
ePVF: An Enhanced Program Vulnerability Factor
Methodology for Cross-layer Resilience Analysis

Bo Fang∗, Qining Lu∗, Karthik Pattabiraman∗, Matei Ripeanu∗, Sudhanva Gurumurthi†
∗Department of Electrical and Computer Engineering

University of British Columbia
Email: {bof, qining, karthikp, matei}@ece.ubc.ca

† Cloud Innovation Lab, IBM
Email: sgurumu@us.ibm.com

Abstract—The Program Vulnerability Factor (PVF) has been
proposed as a metric to understand the impact of hardware faults
on software. The PVF is calculated by identifying the program
bits required for architecturally correct execution (ACE bits).
PVF, however, is conservative as it assumes that all erroneous
executions are a major concern, not just those that result in
silent data corruptions, and it also does not account for errors
that are detected at runtime, i.e., lead to program crashes. A more
discriminating metric can inform the choice of the appropriate
resilience techniques with acceptable performance and energy
overheads. This paper proposes ePVF, an enhancement of the
original PVF methodology, which filters out the crash-causing
bits from the ACE bits identified by the traditional PVF analysis.
The ePVF methodology consists of an error propagation model
that reasons about error propagation in the program, and a crash
model that encapsulates the platform-specific characteristics for
handling hardware exceptions. ePVF reduces the vulnerable bits
estimated by the original PVF analysis by between 45% and
67% depending on the benchmark, and has high accuracy (89%
recall, 92% precision) in identifying the crash-causing bits. We
demonstrate the utility of ePVF by using it to inform selective
protection of the most SDC-prone instructions in a program.

Keywords: PVF, Crash Model, Cross-layer Analysis

I. INTRODUCTION

Transient hardware faults, typically caused by particle
strikes, are a major concern in modern computer systems.
Current manufacturing trends (e.g., smaller feature sizes, man-
ufacturing variations) suggest that transient faults will increase
in the future [1], [2]. Further, stringent energy constraints make
it challenging to deploy resilience techniques to protect the
system from hardware faults [3]. The problem is exacerbated
in high-performance computing (HPC) systems, where the
large scale and long running time make applications more
prone to hardware faults.

A hardware fault can affect an application in one of the
following ways: (i) crash, i.e., an exception is raised and
the application is terminated, (ii) hang, i.e., the application
runs for a significantly longer time than normal, (iii) silent
data corruption (SDC), i.e., the application finishes with an
incorrect output, and (iv) benign, i.e., the application finishes
with a valid output. The first three are failure outcomes.
Among these, SDCs are considered the most severe, because
users will trust the application’s output in the absence of an
error indication. A crash can be detected by monitoring the

application, while hangs can be detected using timeouts. How-
ever, there is no generic method to detect SDCs without re-
executing the entire application and checking for a mismatch,
or without a significant amount of hardware redundancy, both
of which are expensive.

Our long-term goal is to develop a systematic method to
inform the design of software protection techniques (e.g., code
transformations) to make applications resilient to SDCs. A
first and essential step towards this goal is estimating the
SDC rates of programs. SDCs are caused by a combination of
application-specific and system-specific factors. In this paper,
we focus on the system-specific factors that lead to SDCs. The
main insight underlying this work is that a fault that leads to a
crash cannot (by definition) lead to an SDC. Because crashes
are caused by a combination of the hardware and Operating
System (OS) features, they can be systematically reasoned
about in an application-independent manner. By removing the
crash-causing faults from the set of all faults, one can obtain
a tighter estimate of the SDC rate. This is as important as
crashes are often the dominant failure outcome, and hence
significantly outnumber both SDCs and hangs [4]–[7].

This paper proposes a new method, ePVF (enhanced PVF),
that builds on the original Program Vulnerability Factor (PVF)
analysis methodology proposed by Sridharan et al. [8] to
remove crash-causing faults from the set of all faults. PVF is
a systematic method to efficiently evaluate the error resilience
of software under hardware faults. PVF can also be used for
predictive and comparative analysis studies to understand the
effect of different protection techniques or code transforma-
tions on the error resilience. However, PVF does not distin-
guish between fault outcomes and, essentially, treats crashes,
SDCs and hangs as equally severe. Therefore, using PVF to
estimate application error resilience and inform the protection
mechanisms often leads to overprotecting applications, thereby
resulting in unnecessary performance and energy overheads.
By distinguishing between crashes and other failures, ePVF
allows protection techniques to better focus on the program’s
bits that if corrupted, can potentially cause SDCs.

There are two challenges in identifying crash-causing bits.
Firstly, crashes are caused by OS and architecture-specific
factors, which we need to understand and model. Secondly,
the crash-related OS state varies during program execution

1



(e.g., segment boundaries for segmentation faults). Hence we
need a dynamic model for predicting whether a particular fault
will cause a crash. We find that the majority of crashes are
caused by illegal memory addressing, and that by capturing
and reasoning about the state of a program’s memory segments
in a platform-specific manner, we can accurately find almost
all crash-causing bits. We therefore extend the original PVF
estimation to estimate the ranges of values that may generate
crashes, propagate them on the backward slices of the loads
and stores, and efficiently compute the set of bits that can
result in program crashes.
Contributions. To the best of our knowledge, our work is the
first to consider the effects of different failure modes through
a PVF-like analysis for the goal of analyzing a program’s
resilience to SDCs. Our work is also the first to close the
gap between analytical models such as PVF, and experimental
assessment techniques such as fault injections. This paper:

1) Develops a crash model (§III-D) to predict which faults
in a program cause a crash, a propagation model (§III-C)
to reason about propagating ranges of crash-causing bits
in the program’s dependence graph, and integrates them
with the PVF methodology;

2) Implements the method in the LLVM compiler [9] and
its intermediate representation (IR) which offers the
ability to support multiple platforms and architectures;

3) Evaluates the accuracy of the proposed ePVF method
vis-a-vis fault injection (§IV) at the same abstraction
level using LLFI, an open-source fault injector [10]. It
finds that ePVF estimates crash-causing bits with 89%
recall and 92% precision, when evaluated over a set
of ten benchmarks. More importantly, the number of
vulnerable bits estimated by the ePVF analysis is lower
than that estimated by the standard PVF analysis by 61%
on average. Thus ePVF leads to a tighter estimate of
the SDC rate, and a close estimate of the crash rate
compared to fault injection.

4) Demonstrates the utility of the ePVF analysis through
a case study involving selective instruction-level protec-
tion for SDC mitigation (§V). We find that the SDC
rate reduction achieved using ePVF is, on average, 30%
better than that achieved by hot-path duplication (i.e.,
duplicating the most frequently executed program paths),
for the same performance overhead.

II. BACKGROUND

This section offers background information on error re-
silience, the dependability metric we estimate (§II-A), past
work on estimating it through fault-injection (§II-B) and
vulnerability analysis techniques (§II-C), the abstraction level
that our technique works at (§II-D) and our fault model (§II-E).

A. Dependability Metric: Error Resilience

Not all faults in a program result in failures due to masking
at different layers of the system stack. As we focus on
software resilience techniques, we do not consider hardware
masking [11], but only take into account faults passing the

hardware and seen by the software. This is in line with other
work in this area [12]–[15].

In the context of this work, we define error resilience as the
probability that the application does not have an SDC after
a transient hardware fault occurs and impacts the application
state. Note that error resilience does not take into account
the probability of a fault occurring and affecting the software
(which depends on the base fault rate in the hardware and the
application execution time). In §V, we estimate the impact of
protection techniques by taking into account their effect on
application performance in addition to the resilience.

