be specific enough to

Locator Locator Code Locator Type Count

1 #gn-store, #gn-mac, #id 8 Input Examples Generate al
#gn-ipod, #gn-iphone, - possible CSS

2 1i element 1 each example

3 body nav ul 1i element>element 1

4 body .apple ul 1i element>element 1

5 body element>element 1 ,,{ Configuration
.globalheader-js 1i

6 #globalheader ul 1i element>element 1

7 #globalheader 1i element>element 1

8 #globalnav 1i element>element 1

Fig. 4: DOM element locator code synthesis overview

narrow down the required DOM element(s) and avoid
non-required DOM elements.

To minimize the dependency of a DOM element locator
on the DOM hierarchy while still preserving the preciseness
of the selector, we need to rank the list of all selectors
found in the DOM hierarchy and then combine only the
most optimal selectors to generate the required DOM element
locator. However, ranking this list is not straight forward, as
the rank of a selector depends on the nature of task to be
performed by the user and the information available in the
DOM tree. Prior work by Keller et al. [17] provides metrics
(such as ‘universality’) to rank the DOM element locator based
on the information available in the DOM tree. However, to the
best of our knowledge, none of the prior work has focussed
on ranking the DOM element locator based on the nature of
the task.

III. METHODOLOGY

Usage Model and Assumptions. We assume that the devel-
oper has a working web application, which is under develop-
ment. This is required because we need to analyze the live
DOM state and provide the developer with an interface to
mark DOM elements as positive and negative examples. This
is a reasonable assumption as the current state-of-art involves
analyzing the DOM states manually, for which a live DOM
state is needed.

Mathematical Model.: We define a mathematical model to
convert the problem of synthesizing locator code into a con-
straint solving problem using the examples of DOM elements
provided as inputs by the developer. Table [III] provides an
overview of the mathematical model that we defined for this
approach. The input required from the developer is in the
form of positive and negative examples of DOM elements. The
developer can also customize type of DOM element locator to
be synthesized based on the nature of the task to be performed.

Approach Overview.: Our JavaScript code synthesis approach
for selecting DOM elements is outlined in Figure @ which
consists of the following main phases: 1) Input collection, 2)
Mathematical model generation, 3) Constraint solving, and 4)
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Fig. 5: Search scope within the DOM tree. Positive examples are shown in green, while
negative examples are in red. 1) Limited Scope: only positive examples (Element
8,10) should be selected by the synthesized locator. 2) Local Scope: similar elements
within the common parent (Element 2) of all positive examples are considered. 3)
Global Scope: similar elements within the complete DOM tree are considered, root
node of DOM tree (Element 1) acts as the root node for the search scope as well.

Output generation. The input collection phase takes the DOM
elements as input examples from the developer along with
the set of configurations to guide the synthesis process. In
the Mathematical model generation phase, we analyze each
input example provided by the user and generate equations
for the discovered constraints. The model is then passed as
input to the SAT solver in the constraint solving phase. The
solutions generated by the SAT solver are then converted into
DOM element locators that can select the corresponding DOM
elements in the output phase. In the next sections, we explain
each phase of our approach in detail using the sample task
described in Section

A. Phase 1: Input Collection

In this phase, the developer needs to provide positive
examples (P) of DOM elements that she wants to select,
along with negative examples (N) of elements that she wants
to exclude. The intuition is that we look for similarities
among the DOM elements provided as positive examples, and
dissimilarities with the negative examples. The positive and
negative examples together constitute the example set (E).
Note that N can be an empty set, but P must be non-empty. The
developer also can define configuration parameters to guide the
code synthesis process and limit the number of DOM element
locators synthesized. They are as follows:

e Depth of DOM element locator (D) Increasing the
depth of DOM element locator can help prune unwanted
DOM elements. However, it increases the dependency
of the locator on the DOM, making the DOM element
locator fragile to DOM manipulations. Therefore, the
developer can limit the maximum depth of the DOM
element locator.

