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What are we facing?

§SoC soft	error	trends:	overall	FIT	rate	per	SoC is	increasing	
[DATE	2014,	Chandra	AMD]
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Why Software-based Fault Tolerance

§Hardware-based techniques
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Mitigating Silent Data Corruption	(SDC): Key to
Error Resilience
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Error	Resilience	Estimation:	Accuracy	vs	Cost
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Identifying	SDC-causing	Bits

§ AVF/PVF:	 Identify	Architecturally	Correct	Execution	(ACE)	Bits	
[MICRO03,	HPCA10]
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PVF Analysis	[Sridharan,	HPCA10’]

§ ACE	Bits= 	∑ 𝐵𝑖𝑡𝑠	𝑖𝑛	𝑅𝑖*
+,-

§ Total	Bits	=	∑ 𝐵𝑖𝑡𝑠	𝑖𝑛	𝑅𝑖.
+,-

§ PVF	=	 /01	2+34
56378	2+34

=	88.9%
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Our	Approach:	ePVF
§ Source	of	crashes

§ Segmentation	 faults		(99%	of	
crashes	are	due	to	segfaults)

§ Direct	crash-causing	bits
§ Crash	model

§ Indirect	crash-causing	bits
§ Propagation	model
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Overall	methodology
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Crash	model

§ Determining	the	bits	that	cause	an	out-of-bound	memory	access	
§ Applied	on	every	memory	instruction

R2	∈ [addr_min,	addr_max]

01110001010010…

R2

OS
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Propagation	model

§ Identifying	all	possible	bits	that	can	affect	the	bits	identified	by	the	
crash	model

Crash	
model min(R5),max(R5)

max(R6)	=	(max(R5)	– R7)/4
min(R6)	=	(min(R5)	– R7)/4

max(R7)	=	max(R5)	– R6*4
min(R7)	=	min(R5)	– R6*4
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Overall	ePVF methodology
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Experimental	setup

§ Scientific	benchmarks
§ 8	from	Rodinia [IISWC	09]
§ Matrix	Multiplication
§ LULESH:	DOE	proxy	app	[IPDPS	2013]

§ Fault	Model
§ LLFI	[DSN	14]	

§ 3,000	runs	per	benchmark
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Evaluation

§ RQ1:	Accuracy	of	the	models
§ RQ2:	Effectiveness	of	the	ePVF methodology
§ RQ3:	Performance
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RQ1:	Accuracy	of	the	models

§ Recall

§ Precision
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RQ1.	Accuracy	of	the	Models
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On	average,	90%	of	the	time	the	ePVF methodology	
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RQ2:	Effectiveness	of	the	ePVF

§ SDC	estimate using PVF	analysis,	ePVF analysis	and	Fault	Injection
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ePVF significantly	tightens	the	
upper	bound	of	estimated	SDCs	

by	61%	on	average
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ePVF-informed	Duplication

§ Rank	instructions	based	on	their	ePVF value

§ ePVF value	per	instruction	=	/01	:+34	;0<74=;>?74+@A	:+34	
/01	:+34	

§ Higher	the	ePVF value,	Higher	chance	to	lead	to	SDCs
§ Duplication	highly-ranked	ePVF instructions
§ 30%	more	SDC	coverage	than	hot-path	duplication	for	the	same	
performance	overhead
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RQ3:	Performance

§Modeling	time	ranges	from	30s	(lavaMD)	to	~	4	hours	(pathfinder).
§ Depending	 on	the	size	of	the	DDG,	hence	 the	number	of	dynamic	 instructions

§ Optimization	(Sampling	and	Extrapolation)
§ Intuition	– scientific	 applications	 usually	have	repetitive	 behaviors.
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based	on	10%	of	the	graph,	
and	showing	less	than	1%	
difference	on	average

19



Conclusion

§ ePVF removes the	crash-causing	bits	from	PVF	to	get	a	more	accurate	
estimate	of	SDC	rate.	
§ A	crash	model	 that	predicts	direct	crash-causing	 bits
§ A	propagation	model	that	 identifies	 bit	that	 lead	to	direct	crash-causing	bits
§ Implementation	 with	LLVM	compiler
§ Drive selective protection of	SDC-causing	 instructions

Email:	bof@ece.ubc.ca
Code:	https://github.com/flyree/enhancedPVF
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