B. Fault Injection

Traditionally, program error resilience has been estimated
through fault injection [16], that is, by introducing faults
at various levels of the system stack and observing their
outcome. This is a mature and well understood technique, and
there are many tools to help automate the process [17]–[19].
Unfortunately, fault injection does not have predictive power
in terms of determining the impact of code transformations
on vulnerability - thus it is challenging to use it for guiding
code optimizations. Further, fault injection campaigns are
typically resource consuming, as thousands of faults need
to be injected in complete executions of the program, to
get statistically significant results. Hari et al. [20], [21] have
proposed approaches to reduce the cost of fault injection
campaigns by pruning the fault injection space. However, fault
injection campaigns are still costly and cannot be used in
situations where predictive power is needed to choose between
the multiple options available for code optimization. Instead,
we need an automated characterization of error resilience that
does not use fault injections.

C. Program Vulnerability Factor (PVF)

The Architectural Vulnerability Factor (AVF) of a hardware
component is the probability that a fault occurring in the
component leads to a visible error in the final output of a set of
executed instructions. Mukherjee et al. [22] introduced the Ar-
chitecturally Correct Execution (ACE) analysis for estimating
the AVF of processor structures (e.g., Reorder buffer) based on
a dynamic execution trace on a specific microarchitecture. By
combining ACE analysis with the raw error rate of a processor
structure and its AVF, microprocessor designers can estimate
the FIT (Failures In Time) of each processor structure and
take appropriate action in the design stage. However, AVF is
intricately tied to the microarchitectural design of a processor,
and cannot be used to reason about software resilience in
isolation.

Sridharan et al. [8] separate the hardware-specific compo-
nent of AVF from the software-specific component: the Pro-
gram Vulnerability Factor (PVF). They show that the PVF can
be used to explain the error resilience behaviour of a program
independent of the processor. Moreover, they show that by
using techniques that are used in computing the PVF [8],
programmers are able to pinpoint the vulnerability of different
segments of the program, and gain insights for designing

2



application-specific fault tolerance mechanisms. However, the
key drawback of PVF is that it does not distinguish between
different kinds of failures, i.e. crashes and SDCs.

PVF abstracts out timing information and includes only the
relative instruction order in the instruction flow. This makes
the process of computing the PVF largely microarchitecture
neutral, thus making it a function of the program and the archi-
tecture alone (when executed with a specific input). Sridharan
et al. [8] estimate the PVF of an architectural resource ’R’ as
the ratio between the Architecturally Correct Execution (ACE)
bits in the resource when executing the set of instructions I
in a trace and the number of total bits involved in R (i.e.,
BR) (Equation 1). The ACE bits are the bits in which a fault
would potentially affect the correctness of the execution of the
instructions in I .

PVFR =

∑I
i=0 (ACE bits in R at instruction i)

BR × |I|
(1)

D. LLVM IR

LLVM is a compiler infrastructure that provides support
for different hardware platforms [9]. The key component of
LLVM is its intermediate representation (IR), an assembly-
like language that abstracts out the hardware and ISA-specific
information. Our methodology is built on LLVM IR level, and
we choose to work at this abstraction level for the following
reasons:

i) LLVM abstraction level (i.e., LLVM IR) offers an uniform
representation of a program; hence the ePVF methodology is
architecture neutral and easy to port across different architec-
tures/ISAs, thereby eliminating the influence of architecture or
ISA-specific factors.

ii) LLVM IR maps closely to constructs of a program and
preserves source-level program properties, which makes it easy
to help understand the inherent fault masking.

iii) LLVM infrastructure provides extensive support for
program analysis and instrumentation. Prior work focusing
on selective duplication techniques [13], [14] uses the LLVM
compiler for both static and dynamic analysis, and program
instrumentation.

To validate our methodology, we use fault injection exper-
iments at the same abstraction level (LLVM IR) as our ePVF
implementation using LLFI [10]. Cho et al. [23] have found
that high-level fault injections can directly model a subset of
system-level behaviors caused by transient faults. However,
our focus (and the focus of the original PVF paper) is on the
subset of faults that do manifest in architecturally visible state
(e.g., registers) - these faults can be modeled by high-level
fault injections.

E. The Fault Model

Hardware faults can be broadly classified as transient or
permanent. Transient faults usually are ”one-off” events and
occur non-deterministically, while permanent faults persist
at a given location. We consider transient faults that occur
within the processor (i.e., register file, ALUs). We do not

                   Crash-causing
                   bits

Total Bits

ACE Bits

ePVF bits

Fig. 1: Venn diagram that highlights the crash-causing and the ePVF
bits that the ePVF methodology identifies as a subset of ACE bits.
SDC-causing bits will be a subset of the ePVF bits.

consider fault in main memory, since most servers used in HPC
applications are protected via ECC and hence do not generally
require additional software-based resilience mechanisms.

We use the single-bit-flip model to represent transient faults
as in other related work [4], [5], [13], [14], [24]. Our technique
can be easily extended to multiple-bit flips. In recent work,
Cho et al. [23] find that low-level hardware faults manifest
as both single- and multiple-bit flips at the application level.
However, recent work [25], [26] has shown that the difference
between single- and multiple-bit flips occurring in program
states is marginal in terms of their impact on SDCs. Therefore
for this study, we stick to single bit flips, as SDCs are our main
concern.

III. EPVF METHODOLOGY

Our goal is to obtain a comprehensive estimate of the
program resilience that does not entail the full-blown costs
of fault injection. We aim to adapt the PVF methodology (see
§II) for this purpose. As pointed out earlier, PVF does not
distinguish between crashes and SDCs, and hence is overly
conservative, as SDCs are the main concern in practice.

Definition: We define ePVF by analogy to PVF as the ratio
of non-crashing ACE bits over the total bits involved. Figure 1
shows the ePVF bits: they are a subset of all ACE-bits, and a
superset of the SDC-causing bits. It is a superset because not
all non-crashing bits cause SDCs.

ePVFR =

∑I
i=0 (ACEBits - CrashBits in R at instruction i)

BR × |I|
(2)

Methodology Overview: At a high level, the ePVF method-
ology consists of three major components (Figure 2): (i) Base
ACE analysis to estimate all the vulnerable bits of the program
(§III-A); (ii) a crash model to identify the ranges of bit-
level faults that cause crashes (§III-D); and (iii) a propagation
model that propagates these ranges along the backward slices
of each operand (§III-C). This methodology is supported by
our identification of incorrect memory addressing as the most
common cause for crashes (§III-B).

A. Base ACE Analysis

ACE analysis is used to determine the set of all bits in
an architectural resource (e.g., a register file) that are not
masked and can affect application’s final state. The basic
idea is to first identify the instructions that are responsible
for the output of the program (called output instructions),

3



LLVM IR 
Instruction 

Trace

Base ACE 
Analysis

Crash Model ACE Bits Propagation 
Model

Non-Crashing 
ACE Bits

Section III.A 

Section III.CSection III.D 

ePVF Methodology

Fig. 2: The overall workflow of the ePVF methodology to compute
the non-crashing ACE (ePVF) bits.

and then find all the instructions in their backward slice. We
use the program’s dynamic dependency graph (DDG) [27]
to keep track of the data dependencies among the program’s
instructions. The DDG is a representation of data flow in the
program, and is constructed based on the program’s dynamic
instruction trace [27]. In the DDG, a vertex can be a register,
a memory address or even a constant value. An edge records
the instruction (i.e., an operation) and links source operand(s)
to destination operand(s).