« Maximum execution time (T) The process of searching
through the solutions may be time-consuming, especially
when the number of possible solutions is large. Therefore,
the developer can limit the time spent by LED to explore
the possible solutions using the SAT solver.

e Search scope (S) Search scope is used to limit the
number of DOM elements to be selected. For example, if
the developer wants to generate a DOM element locator
to select a single element which is provided as a positive

Algorithm 1: Generating CNF input from DOM Elements

Data: DOM Elements: Positive P and Negative N sets
Result: CNF Input for the SAT Solver

1 foreach P; in P do

2 X,; = generateAllPossibleDOMElementLocators(IP; );
3 i1, 2, :cml] = filterUsingConfiguration(X; );
4 DNF; =xij1 VT2V ..... V Zings
5 i+ +;
6 end

7 foreach N; in N do

8 Y; = generateAllPossibleDOMElementLocators(N ;);
9 foreach y; in Y; do

DNFiyr = —y; ;

k++;

12 end
13 end
14 CNF =DNF1 ADNFa A.... N\DNF(@i+ k)

example, the developer can choose the Limited scope.
However, if she wants to select multiple DOM elements,
and the elements are within the same subtree, she can use
local search scope. Or if the elements are across the entire
DOM tree, she can use global search scope. Figure [
provides an example of the different search scopes.

Sample task. Table [[I]] lists the input variables defined by the
developer for the sample task described in Section To
select elements 5-10 (Figure 2, assume the developer provides
elements 5 and 6 as positive examples, and elements 4 and 11
as negative examples. We assume that all the configuration
inputs are initialized with default values for simplicity’s sake.

B. Phase 2: Mathematical Model Generation

In this phase, we convert the input DOM elements provided
by the developer in the previous phase (Table as a single
constraint in the Conjunctive Normal Form (CNF), in order to
input this to the SAT solver. Algorithm [I| provides an overview
of steps required to convert a list of DOM elements into a
CNF input for the SAT solver. For each DOM element in
the set of positive elements (Lines 1-6), we first generate
a list of all the possible DOM element locators to select
that particular element (Line 2). The generated list is then
filtered based on the configuration settings such as length of
DOM element locator, selectors to be avoided, “must use”
selectors, etc (Line 3). Next we generate a Disjunctive Normal
Form (DNF) expression that combines all the available DOM
element locators for each DOM element (Line 4). This is
because we want to select at least one DOM element locator
that can select the given DOM element. We repeat this process
for each DOM element in the set of negative elements (Lines
7-13). Finally, we perform a conjunction of all the generated
DNFs to form the CNF expression.

Sample task. Table [[V]shows the process of generating a CNF
input for the SAT solver to solve the sample task described
in the Section We first generate DOM element locators
for the individual positive and negative elements (Row 1). The
DOM element locators that do not satisfy the criteria specified
by the developer (such as maximum depth) are then filtered
from the DOM element locators for positive elements (Row
2). For each individual DOM element, we then generate a



TABLE III: Mathematical model for defining the input variables, and the values for the sample task.