We implement the DDG analysis at the LLVM compiler’s
intermediate representation (IR) level. Note that since the
LLVM IR abstracts out the hardware/ISA-specific information,
it contains an infinite number of virtual registers 1. As a result,
at this level there is no notion of a register file. We model the
architectural resource as the set of virtual registers used in
the IR of a program. This definition also matches our fault
injection experiments as only activated faults are considered.

One further issue is deciding how to express register-based
memory addressing instructions. This needs special care as it
is common to have the same register to store many different
memory addresses, or different registers store to the same
address. Since we create new DDG nodes for each newly
written memory address, it is also common for a register to
store multiple uses of the same memory address. To handle
these cases, we create an edge in the DDG to link the
memory address used and the register. This edge is virtual
to differentiate this case from direct data data dependencies.

Running example: Figure 3 shows a small portion of the
DDG constructed from a dynamic IR instruction trace of
the pathfinder benchmark [28]. We rename the IR registers
for readability. Figure 3a presents the corresponding static
instruction in the LLVM IR of the program2. Figure 3b illus-
trates the DDG obtained after executing the static instructions
in Figure 3a. Nodes representing memory are labelled with
the address values recorded during the run-time. Memory
addresses that correspond to the output are highlighted.

From each memory location that is part of the output, in this

1The register allocator will take the physical register file size into account
when mapping the virtual registers to physical ones in the compiler backend.

2LLVM has a special IR instruction named getelementptr (gep) to abstract
memory address computations, which corresponds to a combination of several
instructions in a assembly language such as MOV and ADD instructions.

  r1 = load i32* r2, align 4
  r4 = add nsw i32 r1, r3
  r5 = getelementptr inbounds i32* r6, i64 r7
  store i32 r4, i32* r5, align 4 
  r8= load i32* r2, align 4

(a) A small portion of static IR-level representation of the pathfinder
benchmark

0x15FB178

0x15FB174

load

add add

store

virtual gep
gep

r2
virtual

r1

r4

r3

r5

r6

r7

r8load

(b) The DDG constructed based
on the dynamic trace resulting
from executing the code pre-
sented in (a).

0x15FB178

0x15FB174

load

add add

store

virtual gep
gep

r2
virtual

r1

r4

r3

r5

r6

r7

r8load

(c) The ACE graph used to cap-
ture the ACE bits. Note that dy-
namically dead code is elimi-
nated.

Fig. 3: An example of computing PVF for the register file

case 0x15FB174 (highlighted in Figure 3b), we run a reverse
breadth-first search on the DDG that contains all the dependent
vertices of 0x15FB174. This step will exclude the node r8
as it does not contribute to the output. We call the resulting
graph the ACE graph (Figure 3c). Then the total ACE bits are
calculated as (the size of each operand is defined in IR):

ACE Bitsused registers =

7∑
i=1

Bits in Ri

= 32 + 64 + 32 + 32 + 64 + 64 + 64 = 352

To compute the PVF we also need to compute the total bits
for used registers, summing the total bits used in operations
within this sequence of instructions.

Total Bitsused registers =

8∑
i=1

Bits in Ri

= 32 + 64 + 32 + 32 + 64 + 64 + 64 + 64 = 416

Then, the PVF of used registers for this example is:

PVFused registers =
ACEBitsused registers

TotalBitsused registers
= 0.846

B. Finding the Crash-causing Bits

We aim to identify the bits that cause the program to crash
(i.e., lead to hardware exceptions), and subtract these bits from
the overall ACE bits. To this end, it is important to determine
the types of crashes we observe in practice and their relative
frequencies. We perform a fault injection experiment by in-
jecting faults into ten benchmark applications (§IV describes
our fault injection methodology and benchmarks).

We observe four types of exceptions resulting in crashes
(Table I). Table II shows their relative frequencies. Our results
show that segmentation faults are the predominant source of

4



TABLE I: Types of exceptions resulting in crashes

Type Description
Segmentation fault (SF) Memory access that exceeds the legal

boundary of a memory segment
Abort (A) Programs aborted by themselves or OS
Misaligned memory
access (MMA)

Memory accesses are not aligned at
four bytes

Arithmetic errors (AE) Division by 0, Overflow etc.

TABLE II: Relative crash frequency analysis for each benchmarks

Benchmark Types of crashes (%)
SF A MMA AE

hotspot 97.6% 0.0% 2.3% 0.1%
bfs 98.8% 0.0% 0.7% 0.5%
kmeans 100.0% 0.0% 0.0% 0.0%
nw 99.6% 0.0% 0.4% 0.0%
pathfinder 99.9% 0.1% 0.0% 0.0%
lud 100.0% 0.0% 0.0% 0.0%
srad 96.0% 0.0% 4.0% 0.0%
mm 99.8% 0.1% 0.1% 0.0%
particlefilter 100.0% 0.0% 0.0% 0.0%
lulesh 99.0% 1.0% 0.0% 0.0%

crashes with a 99% average frequency and a 96% minimum
over all benchmarks. This observation suggests that, for the
class of workloads with similar properties as these bench-
marks, we only need to model the mechanisms that generate
segmentation faults to identify almost all crash-causing bits.
We note that other workloads, architectures, or operating
systems may change these precise findings, but a similar
methodology can be followed.

Segmentation faults result from memory access violations.
Although different operating systems may implement violation
detection mechanisms in different ways, segmentation faults
are determined based on checking memory accesses against
segment boundaries.

There are two main challenges in determining which bit
flips would lead to a segmentation fault: first, we need to
find the ranges of the bits that, if flipped, would result in
an out-of-bounds memory access. This includes both faults in
the memory instructions themselves (i.e., load and store), and
faults in their backward slices used for memory addressing.
Second, we need to predict if an incorrect memory access
will generate an access violation. To this end, all segment
boundaries at the time of the memory access need to be known.

To overcome the first challenge, we implement an algorithm
that propagates the ranges of crash-causing bits along the
backward slice of the memory access operation (§III-C). To
overcome the second challenge, we instrument the program to
embed a probe for each memory access and capture all the
dynamic segment boundaries (§III-D).

C. The Propagation Model

We model fault propagation for crash-causing faults starting
from a memory addressing operation and going backwards in
the DDG. This analysis is triggered each time a load/store
instruction is encountered during the iteration over the ACE
graph (i.e., the subgraph that contains all ACE nodes in the
DDG) to compute ACE bits. The aim is to find all bits that
can generate an out-of-bound address on the backward slice of

the memory address calculation. The model assumes that only
one fault happens during the course of a program. (§II-E).

The propagation model consists of two algorithms.
Algorithm 1 describes when and how the propagation
model is triggered. It consists of two procedures: IT-
ERATE OVER ACE GRAPH and CRASH CALC. The ITER-
ATE OVER ACE GRAPH procedure takes the ACE graph as
input and iterates over the vertices in the ACE graph. When
it reaches a load/store instruction (line 3), the backward slice
for the address used in the load/store instruction is calculated
(line 5) and passed to the procedure CRASH CALC (line 6).
Inside CRASH CALC, all the instructions along the backward
slice are visited and, for each instruction, the ranges for
crash-causing bits in operands are computed by invoking
GET RANGE FOR CRASH BITS.