Variable | Value Definition Sample Task
E {P,N € DOM Elements} Set of examples {4,5,6,11}
P {z | © € Positive example} Set of positive examples {5,6}
N {y | y € Negative ezample} Set of negative examples {4,11}
D 1-20 Maximum depth of synthesized DOM element locator 4
T 0-1000 Maximum execution time in seconds 10
S Limited search, Local search, Global search Search scope for similar DOM elements Local search
U user defined List of DOM element property values that must be used in the synthesized locator null
A user defined List of DOM element property values that must be avoided in the synthesized locator null
[¢) user defined Priority order various types of DOM element locators null
TABLE IV: Mathematical model generation for the sample task
Row DSL Formula P = Element 5,6 N = Element 4, 11
Code
1 DOM S(E;) = body nav ul 1li, body nav 1li, body nav ul 1li, body nav 1li, body ul 1li,
ele- generateIndividual Locatorss (E;) body ul 1i, nav ul 1li, body 1i, nav ul 1i, body 1li, nav 1i, ul 1i, 1i,
ment nav 1i, ul 1i, 1i, body body #globalheader #globalnav #gn-apple,
loca- #globalheader #globalnav body, nav ul #gn-apple, body nav
tors #gn-store, body nav ul #globalnav #gn-apple, body #globalheader
(X;) #gn-store, body nav #globalnav #globalnav #gn-search, body, nav ul
#gn-store, body #globalheader #gn-search, body nav #globalnav
#globalnav #gn-mac, body nav ul #gn-search,
#gn-mac, body nav #globalnav
#gn-mac, .
2 Filtered filter (S (P;),[D, T,U, A, S,Q0]) body nav ul 1i, body nav ul
Loca- #gn-store, body nav #globalnav
tors #gn-store, body nav ul #gn-mac,
F(X;) body nav #globalnav #gn-mac,
3 DNF(s) Ve € P{(U F (S (z4)))},Vy € (body nav ul 1i V body nav ul - (body nav ul 1i), - (body nav 1i),
N{—=(U S (v:))} #gn-store V body nav #globalnav —(body ul 1i), —(nav ul 1li), - (body
#gn-store), (body nav ul 1i V 1i), —(nav 1i), —(ul 1i), —(1li), = (body
body nav ul #gn-mac V body nav #globalheader #globalnav #gn-apple),
#globalnav #gn-mac), —(body), —(nav ul #gn-apple), —(body
nav #globalnav #gn-apple), —(body
#globalheader #globalnav #gn-search),
= (body), —(nav ul #gn-search), - (body
nav #globalnav #gn-search),
4 CNF N U F(S(zi)))N (body nav ul 1i V body nav ul #gn-store V body nav #globalnav
vz eP #gn-store) A (body nav ul 1i V body nav ul #gn-mac V body nav
N — (U S(y)) #globalnav #gn-mac) A - (body nav ul 1i) A = (body nav 1i) A = (body ul
VyeN 1i) A =(nav ul 1i) A —(body 1i) A = (nav 1i) A —(ul 1i) A =(li) A
— (body #globalheader #globalnav #gn-apple) A —(body) A —(nav ul
#gn-apple) A —(body nav #globalnav #gn-apple) A —(body #globalheader
#globalnav #gn-search) A - (body) A —(nav ul #gn-search) A - (body nav
#globalnav #gn-search),

DNF (Row 3) using the filtered DOM element locators. DNFs
for individual examples are then combined to generate a CNF
(Row 4). The generated CNF is then fed to the SAT solver in
the next phase.

C. Phase 3: Constraint Solving

The constraints generated during the mathematical model
generation are then passed to the SAT solver to provide a valid
solution satisfying the constraints. Unfortunately, a generic
SAT solver provides only a single solution to satisfy the given
CNF [36]. However, to select the DOM element locator that
is optimal (defined later), we need to find all the possible
solutions for the given CNF and rank them. We use the
technique defined in Zhao et al. [36] to recursively find all the
possible solutions for the generated CNF. For each solution
provided by the SAT solver, we create a blocking clause and
append it to the previously used CNF. The CNF is then passed
to the SAT solver to provide another possible solution. The
process is repeated until all the possible solutions have been
discovered, or the execution time provided as input by the

developer is exceeded.

D. Phase 4: Output Generation

The output provided by the SAT solver is in the form a
solution for the CNF input variables. We map these variables
back to the DOM element locators to generate a list of
DOM element locators that satisfy the constraints described
in the mathematical model. The DOM element locators are
then ranked based on various factors (discussed next) and the
results are then presented to the user. We adopt and apply
the Synthesizer Driven Interaction technique et al. [15] to
avoid ambiguities, i.e., the system presents a series of input-
output pairs to the developer, which she can mark as correct or
incorrect. The algorithm is then re-run to provide the developer
with an updated output.

Ranking DOM element locators. We rank the synthesized
DOM element locators based on two main factors, i.e., 1)
Information available in the DOM tree, and 2) Nature of the
task to be performed by the JavaScript code. Prior work by
Keller et al. [17] has defined two metrics i.e., Universality



TABLE V: Metrics proposed by Keller et al. [17] to rank the DOM element locators
based on the information available in the DOM tree.

[ Metric [

Universality

Definition |

Ratio of number of element selectors versus the total number
of selectors used within the DOM element locator. Increasing
the number of #id, .class and other locators that utilize
attribute specific information from DOM elements make the
DOM element locator dependent on the DOM tree and should
be avoided as much as possible.

Minimum of the number of restrictions posed by the DOM
element locator on the DOM tree hierarchy and the universality
score achieved by the DOM element locator. Increasing the
depth of DOM element locator increases the number of
restrictions on the DOM hierarchy and hence depth should be
kept as less as possible.

Abstractness

and Abstractness (Table [V]) to rank the DOM element locators
using the information available in the DOM tree. However,
they do not take into account the task the user is attempting
to perform. To capture the nature of task, we combine the
information available in the configuration input specified by
the user with the two metrics.

Sample task. For the sample task (Section [[I-A), the output
consists of a list of DOM element locators, ranked based on
the Universality and Abstractness of the synthesized DOM
element locators. For the sake of simplicity, we only show the
top 4 synthesized DOM element locators below.

#gn-mac, #gn-ipod, #gn-iphone,

1) #gn-store, #gn-ipad,

#gn-itunes

2) ul #gn-store, ul #gn-mac, ul #gn-ipod, ul #gn-iphone,
ul #gn-ipad, ul #gn-itunes

3) ul 1i #gn-store, ul 1i #gn-mac, ul 1i #gn-ipod, ul 1i
#gn-iphone, ul 1i #gn-ipad, ul 1i #gn-itunes

4) nav ul #gn-store, nav ul #gn-mac, nav ul #gn-ipod, nav
ul #gn-iphone, nav ul #gn-ipad, nav ul #gn-itunes

IV. IMPLEMENTATION

We have implemented our approach in an open source tool
called [21]. LED is built using JavaScript and can be installed
as a Bookmarklet [32] within any web browser. Hence, it is
not tied to a particular development environment. The source
code for our tool is available to download, along with a video
of the tool in operation [30]]. Figure [6] presents a screenshot
of LED.

In the input phase, the developer using LED can see the
outlines of DOM elements by hovering over them, thus getting
instant visual feedback on the element. She can select elements
by dragging and dropping the DOM element into the input
container as a positive or negative example. The developer can
also configure the options for the synthesized DOM element
locator based on the nature of the task to be performed. When
finished, she needs to click on the Generate Locator button
to initiate the DOM element locator code synthesis process of
LED.

In the mathematical model generation phase, LED ana-
lyzes the DOM elements provided as examples by the devel-
oper. Using the DOM API methods, it then traverses the DOM
tree for each example and captures the relevant information
required to synthesize DOM element locators, and generate
constraints for the SAT solver.
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Fig. 6: Screenshot of DOM element locator generation using LED. Developers can
mark the DOM elements as positive and negative examples, and configure options in
order to generate the best possible DOM element locator.

In the constraint solving phase, LED initiates the SAT
solver using the constraints defined in the previous phase. We
use the Minisat solver [31].

In the output phase, the results obtained by SAT solver
are presented to the developer in the form of ranked DOM
element locators. The output phase is tailored towards handling
the possible ambiguities present in the input provided by the
developer. When the developer hovers over a locator, LED
provides live feedback by highlighting the DOM elements that
are selected by that locator, and she can mark those as correct
and incorrect.

The current implementation of LED supports synthesizing
DOM element locators that belong to CSS1 [6] and CSS2 [7]]
category. DOM element locators that belong to CSS3 [16]]
category can also be synthesized using a similar approach.
However, synthesizing such locators require additional in-
formation from DOM as well as from developer which we
currently discard. Extending our approach to synthesize DOM
element locators for the CSS3 category is a direction for future
work.

V. EVALUATION

In this section, we first define the research questions to
assess the overall approach, and then define a methodology
to answer each of the research questions.

A. Goals and Research Questions

To evaluate how effectively LED can synthesize input
parameters for DOM API functions, we answer the following
research questions in our study.

RQ1: Do developers access multiple DOM elements with a
single DOM element locator? How complex are the DOM
element locators used by web developers within Java-
Script code?

RQ2: What types of DOM element locators are predomi-
nantly used by web developers? What percentage of those
DOM element locators are supported by LED?



RQ3: How accurate are the DOM element locators synthe-
sized by LED, with only positive examples, and with both
positive and negative examples?

RQ4: What is the performance overhead incurred by LED?

B. Methodology

RQ1: Complexity. We use the Phormer [27]], Gallery3 [11],
and Wordpress [33]] web applications to measure the complex-
ity of DOM element locators used by web developers. These
are large and popularly used web applications, which have also
been used in our prior work [4]].

For each web application, we intercept the calls to DOM
API methods and recorded the DOM element locator used by
the web developers. We then measure the number of DOM
elements selected by the DOM element locator in the web
application. Further, a DOM element locator can be formed
using a combination of atomic DOM element locators such
as #id, .class, and tag. Therefore, we also measure
the number of atomic DOM element locators used within a
single DOM element locator. This gives an indication of the
complexity of the DOM element locator.