Algorithm 1 Iterates over the ACE graph and invokes
CRASH CALC whenever a load or store instruction is encoun-
tered
1: procedure ITERATE OVER ACE GRAPH(ACEGraph)
2: for all inst in ACE Graph do
3: if inst.opcode == load/store then
4: backwardslice =
5: CALCULATE BACKWARD SLICE(inst)
6: CRASH CALC(backwardslice)
7: end if
8: end for
9: end procedure

10: procedure CRASH CALC(backwardslice)
11: for all inst in backwardslice do
12: GET RANGE FOR CRASH BITS(inst)
13: end for
14: end procedure

Algorithm 2 Calculates the range of the crash-causing bits
for memory access instructions based on the backward slice
of the address used
1: procedure GET RANGE FOR CRASH BITS(inst)
2: crashing bits← 0
3: global crash bits list
4: oplist← inst.source operands
5: if inst == load/store then
6: (max,min) = CHECK BOUNDARY(inst.addres)
7: crash bits list[inst.address] = (max,min)
8: else
9: (max,min) = crash bits list[inst.dest opernd]

10: end if
11: for all op in oplist do
12: (new max, new min) = lookup table(op, inst)
13: crash bits list[op] = (new max, new min)
14: crashing bits += bits that make

the value of op outside (new max, new min)
15: end for return crashing bits
16: end procedure

The second algorithm (Algorithm 2) consists of the proce-
dure GET RANGE FOR CRASH BITS that models the execu-
tion of each instruction along the backward slice to calculate
the range for crash-causing bits. Specifically, for a load/store
instruction, the crash model is invoked (CHECK BOUNDARY)
to determine the range of bits that generate an out-of-bound
memory access (at line 6) to obtain a range of crash-causing
bits for the destination register (line 9). Then, for each
source operand, the procedure calculates the range for the

5



crash-causing bits by taking into account the range of the
corresponding destination operand and the semantics of that
instruction (line 11 to line 15). The semantics of the instruction
are determined by the lookup table function in line 13.

Table III shows the common instruction types encountered
on the backward slice of a memory address calculation and
how the lookup table is used to compute the range for each
operand. We assume that all values of operands are positive
integers. The algorithm propagates these ranges along the
backward slice by storing them in the CRASHING BIT LIST
for further reference by the next instructions, as shown in
line 7.

We explain the details of these algorithms using our running
example. In Figure 3b, r5 stores the address 0x15FB174 for the
instruction store i32 r4, i32* r5, align 4. Suppose our bound-
determination technique (described in the next subsection)
returns the bound (0x15FB800, 0x15FA000), meaning that
addressing outside this bound will generate a segmentation
fault. The ACE graph indicates that r5, r6 and r7 are used in
addressing (or computing the address). Together, these three
registers belong to the instruction getelementptr in LLVM. The
instruction semantics are based on row 6 of the Table III -
ranges are obtained by applying the corresponding equations.

r5.value = r6.value + sizeof(r6).type)× (r7)

maxr6 = maxr5 − sizeof((r6).type)× (r7)

minr6 = minr5 − sizeof((r6).type)× (r7)

The range of r6 can be computed as follows: min:
0x15FB800 - 4*1 = 0x15FB7FC; max: 0x15FA000 - 4*1 =
0x15F9FFC. The resulting range (0x15FB7FC, 0x15F9FFC)
of r6 is stored into CRASHING BIT LIST as the reference for
operands on the backward slice of r6, if any. Similarly, we
can compute the range for register r7 and for other registers
in the backward slice.

Algorithm 3 Obtains the boundary of the segment
1: procedure CHECK BOUNDARY(inst.address)
2: global crash bits list
3: max← 0
4: min← 0
5: vma start = locate segment start(inst.address)
6: if inst.address ⊂ stack&&vma start < ESP − 65536− 128 then
7: min← ESP − 65536− 128
8: else
9: min← vma start

10: end if
11: vma end = locate segment end(inst.address)
12: max← vma end
13: crash bits list[inst.address] = (max,min)

return (max,min)
14: end procedure

D. Crash Model

The goal of the crash model is to determine the ranges
of the addresses for which a memory access will trigger a
segmentation fault. While this is platform-specific i.e., specific
to the hardware and operating system (OS) on which the
program is running, the technique described here can be
adapted to any architecture that uses memory segmentation.

This includes most modern architectures such as x86 and
ARM.

Algorithm 3 describes how to compute the range of allow-
able addresses for a memory segment. It undertakes two main
tasks: (i) obtains the boundary of the memory segment through
the underlying OS interface (see line 5 and line 11) and, (ii)
determines the run-time range of valid memory addresses for
each load/store instruction (from line 6 to line 10). We explain
the steps below.

Obtaining the segment boundaries. Modern operating
systems organize process memory over multiple segments
(e.g., text, data, heap, stack). To identify the boundary of each
segment we instrument the program to embed a run-time probe
that probes the “/proc” system of Linux to record the segment
boundaries at each load and store instruction.

Determining allowed ranges. Once we determine segment
boundaries at the time of each load or store, we need to
determine which accesses would result in segmentation faults.
We initially hypothesized that all accesses outside segment
boundaries will trigger a segmentation fault. Unfortunately,
this is not the case, as we found through a fault injection
experiment: a segmentation fault occurred only for about 85%
of the out-of-segment accesses we generated. The remaining
15% of accesses did not result in a segmentation fault even
though they were outside the segment boundaries, suggesting
that our hypothesis was incorrect.

To better understand this behaviour, we studied the source
code of the Linux kernel in our platform, an x86-based
machine (Figure 4)3. The “vma start” and “vma end” indicate
the start and end addresses of Linux virtual memory area
(vma) and the ”addr” indicates the memory address used. In
the code, the label ”common case” shows the kernel code for
when addr is within the valid bound. Note that if addr is within
the last page of the stack, Linux will add one page below the
current last page until the 8 megabyte limit is reached. The
label “case I” is when addr is smaller than the “vma start”
and is still bigger than the (ESP − 64KB − 128B). Linux
treats such an address as valid and will expand the stack for it.
However, if addr is smaller than (ESP − 64KB − 128B), a
segmentation fault occurs. The label “case II” occurs when
addr is greater than the“vma end”, and will result in a
segmentation fault.

Thus, for a non-stack segment, Linux determines the bound-
aries using its ”vma start” and ”vma end”, while for stack
segments, it compares the ”vma start” with the current stack
pointer plus an offset to determine the lower bound of the
stack. If addr is inside an invalid memory region, a segmen-
tation fault occurs.

We implement our crash model to mirror the handling of
these different cases. Upon re-evaluating the accuracy of the
model through the same fault injection experiment, we find
that we can now accurately predict crashes for over 99.5% of
the accesses, pointing to the correctness of the crash model.
We use this crash model in our experiments.

3Similar code can be found for both x86 and PowerPC kernel versions.