RQ2: Coverage. As discussed in Section LED supports
only a limited set of DOM element locators. We investigate
to what degree these locators are used in practice. One way to
assess this is by doing an exhaustive study of DOM element
locator usage in real web applications. However, due to time
restrictions, we restrict ourselves to DOM element locator
usage in the landing pages of the Alexa top 200 websites.
Since the JavaScript code used in production level websites
is often minified and obfuscated, we chose to analyze DOM
element locators used within their stylesheets for this study.
For each web application, we extract the style sheets used by
it. For each stylesheet, we measure the total number of DOM
element locators, and the number of DOM element locators
that are supported by the current version of LED. We chose to
analyze stylesheets rather than JavaScript code as JavaScript
code in production web applications is often obfuscated and
minimized, making it difficult to parse and analyze. Note that
LED is a development phase tool, and hence does not have to
deal with minified or obfuscated code.

RQ3: Accuracy. We assess whether the DOM element lo-
cators synthesized by LED match the ones written by the
programmer. This assumes that the DOM element locator
written by the developer in the JavaScript code is correct. We
use the same three web applications as used in the first research
question.

For each application, similar to RQ1, we intercept the calls
to the DOM API methods within the JavaScript code, and
record the DOM elements selected by the method. As DOM
API methods are implemented using DOM element locators,
this is equivalent to capturing the DOM element locators
written by the developer. We then use LED to synthesize
a DOM element locator using the given DOM elements as
positive examples. We also consider the effect of including
negative examples from the remaining elements. A DOM

TABLE VI: Complexity of DOM element locators

No. of selected Percentage of No. of atomic Percentage of
DOM elements use cases DOM element use cases
locators

1 78.17% 1 65.85%

2-5 11.97% 2 21.83%
6-10 1.41% 3 2.46%
11 - 100 8.10% 4 9.51%
> 100 0.35% >5 0.35%

element locator is considered adequate if it selects the DOM
elements that were also selected using the original DOM
element locator used by the developer.

To measure the accuracy of our proposed technique we
follow the following procedure for each application:

1) Crawl / Interact with the web application.

2) Intercept calls to DOM API methods and record the DOM
objects returned by the method in the JavaScript code.

3) Pass the DOM elements as positive examples to the
system, both with and without negative examples from
DOM.

4) Analyze the synthesized DOM element locator to mea-
sure the recall and precision of LED.

RQ4: Performance. For assessing the performance of our
code synthesis technique, we analyze the time taken by LED
to synthesize the list of DOM element locators for the above
three web applications. We then report the average time taken
to synthesize DOM element locators for each of the three web
applications with respect to different search configurations.

C. DOM element locator Complexity

Table |VI| provides an overview of the complexity of DOM
element locators used by web developers to select DOM ele-
ments within the JavaScript code. As shown in the table, about
22% of DOM element locators written by web developers
target multiple DOM elements, with about 10% of the DOM
element locators target more than 5 DOM elements. Therefore,
when writing DOM element locators, the developer needs to
carefully analyze and abstract the common information among
the target DOM elements. This is where a tool like LED really
helps, as it automatically finds this information for the selected
DOM elements.

Also, we can see that about 35% of the DOM element

locators are formed by combining multiple atomic DOM
element locators. This is typically done to avoid certain DOM
elements that do not satisfy the locator criteria. Therefore,
writing DOM element locators to target a specific set of DOM
elements within large web application is a non-trivial task
for the developer. Again, LED can help here as it allows
developers to specify both positive and negative examples
easily.
Finding 1: 22% of the total DOM element locators writ-
ten by web developers are used to select multiple DOM
elements, and 35% of the DOM element locators are a
combination of multiple atomic DOM element locators.
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Fig. 7: DOM element locator coverage using LED for 486 stylesheets in top 200
websites

TABLE VII: Categorization of DOM element locators synthesized using LED
Type

Essential

Definition

DOM element locator that selects all the elements
intended by the user, and nothing else.

DOM element locator selects the DOM elements
intended by the user and additional DOM elements.
DOM element locator that does not select all the
elements intended by the user.

Category

Adequate
Auxillary

Inadequate

D. DOM element locator coverage

We analyzed the DOM element locators used by web
developers in the Alexa top 200 applications. Figure[7] presents
the results of our analysis, which includes a total number
of 486 stylesheets, with an average of 650 DOM element
locators per stylesheet. The area under the red curve represents
the total number of DOM element locators used by the web
developers, and the area under the green curve represents the
total number of DOM element locators that are supported
by the current implementation of LED, and could have been
synthesized using our approach (in theory). As shown in the
results, the majority of the DOM element locators used by web
developers is supported by LED. With an exception of few
stylesheets, more than 90% of the DOM element locators in
each stylesheet are supported by LED. One prominent locator
that is not supported by LED is the [attribute=value]
DOM element locator. To support this locator, we need to
capture additional information from the DOM tree that we
currently discard. However, the underlying approach remains
the same.

Finding 2: LED supports 86% of the existing DOM element
locators used by web developers of the most popular web
applications.

E. Accuracy

We use the commonly used metrics i.e., recall and precision
to measure the efficacy of our proposed system. We catego-
rize the synthesized DOM element locators into two major
categories i.e., adequate and inadequate. In general, a DOM
element locator is only considered adequate if it can at least
select the elements which the developer intended to select. If a
DOM element locator cannot select all the DOM elements that
were selected using the intercepted DOM element locator, it
is marked as inadequate. Table provides a brief overview
of the categorization of synthesized DOM element locators.
Below we discuss how we define precision and recall metrics
for our analysis.

TABLE VIII: Recall and Precision achieved by LED using various inputs with ¢ = 5

Trial No. of positive No. of negative Recall Precision
examples examples
0 <=¢ 0 98.21% 48.03%
1 > ¢ 0 100.00% 47.85%
2 <=¢ ¢ (random) 98.05% 62.82%
3 ) ¢ (random) 100.00% 62.98%
4 <= ¢ ¢ (relevant) 98.05% 91.84%
5 > ¢ ¢ (relevant) 100.00% 92.05%

Recall. Recall is a measure of the extent to which LED can
synthesize DOM element locators that can select the elements
intended by the user. We measure recall as the ratio of adequate
DOM element locators synthesized by LED to the total number
of DOM element locators synthesized by LED.

Precision. Precision is a measure of an extent to which LED
can synthesize DOM element locators that can select the exact
elements intended by the user. We measure precision as a ratio
of essential DOM element locators versus the total number
of adequate (essential + auxiliary) DOM element locators
synthesized by LED.

Table [VIII] provides an overview of the accuracy achieved by
LED. As the number of examples provided by the developer
can influence the DOM element locators produced by our
tool, we measure precision and recall for different scenarios.
We chose a threshold of ¢ = 5 to determine the number of
positive and negative examples. The choice of ¢ = 5 was
based on the balance between the number of examples required
to synthesize meaningful code versus the effort required by the
developer. Further, we found in RQI1 that 90% of the DOM
element locators in these web application select 5 elements or
fewer, so this should be sufficient for our purposes.

The number of positive examples has 2 values
{<= ¢,> ¢} and negative examples has 3 values
{None, p(Random), ¢(Relevant)}. The negative examples
were chosen using the different methods described below:

None(0) No negative examples were chosen.

Random The negative examples were chosen randomly from
the set of all DOM elements that are not included in the
original DOM element locator provided by the developer.

Relevant The negative examples were chosen from the set of
DOM elements of the same type as the elements selected
by the original DOM element locator. For example, if
an intercepted DOM element locator selects a subset of
anchor tag elements (< a >), the negative examples were
chosen from the remaining set of the anchor tag elements
within the DOM.

As seen from the results, even with a small number of
positive examples i.e., <= ¢, LED achieves high recall (98%).
Since, we used the same set of web applications as RQI1,
according to Finding [I], 78% of the DOM element locators
that we analyzed were used to target a single DOM element.
Hence, even with a single positive example the recall achieved
by LED is very high, demonstrating that the amount of effort
required by the developer is minimal.

When the positive examples set is expanded to the entire set
of DOM elements chosen by the developer’s DOM element



TABLE IX: Performance overhead caused by LED.

Average time per application (seconds
Search Scope Phormer : Gallerl;3 ppWordPre(ss Azzerage
Limited search 0.05 0.08 0.46 0.20
Local search 0.06 0.10 0.48 0.21
Global search 0.07 0.11 0.49 0.22

locator, i.e., >= ¢, the recall increases to 100%. This means
that any DOM element locator synthesized by LED will select
at least the DOM elements that the developer intended to
select.