6



TABLE III: Range calculation operations that commonly occur on the backward slice of memory addresses

No. Opcode Operand Semantic Range Calculation for operands

1 add dest, op1, op2 dest = op1 + op2 Max(op1) = Max(dest) - op2 ; Min(op1) = Min(dest) - op2
Max(op2) = Max(dest) - op1; Min(op2) = Min(dest) - op1

2 sub dest, op1, op2 dest = op1 - op2 Max(op1) = Max(dest) + op2 ; Min(op1) = Min(dest) + op2
Max(op2) = op1 - Min(dest) ; Max(op2) = op1 - Max(dest)

3 mul dest, op1, op2 dest = op1 * op2 Max(op1) = Max(dest)/op2 ; Min(op1) = Min(dest)/op2 (if op2 != 0)
Max(op2) = Max(dest)/op1; Min(op2) = Min(dest)/op1

4 div dest, op1, op2 dest = op1 / op2 Max(op1) = Max(dest)*op2 ; Min(op1) =Min(dest)*op2
Max(op2) =Max(op1)/dest ; Min(op2) = Min(op1)/dest

5 getelementptr dest, op1, op2 dest = op1 + sizeof(op1.type)*op2 Max(op1) = Max(dest) - sizeof(op1.type)*op2 ; Min(op1) = Min(dest) - sizeof(op1.type)*op2
Max(op2) = (Max(dest) - op1)/sizeof(op1.type) ; Min(op2) = (Min(dest) - op1)/sizeof(op1.type)

6 srem dest, op1, op2 dest = op1 % op2

Max(op1) = Max(for all bits in op1: bitflip(op1)%op2 >Max(dest) and bitflip(op1)%op2 <Min(dest))
Min(op1) = Min(for all bits in op1: bitflip(op1)%op2 >Max(dest) and bitflip(op1)%op2 <Min(dest))
Max(op2) = Max(for all bits in op2: op1%bitflip(op2) >Max(dest) and op1%bitflip(op2) <Min(dest))
Min(op1) = Min(for all bits in op2: op1%bitflip(op2) >Max(dest) and op1%bitflip(op2) <Min(dest))

7 bitcast dest, op1 dest = op1 Max(op1) = Max(dest); Min(op1) = Min(dest)

1 /* ”vma” means virtual memory area it is an abstraction
2 used in Linux for memory segments. */
3 /* addr represents the accessed memory address */
4 /* regs−>sp stores the current stack pointer */
5 Common case:
6 if vma_start <= addr <= vma_end:
7 // everything is fine
8 addr &= page_mask;
9 // for stack :

10 if addr == the last page of the vma:
11 expand_stack(vma, addr)
12 Case I:
13 // only for stack :
14 if vma_start > addr:
15 if addr + 65536 + 32 * sizeof(unsigned long)
16 < regs−>sp:
17 // SEGFAULT
18 else :
19 expand_stack(vma, addr)
20 Case II:
21 if vma_end < addr
22 // SEGFAULT

Fig. 4: Linux kernel implementation for determining which memory
accesses result in segmentation faults. Linux kernel version: 3.15.
File locations: mm/ and arch/x86/mm.

IV. EVALUATION

Our evaluation is guided by the following four questions:
Q1 How accurate is the ePVF methodology when predicting

the bits in which faults lead to program crashes?
Q2 How close are estimated crash rates to the actual crash

rates obtained through fault injection?
Q3 Can the methodology be used to obtain a significantly

tighter estimate for the SDC rate than the conventional PVF
methodology?

Q4 How fast and scalable is the ePVF analysis?

A. Experimental Setup

Benchmarks. We evaluate the ePVF methodology on ten
HPC benchmarks (Table IV): these include eight OpenMP-
based scientific applications picked from the Rodinia bench-
mark suite [28], our basic implementation of the matrix
multiplication kernel, and Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics (i.e. lulesh) [29], [30], a DOE
proxy application. The applications range from 100 lines of
code (mm) to 3000 lines of code (lulesh). Note that we
target HPC applications and hence we do not consider SPEC
programs.

Platform. All of our experiments are conducted on a
machine with a x86 CPU running at 2.67GHz and Linux v3.15.

TABLE IV: Benchmarks used and their complexity (lines of C code).

Benchmark Domain LOC
LULESH (lulesh) Physics Modelling 3,000
Particle Filter (particlefilter) Medical Imaging 602
Speckle Reducing
Anisotropic Diffusion (srad)

Image Processing 388

Needleman-Wunsch (nw) Bio informatics 285
HotSpot (hotspot) Physics Simulation 272
LAVA Molecular
Dynamics (lavaMD)

Molecular Dynamics 218

Breadth-First Search (bfs) Graph Algorithm 203
LU Decomposition (lud) Linear Algebra 174
PathFinder (pathfinder) Grid Traversal 135
Matrix Multiplication (mm) Linear Algebra 100

Fault injection. To build a ground truth, we use the publicly
available, open-source LLFI fault injector [10] to inject faults
at the LLVM Intermediate Code (IR) level. We inject faults
into the source registers for the executed instructions to
emulate faults in the used registers of the instructions, and
hence all faults are activated as they are used in the instruction.
Only one fault is injected in each run. We perform over 3,000
fault injection runs for each benchmark. The 95% confidence
levels are reported as error bars for statistical significance.

B. Q1: What is the Accuracy of ePVF Methodology?

To answer this question, we evaluate ePVF recall and
precision. We use fault injection experiments to obtain the
ground-truth, and compare the outcome of each fault injection
experiment with the outcome predicted by the ePVF method-
ology. Figure 5 shows the outcome (i.e., SDC, crash, hang
and benign fault) frequency for each benchmark: crashes are
the dominant outcome, on average, 63% of injections result
in crashes, while 12% result in SDCs, and less than 1% in
hangs. The dominance of crashes highlights the importance of
separating the crash-causing bits from the other failure bits.

Recall. We define recall as the ratio of crash runs that our
model predicts correctly to be crashes, to all fault injection
runs that lead to crashes in reality. To estimate recall, for
each fault injection run that leads to a crash, we record the
instruction counter and the register that the fault is injected
into, as well as the bit that was flipped. We then run the
crash and propagation models for the entire program and check
whether the location appears in the final crash bits list
(described in Algorithm 2) that stores the bits that lead to
a crash if the bit is corrupted.

7



0%

20%

40%

60%

80%

100%
Pe
rc
en

ta
ge
	o
f	e
ac
h	
ou

tc
om

e	o
f	f
au

lt	
in
je
ct
io
n	

Crash SDC Hang Benign

Fig. 5: Fault injection results for each benchmark.

50%
60%
70%
80%
90%

100%

R
ec

al
l o

f t
he

 M
od

el

Fig. 6: Recall for the crash bits predicted using the ePVF methodol-
ogy.

Figure 6 presents the recall for each benchmark. Overall, our
methodology achieves an average of 89% recall across the ten
benchmarks (ranging from 85% to 92%). We manually ana-
lyzed the crash-causing bits that were not identified as crashes
by ePVF methodology. The main reason is that our validation
technique introduces approximations due to non-determinism
in execution environment: the segment boundaries may be
slightly shifted. As a result, it cannot be guaranteed to execute
fault injection runs with exactly the same environment, partic-
ularly the same memory allocation and the profiling. Through
manual verification we found that, depending on benchmark,
this factor accounts for 92% to 99% of incorrect predictions.

Precision. We define precision as the ratio of the number
of correctly predicted crash-causing bits to the total num-
ber of predicted crash-causing bits. To estimate precision,
we randomly choose over 1,200 different bits from those
identified by the model as crash-causing (i.e., appear in the
CRASHING BIT LIST), and perform a targeted fault injection
experiment. Similar to the recall study, this time for each bit,
we specify the dynamic instruction and the register to inject
the fault into, as well as the bit that should be flipped. Precision
is calculated as the number of observed crashes over the total
number of fault injections performed.

Figure 7 shows the results of the evaluation. The average
precision across all benchmarks is 92% (ranges from 86%
to 98%). As in the case of recall, after manual inspection
we have confirmed that the main reason for not hitting 100%
precision is the difference between the run-time and modeled
environments, i.e., non-deterministic memory allocation.

50%

60%

70%

80%

90%

100%

Pr
ec

isi
on

 o
f t

he
 M

od
el

Fig. 7: Precision for the crash bits predicted using the ePVF
methodology.

0%

20%

40%

60%

80%

100%

Crash rate estimate using fault injection
Crash rate estimate using ePVF

Fig. 8: The crash rates estimates using ePVF (right bars) and using
fault injection experiments (left bars) are close. For fault injection
experiments, the error bars indicate the 95% confidence intervals.