The precision achieved by LED without any negative ex-
amples (0) is only around 48%. However, when even a
small number of random negative examples are provided i.e.,
¢(random), the precision increases to 62%. The addition of
negative examples assists our approach in excluding the DOM
element locators that select more than the required DOM
elements. Further, when the negative examples were chosen
to be “relevant” ones, i.e., ¢(relevant), the overall precision
increases to 92%, showing that it is important to give good
negative examples to get high precision. Note that the precision
results do not vary much with the number of positive examples
provided, however, in all three cases.

Finding 3: LED can synthesize DOM element locators with
a 98% recall and 92% precision, with as low as 5 positive
and 5 relevant negative examples.

FE. Performance Overhead

The time taken by LED to synthesize DOM element locators
depends on 1) the number of examples provided as input
by the developer, 2) size of the DOM tree, and 3) the
configuration input provided by the user. To measure the effect
of different DOM sizes of DOM tree, we report the time taken
to synthesize DOM element locators for the three different web
applications in our case study. As discussed in Section [[TI-A]
there are different input configurations that the developer can
specify before synthesizing the DOM element locators. One
such configuration described in Section is the search
scope of the target DOM elements. The developer can limit
the search space within the target DOM tree (i.e., local search),
therefore limiting the number of available DOM elements for
analysis. The more the number of DOM elements to analyze,
higher is the time taken to synthesize DOM element locators.
Therefore, when synthesizing DOM element locators we con-
sider three different scenarios (i.e., only positive examples,
local search, and global search) for each application. The
overall approach to measure the time taken by LED is similar
to Section [V-E| However, this time we only consider 5 positive
examples, and 5 negative examples.

Table [IX]| shows the average time taken to synthesize DOM
element locators for each of the three web applications. As we
can see from the results, the time taken to synthesize DOM
element locators varies with each application. However, the
change in time with respect to search scope is not significant.
The average time is 0.22 seconds while the maximum time is
0.49 seconds, showing that LED is fast, and can be deployed

interactively during development.

Finding 4: LED can synthesize DOM element locators with
an average time of 0.22 seconds, with a worst case of
maximum 0.5 seconds, for the selected web applications.

VI. DISCUSSION

In this section, we discuss the limitations of LED, and the
threats to validity of our evaluation.

A. Limitations

Single DOM state. LED supports only a single DOM state for
synthesizing a DOM element locator. However, the developer
may want to generate a single DOM element locator for
elements that span across multiple DOM states. The current
version of LED does not support this feature. In our future
work, we plan to extend LED to support DOM element
selection from multiple DOM states as well. The underlying
approach of analyzing the DOM elements and generating
constraints for the SAT solver will remain the same. However,
we might need to optimize the performance of our algorithm
to scale for inputs from multiple DOM states.

Limited support for DOM element locators. DOM element
locators can be divided into three categories, based on the
version of CSS in which they were defined, i.e., CSS1, CSS2,
and CSS3. A complete list of DOM element locators along
with their category can be found on the w3schools website [].
Currently LED supports synthesis of DOM element locators
that belong to first two categories i.e., CSS1 and CSS2.
Locators that belong to the CSS3 category (e.g., attribute-
value locator), require extra information (e.g., element name,
element value, etc.) from the DOM, that we discard currently.
However, our results demonstrate that LED can support 86%
of the DOM element locators used by web developers.

DOM element visibility. The developer needs to select the
DOM elements as examples to initiate the code synthesis
process. For the developer to select the DOM elements, the
corresponding DOM elements need to be visible within the
web application. However, it is possible that the target DOM
elements are not visible within the live DOM state. For
example, a warning message to the user may not be visible.
To enable the developer to select the hidden DOM elements,
we will need to modify attributes of hidden DOM elements.
This may adversely affect the layout and functionality of the
web application. The user can add information regarding these
hidden-elements directly to the mathematical model. However,
in future work, we plan to extend our approach to analyze the
hidden DOM state and allow users to provide hidden DOM
elements as input examples.