C. Q2: How close are the crash rates estimated using ePVF
and fault injection?

The ePVF methodology is able to identify crash-causing
bits with high accuracy. This can be used to estimate the crash
rate of a program as the fraction of crash-causing bits over the
total number of bits in an application. Such an estimate can
be important for techniques that use crash rates to determine
the level of protection to be provided, e.g., choosing the
checkpoint interval.

Figure 8 shows that estimating crash rates this way is a
good approximation for crash rates obtained through fault
injection experiments. The differences are within or close to
the 95% confidence interval bounds, except for lavaMD and
lulesh. The reason the crash rate predictions are off for these
two applications is that ePVF calculates the crash bits only
based on the ACE graph, which contains 70% and 80% of
the whole DDG for lavaMD and lulesh respectively. On the
other hand, the fault injection uses the full program execution
corresponding to the whole DDG.

D. Q3: Does ePVF lead to a tighter estimate of SDC rate
than the original PVF?

We have shown that the ePVF methodology can accurately
estimate the crash bits of an application. We now ask whether
it can lead to better SDC rate estimates. As explained earlier,
ePVF provides an upper bound (i.e., overestimate) for the SDC
rate like PVF does. We compare the tightness of these two
upper bounds.

8



0%

20%

40%

60%

80%

100%

PVF value ePVF value SDC rate from FI

Fig. 9: ePVF (center bars) offers a much better upper bound estimate
for the SDC rate (right bars) than the original PVF methodology (left
bars). For SDC rates, error bars represent 95% confidence intervals.

TABLE V: Number of nodes in the ACE graph and time taken by
the ePVF analysis for each benchmark

Benchmarks # of Dynamic
IR instructions ACE nodes Modelling time (s)

hotspot 954,920 1,102,265 14,400
pathfinder 839,163 967,836 18,000
mm 464,438 597,604 3,987
particlefilter 352,866 479,994 3,956
nw 376,022 453,998 3,800
lulesh 322,738 319,253 953
bfs 274,170 269,019 900
lud 75,543 93,089 205
srad 72,041 91,385 172
lavaMD 17,814 16,779 30

Figure 9 shows the original PVF and the ePVF values for
the ten benchmarks. The original PVF ranges from 71% to
98%, with an average of 92%. In contrast, the ePVF estimate
ranges from 25% to 40%, with an average value of 31%. The
average difference between PVF and ePVF is 61%, ranging
from 45% to 67% depending on the benchmarks.

Figure 9 also shows, for each benchmark, the SDC rate
obtained through the fault injection experiments described
earlier. The SDC rate ranges from 1 to 25% depending on
the benchmark, with an average value of about 12% across
benchmarks. ePVF significantly lowers the upper bound of es-
timated SDC vulnerability of a program. The above evaluation
suggests that our technique has higher predictive power than
the original PVF analysis to understand the SDC behaviour of
a program (we demonstrate that this can be used in practice
in §V). That said, there is still room for a tighter bound as we
will discuss in §VI.

E. Q4: How fast is the ePVF analysis?

Table V shows, for each benchmark, the number of dynamic
LLVM IR instructions, the number of nodes in the ACE graph,
and the total time to compute ePVF. The running time ranges
from less than a minute (lavaMD) to 5 hours (pathfinder).
As expected, the time taken correlates with the ACE graph
size. We also measured the time spent by various parts of the
ePVF analysis: most time is spent in the crash and propagation
models.

We discuss scalability in detail in Section §VI. Here we
propose an optimization to reduce the time to compute ePVF,
based on sampling the ACE graph. This approach is based on

111 360 355 25 32 4 143 92 156 93

3876 17640 14045 180 140 26 3657 808 3800 860

0%
20%
40%
60%
80%

100%

Pe
rc

en
ta

ge
 o

f t
ot

al
 m

od
el

lin
g 

tim
e

Buidling ACE graph Crash and propagation modelling

Fig. 10: Breakdown of execution time between graph construction
(bottom bar) and running the crash and propagation models (top bar).
Labels on bars present absolute time in seconds.

0%

15%

30%

45%

predicted ePVF computed ePVF

Fig. 11: The predicted ePVF value based on sampling only 10% of
the ACE graph and ePVF computed based on the entire graph are
close.

the intuition that many HPC applications consist of repetitive
program states and patterns, and hence a small sample of the
ACE graph will be representative of the overall application
behaviour. Since a dynamic instruction trace preserves the
temporal ordering of the instructions executed by the program,
the output nodes in the ACE graph can be ordered based on
their presence in the trace. To validate if the sampling works,
we pick the first p% of the output nodes, and based on the
resulting partial ACE graph we estimate ePVF. For regular
applications, we find that there is a strong linear relationship
and we can linearly extrapolate the partial ePVF to the entire
application and thus estimate the overall ePVF accurately.

Figure 11 shows the extrapolated ePVF values based on
analyzing only 10% of the ACE graph. As can be observed,
for most benchmarks, the extrapolated ePVF values are a good
approximation for the overall ePVF: on average the error is
less than 1%, suggesting that these programs exhibit repetitive
behaviors as we expected.

Importantly, we can also estimate whether an application
displays repetitive behaviours and thus whether the ACE-graph
sampling be useful, without completing the full ACE analysis.
To demonstrate this, we randomly select multiple small sub-
sample of the ACE graph nodes (each 1%) and compute for
each of them the ePVF estimates. The normalized variance
is relatively low for benchmarks with repetitive behaviours
(e.g., 0.6 for lavaMD and 0.04 for particlefilter), but high for
applications where the ACE-graph sampling technique does
not offer high accuracy (e.g., 1.9 for lud).

9



V. CASE STUDY: SELECTIVE DUPLICATION

To demonstrate the practical usability of the ePVF method-
ology to improve application resilience, we use ePVF to
guide a selective instruction duplication technique to protect
against SDCs. The intuition is that a technique that prioritizes
protecting instructions with high ePVF values will offer good
SDC protection as the faults occurring in crashing bits are
unlikely to lead to SDCs. To establish a baseline, we compare
the SDC rate of a program protected by duplicating the high
ePVF instructions, with that protected by duplicating the hot
paths of the program. Prior studies [25], [31] have shown that
protecting hot paths is an effective technique (i.e., instructions
on the top 20% of most executed paths are responsible for
most of the SDCs - these constitute the hot paths).

We also attempted to use PVF to drive the choice of
instructions to duplicate. However, we found that the PVF
values of most instructions are clustered around 1, which
means that PVF has little discriminative power to inform
the choice of which instructions to protect. As an example,
we plot the CDF (Cumulative Distribution Function) of the
PVF and ePVF values of every instruction for two benchmark
programs, namely nw and lud in Figure 12. As can be seen in
the figure, the CDF for PVF has a sharp spike near 1, while the
ePVF values are distributed more evenly throughout the range.
Therefore, we did not consider PVF-informed duplication as
a comparison point in this study.

To make the comparison fair, we control the performance
overhead incurred by both techniques we compare (by control-
ling the number of instructions we protect and measuring ex-
ecution time). Our hypothesis is that for a given performance
overhead bound, the ePVF based duplication scheme can
offer higher SDC coverage than hot-path duplication. A full-
duplication technique (i.e., duplication of every instruction)
would offer 100% detection coverage, but incur significant
performance overheads [13], [25]. Hence we do not consider
full-duplication technique in this work.

An ePVF-informed protection heuristic We first com-
pute the ePVF value of each dynamic instruction using the
equation 3. Then, we compute the ePVF value of all static
instructions in the program by averaging the ePVF values of
all their dynamic instances, and rank the static instructions
in descending order of their ePVF values. We then select the
static instruction at the top of the list, and extract its backward
slice. Finally, we selectively duplicate the instructions in the
slice, and insert a comparison of the duplicated value with
the original value following the chosen instruction. Because
we need to limit protection within the overhead budget, we
measure the performance overhead incurred by duplication. If
the performance overhead bound is not exceeded, we choose
the next instruction on the list and repeat the procedure.
Thus this is a greedy algorithm for choosing instructions to
duplicate. We use the same process for hot-path instructions,
with the difference that the instructions are ranked in a
decreasing order of their execution frequencies instead of their
ePVF values.

ePVF or PVF values of nw

Em
pi

ric
al

 C
D

F

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

epvf
pvf

ePVF or PVF values of lud

Em
pi

ric
al

 C
D

F

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Fig. 12: The figure presents the CDF for the ePVF and PVF values
of registers used in each instruction of nw (left) and lud (right)
benchmarks. PVF values for most instructions are clustered around 1
and thus can not inform protection mechanisms based on instruction
level protection.

ePVFinst =

∑
register in inst (ACEBits - CrashBits)

Total bits in inst
(3)

Evaluation Methodology. We evaluate the coverage of the
above schemes through fault injection experiments. We only
consider the five benchmarks whose SDC rates were higher
than 10% in Figure 9 (i.e. mm, pathfinder, hotspot, lud and
nw) so as to discriminate the effects of the two schemes better.
Further, we run the fault injection campaigns with different
inputs than the ones we used to get the ePVF values (these
are much larger in size) to get stable performance numbers.

Evaluation Results. Figure 13 shows the SDC rate of the
original application (no protection), the SDC rate when using
hot-path protection, and the SDC rate when using ePVF-
informed protection, given a performance overhead bound of
24%4. Overall, we find that ePVF based protection does better
than hot-path based protection, and reduces the SDC rate from
20% to 7% (geometric mean), while hot-path based protection
reduces it to about 10%. Thus, ePVF based protection does
30% better than hot-path based protection, on average across
benchmarks, showing that it has better discriminative power
than execution frequencies for protection. Further, we find that
ePVF-based protection outperforms hot-path based protection
for all benchmarks except hotspot. This is due to the presence
of many control-flow structures in hotspot all of which are
marked as sensitive by ePVF though they do not cause SDCs.

VI. DISCUSSION

A. Scalability is an important issue as most applications
will likely generate ACE graphs with billions of vertices. The
ACE-graph sampling technique we describe in §IV-E offers
a significant speedup for applications that contain repetitive
patterns. We believe that scaling to handle larger applications
is a matter of good engineering and not a fundamental barrier
for the following reasons. First, the current ePVF infrastructure
(including building/processing the DDG) is implemented in
Python. A tuned C/C++ implementation will likely be orders

4We considered performance overheads of 8%, 16% and 24% as well. We
report here only the results using 24% overhead due to space constraints - the
qualitative results were similar all cases.

10



0%

5%

10%

15%

20%

25%

30%

mm lud nw pathfinder hotspot geomean

SDC	
  rate SDC	
  rate	
  when	
  using	
  hotpath	
  based	
  protection SDC	
  rate	
  when	
  using	
  ePVF	
  based	
  protection

Fig. 13: SDC rates for the original application (left bars) and when
using hotpath (center) and ePVF-based protection (right) for an
overhead bound of 24%. Error bars present 95% confidence intervals.

of magnitude faster and consume less memory. Second, the
most time-consuming portion of the ePVF analysis is running
the crash and propagation models. These start from each
load/store individually, and search along their backward slices.
This process is trivially parallelizable (threads can be assigned
to one backward slice each with minimum coordination re-
quired). Additionally the work allocated for each thread (i.e.,
the size of the backward slice) scales sub-linearly with the
size of the graph. Third, if the DDG does not fit in memory,
it can be partitioned to support the parallel backward slice
exploration suggested above.

B. Sources of Inaccuracy. §IV-C shows that ePVF is a
much closer upper bound than PVF for the SDC rate of an
application. However, ePVF still overestimates the SDC rate,
in some cases by a significant amount. This overestimate is
generated mainly by the following three factors:

1. Lucky loads: ePVF assumes that any fault that causes
a load to deviate from its intended source address (but still
stays within the bounds of the program’s allocated memory)
will lead to an SDC. However, as prior work has found [32],
this is not always true. For example, the value loaded from
the incorrect address may still be correct, and hence have no
effect on the program. The likelihood of this case increases
if the value loaded is 0, as memory typically has large areas
initialized to zeroes [32].

2. Y-branches: Y-branches are branches that do not affect the
outcome of the application even when the program executes
the wrong part of a branch due to a fault [33]. The ePVF
analysis assumes that all branches lead to SDCs if flipped.
However, only about 20% of branch flips lead to SDCs in
practice, as prior work has found [33].

3. Application-specific correctness checks: Similar to PVF,
the ePVF model, considers as ACE bits all bits that lead to
visible changes to the application output. Some of these faults,
however, may be characterized as benign by application-
specific correctness checks (e.g., based on precision thresholds
for floating-point computations).

C. Conservativeness: While ePVF may overestimate the
SDC rate, it will never underestimate it (barring the case
below). This is because ePVF conservatively labels every non-
crash causing operation as potentially leading to an SDC.
Being conservative is important as it can drive decisions about
how much state to protect in the worst-case for the application.

However, in Section IV-B, we found that our implementation
of the ePVF methodology may yield false positives i.e., it may
identify a failure as a crash when in fact it is an SDC. This
occurs because of differences between the program’s memory
structures in the golden run (on which the ePVF analysis is
based) and the fault injected runs. However, the differences
are very small in practice (at most 8% in our experiments). A
more robust implementation can address this difference.

VII. RELATED WORK

There has been a considerable amount of work on esti-
mating the error resilience of a program either through fault
injection, or through vulnerability analysis techniques. The
main advantage of fault-injection is that it is simple and
allows distinguishing between different failure outcomes, yet
has limited predictive power and is slow. The main advantage
of vulnerability analysis is that it has predictive power and
is faster, but does not distinguish between different kinds of
failures. The main question we ask in this paper is whether it
is possible to combine the advantages of the two approaches
by building an architecture-neutral vulnerability analysis tech-
nique to distinguish different failure outcomes, and especially
SDCs. Therefore, we use fault injection to gather the ground
truth of the error resilience characteristics of an application
and compare it with the result of the ePVF methodology.

Biswas et al. [34] separate the overall AVF of processor
structures into SDC AVF and Detected Unrecoverable Errors
(DUE) AVF by considering whether bit-level error protection
mechanisms such as ECC or parity are enabled in those
structures. While DUE is similar to the notion of crash in
this paper, DUE is defined at the hardware level only and does
not consider software-level mechanisms. Further, like AVF, the
DUE-AVF is highly hardware dependent.

Bronovetsky et al. [35] use standard machine learning
algorithms to predict the vulnerability profiles of different
routines under soft errors, to understand the vulnerability of
the full applications. However, their technique is confined to
linear algebra applications. Lu et al. [36] and Laguna et al. [37]
identify SDC-causing code regions through a combination of
static analysis and machine learning. However, their technique
does not provide foundational understanding behind why some
faults cause SDCs and others do not. A common issue with
machine learning techniques is that they require extensive
training with representative data, which analytical techniques
do not.