B. Threats to validity

Internal Threat. In our evaluation of the accuracy LED, we
considered three kinds of negative examples, namely none,
random and relevant. The relevant examples were chosen
based on the similarity among the types of DOM elements



within the DOM tree. However, this process is subjective and
may depend on the user. This may affect the overall quality
of negative examples provided by the developer, which in turn
will affect the overall precision achieved by the tool. We have
attempted to mitigate this threat by considering similar types
of elements as the ones being chosen as relevant negative
examples.

Another internal threat to our validity is that we chose
a threshold of ¢ = 5 for the number of input examples.
This threshold was chosen based on what we thought was
a reasonable between user effort and sufficient information to
synthesize locators. We did not observe too much difference
when we increased the threshold. However, we did see a
decrease in accuracy when we decreased the threshold.

External Threat. To evaluate the DOM element locator
coverage of LED, we studied the top 200 Alexa websites. It is
possible that coverage results may differ if we consider more
applications. This is an external threat. However, these top
200 web applications are the most popular web applications,
and as such, are likely to be representative of other web
applications. Another external threat to the validity of our
results is that we have considered limited number of open
source web applications for our evaluation. However, the
chosen web applications were commonly used open source
web applications.

Reproducibility of results. Because web applications evolve
over time, the DOM element locators used today may not be
prevalent in the future. This may affect the selector coverage
and accuracy results for LED. Therefore, we have made our
analyzed dataset publicly available for download [20].

VII. RELATED WORK

Closely related to our work is the problem of XPath
generation, which is one of the method for locating DOM
elements within the DOM tree. Tools such as Firepath [28],
XPath Helper [12], and Xpath Checker [34] also generate
XPath expressions for DOM elements. There has been an
extensive body of work on generating DOM element locators
for test cases in web applications [1], [2], [S], [29].In very
recent work, Leotta et al. [22] design a voting algorithm
to select the most robust DOM element locator generated
using existing techniques, thereby increasing the robustness
of the generated locators. However, all of these techniques
are restricted to generating locators for single DOM elements
unlike our work, which can generate locators for multiple
DOM elements. Further, none of these techniques generate
DOM element locators from positive and negative examples
of DOM elements, like our technique does.

Our earlier work [4] provided a technique to assist the
web developers in writing JavaScript code by providing DOM
aware JavaScript code completion. However, the developer still
needed to write at least part of the DOM element locator
expression to invoke the code completion technique. In this
work, we present a technique to synthesize the CSS selectors

based on examples, thereby minimizing the time and effort
required by the developer.

Our technique is an example of Live Programming, and in
particular Programming By Example (PBE). There has been a
significant amount of work performed in this area [19], [24]],
[250], [IL3], [18]], [LO]. Most of these focus on learning string
or data manipulation actions, while we focus on learning CSS
selectors for selecting DOM elements in web applications.

Another class of live programming techniques are Program-
ming By Demonstration (PBD), which is also related to our
technique. The main difference is that instead of using the
input and output states, the transformations are inferred based
on the trace of actions performed by the user. For example,
Yessenov et al. [35] presents an approach where the user
can denote different parts of the text with different colors,
and the hierarchical structures present in the text document
is automatically learned. This is similar to synthesizing CSS
selectors for DOM elements. The main difference between
this work and ours is that in our case, the JavaScript code
that we synthesize spans multiple domains, namely DOM and
JavaScript and is hence much more challenging to synthesize.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a DOM element locator synthe-
sis technique based on positive and negative examples of DOM
elements provided as input by the developer. Our approach is
based on generating constraints using DOM elements given
as input in the form of a mathematical model and then
utilizing constraint solvers to find possible solutions. We have
implemented our approach in an open source tool called LED.
The results of our evaluation show that LED is compatible with
over 86% of the existing DOM element locators used by the
web developers, and can synthesize DOM element locators
with a 98% recall and 92% precision, even with just a few
positive and negative examples. The maximum time taken by
LED to synthesize DOM element locators is less than 0.5
seconds, making it practical for interactive synthesis.

We plan to extend this paper in a number of ways. First,
we plan to extend our approach to cover the CSS3 locators
that require integrating additional information from the user as
well as the DOM state. We also plan to extend our approach to
support XPath generation for multiple DOM elements. Further,
we plan to extend the evaluation of our work and conduct
user studies to analyze how effectively can LED assist the
web developers in writing JavaScript code that interacts with
DOM. Finally, we plan to extend the implementation of our
tool to support multiple DOM states.
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