Finally, Yu et al. [38] introduce a novel resilience metric
called data vulnerability factor (DVF) to quantify the vulner-
ability of individual data structures. By combining the DVF
of different data structures, the vulnerability of an application
can be evaluated. While useful, this technique requires the
program to be written in a domain specific language, that is
restricted in terms of its expressiveness. Further, DVF does not
distinguish between crash-causing errors and other errors.

11



VIII. SUMMARY

This paper presents ePVF, a methodology to extend the
PVF analysis by distinguishing crash-causing bits from the
ACE bits as as to get a tighter bound on SDC rate. Our
methodology consists of two models: (1) a propagation model
to predict the dependent bits of memory address calculations
based on a range propagation analysis, and (2) a crash model
to predict the platform-specific behaviour of program crashes.
We implement the ePVF methodology in the LLVM compiler,
and evaluate its accuracy. The results show that ePVF can
predict crashes with high confidence (89% recall and 92%
precision on average). Further, ePVF significantly lowers the
upper bound of the estimated SDC rate of a program (61% on
average), compared to the original PVF. Finally, we present
a use-case for this methodology: an ePVF-informed selective
duplication technique, which leads to 30% lower SDCs than
hot-path instruction duplication.

While we have focused on using ePVF methodology for
SDC rate estimation and reduction in software, there are two
other uses in the future. First, it can be used to determine
which architectural structures are more likely to cause SDCs,
and selectively protect these structures through hardware tech-
niques such as selective ECC. Second, the ePVF methodology
can be used to determine the total number of crash-causing
bits in the program and inform a fault-tolerance mechanism
for crash-causing faults (e.g. checkpointing).

ACKNOWLEDGEMENT

We thank Vilas Sridharan for his insightful feedback on this
work. We also thank the reviewers of DSN 2016 for their
feedback which helped improve this work. This work was
funded in part by Discovery grants from the Natural Science
and Engineering Research Council (NSERC).

REFERENCES

[1] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,” in
IEEE MICRO, 2003.

[2] T. Karnik and P. Hazucha, “Characterization of soft errors caused
by single event upsets in cmos processes,” Dependable and Secure
Computing, IEEE Transactions on, vol. 1, no. 2, April 2004.

[3] L. Tan, S. L. Song, P. Wu, Z. Chen, R. Ge, and D. J. Kerbyson,
“Investigating the interplay between energy efficiency and resilience in
high performance computing,” in IPDPS. IEEE, 2015, pp. 786–796.

[4] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer, “Hauberk:
Lightweight silent data corruption error detector for gpgpu,” in IPDPS,
2011.

[5] W. Gu, Z. Kalbarczyk, and R. Iyer, “Error sensitivity of the linux kernel
executing on powerpc g4 and pentium 4 processors,” in DSN 2003.

[6] B. Atkinson, N. DeBardeleben, Q. Guan, R. Robey, and W. M. Jones,
“Fault injection experiments with the clamr hydrodynamics mini-app,”
in 2014 ISSREW.

[7] C. da Lu and D. Reed, “Assessing fault sensitivity in mpi applications,”
in Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004.

[8] V. Sridharan and D. Kaeli, “Eliminating microarchitectural dependency
from architectural vulnerability,” in HPCA 2009., 2009, pp. 117–128.

[9] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong
program analysis & transformation,” in CGO, ser. CGO ’04, 2004.

[10] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
accuracy of high-level fault injection techniques for hardware faults,”
in DSN, June 2014.

[11] A. Meixner, M. Bauer, and D. Sorin, “Argus: Low-cost, comprehensive
error detection in simple cores,” in Microarchitecture, 2007. MICRO
2007. 40th Annual IEEE/ACM International Symposium on, Dec 2007.

[12] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An architec-
tural framework for software recovery of hardware faults,” in ISCA 14,
pp. 497–508.

[13] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic
soft error reliability on the cheap,” SIGPLAN Not., vol. 45, no. 3, Mar.

[14] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, “SWIFT:
Software implemented fault tolerance,” in CGO, 2005, pp. 243–254.

[15] D. S. Khudia and S. A. Mahlke, “Harnessing Soft Computations for
Low-Budget Fault Tolerance.” MICRO, pp. 319–330, 2014.

[16] M.-C. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and tools,”
Computer, vol. 30, no. 4, pp. 75–82, 1997.

[17] D. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. Iyer, “Nftape:
a framework for assessing dependability in distributed systems with
lightweight fault injectors,” in IPDPS 2000, 2000, pp. 91 –100.

[18] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “Goofi: generic
object-oriented fault injection tool,” in DSN, 2001, pp. 83–88.

[19] J. Carreira, H. Madeira, and J. Silva, “Xception: a technique for
the experimental evaluation of dependability in modern computers,”
Software Engineering, IEEE Transactions on, Feb 1998.

[20] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
exploiting application-level fault equivalence to analyze application
resiliency to transient faults,” in ASPLOS 2012.

[21] S. Hari, R. Venkatagiri, S. Adve, and H. Naeimi, “Ganges: Gang error
simulation for hardware resiliency evaluation,” in ISCA 2014, 2014.

[22] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “Measur-
ing architectural vulnerability factors,” in IEEE MICRO, vol. 23, no. 6.

[23] H. Cho, S. Mirkhani, C.-Y. Cher, J. Abraham, and S. Mitra, “Quantitative
evaluation of soft error injection techniques for robust system design,”
in DAC, 2013 50th ACM/EDAC/IEEE, May, pp. 1–10.

[24] J. Wei and K. Pattabiraman, “BLOCKWATCH: Leveraging similarity in
parallel programs for error detection,” in DSN, 2012.

[25] Q. Lu, K. Pattabiraman, M. S. Gupta, and J. A. Rivers, “Sdctune: A
model for predicting the sdc proneness of an application for configurable
protection,” in CASE 2014. New York, New York, USA: ACM Press,
2014, pp. 1–10.

[26] F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson, “A study
of the impact of single bit-flip and double bit-flip errors on program
execution,” in Computer Safety, Reliability, and Security, 2013, vol.
8153, pp. 265–276.

[27] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in Proceed-
ings of Programming Language Design and Implementation (PLDI),
New York, NY, USA, 1990.

[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, ser. IISWC ’09.

[29] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz,
and C. Still, “Exploring traditional and emerging parallel programming
models using a proxy application,” in IEEE IPDPS 2013, Boston, USA.

[30] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”
Tech. Rep. LLNL-TR-641973, August 2013.

[31] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-level
detectors for reducing silent data corruptions,” in 2012 42nd DSN.
IEEE, 2012, pp. 1–12.

[32] J. Cook and C. Zilles, “A characterization of instruction-level error
derating and its implications for error detection,” in DSN, 2008.

[33] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ace analysis
reliability estimates using fault-injection,” in ISCA ’07, 2007.

[34] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and
R. Rangan, “Computing architectural vulnerability factors for address-
based structures,” SIGARCH Comput. Archit. News, vol. 33, no. 2, May.

[35] G. Bronevetsky, B. de Supinski, and M. Schulz, “A foundation for
the accurate prediction of the soft error vulnerability of scientific
applications,” in SELSE, 2009.

[36] Q. Lu, K. Pattabiraman, M. S. Gupta, and J. A. Rivers, “Sdctune: A
model for predicting the sdc proneness of an application for configurable
protection,” in CASE, 2014.

[37] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson,
“Ipas: Intelligent protection against silent output corruption in scientific
applications,” ser. CGO 2016, 2016.

[38] L. Yu, D. Li, S. Mittal, and J. S. Vetter, “Quantitatively modeling
application resilience with the data vulnerability factor,” in SC, 2014.

12


