
EPVF: AN ENHANCED PROGRAM 
VULNERABILITY FACTOR METHODOLOGY 
FOR CROSS-LAYER RESILIENCE ANALYSIS

Bo Fang☨, Qining Lu	☨, Karthik Pattabiraman ☨, Matei Ripeanu ☨
and Sudhanva Gurumurthi *

☨ The University of British Columbia, Canada
*Cloud Innovation Lab, IBM, USA

1



What are we facing?

§SoC soft	error	trends:	overall	FIT	rate	per	SoC is	increasing	
[DATE	2014,	Chandra	AMD]

11 DATE 2014 DATE 2014 

SoC soft error trends 
Bitcell SER FIT rate per node 

0 

100 

200 

300 

400 

500 

600 

700 

200 150 100 50 0 

SCU Avg/node MCU Avg/node 

SoC SER FIT rate per node 

1 

10 

100 

1000 

200 150 100 50 0 

Memory SER Logic SER 

Even though per memory bitcell SER sensitivity is decreasing, overall FIT per SoC is increasing 

Source: iRoC 

2



Why Software-based Fault Tolerance

§Hardware-based techniques

3

Device/Circuit Level

Architectural Level

Operating System Level

Application Level

Impactful Errors

Hardware
Faults

Software-based techniques: more cost-effective



Mitigating Silent Data Corruption	(SDC): Key to
Error Resilience

4

Normal	execution

Fault

SDC

Crash

Hang

Benign

Error

Incorrect	
output



Error	Resilience	Estimation:	Accuracy	vs	Cost

5

Accuracy

Cost

FI

High	resource	
consumption,	 low	
`predictive	 power

Conservative
estimation of Error

Resilience

AVF/
PVF

[HPCA2010,MICRO2003]

Goal



Identifying	SDC-causing	Bits

§ AVF/PVF:	 Identify	Architecturally	Correct	Execution	(ACE)	Bits	
[MICRO03,	HPCA10]

6

Total	bits	for	
execution

ACE	bits

e(nhanced)PVF:	a	methodology	that	distinguishes	
crash-causing	bits	from	ACE	bits

SDC-
causing	
bits

Crash-
causing	bits



PVF Analysis	[Sridharan,	HPCA10’]

§ ACE	Bits= 	∑ 𝐵𝑖𝑡𝑠	𝑖𝑛	𝑅𝑖*
+,-

§ Total	Bits	=	∑ 𝐵𝑖𝑡𝑠	𝑖𝑛	𝑅𝑖.
+,-

§ PVF	=	 /01	2+34
56378	2+34

=	88.9%

7

R1 = LD R2
R4 = ADD R1, R3
R5 = ADD R6*4, R7
ST R4, R5
R8 = LD R2

ADDR1

R2

R1
R3

R4

ADDR2

R5

R6

R7

R8LD
LD

ADD
ADD

ST
ADD

ADD



Our	Approach:	ePVF
§ Source	of	crashes

§ Segmentation	 faults		(99%	of	
crashes	are	due	to	segfaults)

§ Direct	crash-causing	bits
§ Crash	model

§ Indirect	crash-causing	bits
§ Propagation	model

8

ADDR1

R2

R1
R3

R4

ADDR2

R5

R6

R7

R8LD
LD

ADD
ADD

ST
ADD

ADD

Source of crashes

Segfaults Others



Overall	methodology

PVF-
Identify	
ACE	bits

Obtaining	
Program	
Trace

Crash	
Model

Propagation	
Model

Identify	bits	that	cause	
a	program	to	make	an	
invalid	memory	access	

and	crash

Identify	bits	on	the	
backward	slice	of	bits	
that	directly	cause	

crashes
9



Crash	model

§ Determining	the	bits	that	cause	an	out-of-bound	memory	access	
§ Applied	on	every	memory	instruction

R2	∈ [addr_min,	addr_max]

01110001010010…

R2

OS
	

In
fo

PVF-
Identify	
ACE	bits

Obtaining	
Program	
Trace

Crash	
Model

Propagation	
Model

R1 = LD R2
R4 = ADD R1, R3
R5 = ADD R6*4, R7
ST R4, R5
R8 = LD R2

R1	=	LD	R2

vma_start vma_end

ESP 10



Propagation	model

§ Identifying	all	possible	bits	that	can	affect	the	bits	identified	by	the	
crash	model

Crash	
model min(R5),max(R5)

max(R6)	=	(max(R5)	– R7)/4
min(R6)	=	(min(R5)	– R7)/4

max(R7)	=	max(R5)	– R6*4
min(R7)	=	min(R5)	– R6*4

11

PVF-
Identify	
ACE	bits

Obtaining	
Program	
Trace

Crash	
Model

Propagation	
Model

R1 = LD R2
R4 = ADD R1, R3
R5 = ADD R6*4, R7
ST R4, R5
R8 = LD R2

R5	=	ADD	R6*4	+	R7
ST R4, R5



Overall	ePVF methodology

PVF-
Identify	
ACE	bits

Obtaining	
Program	
Trace

Crash	
Model

Propagation	
Model

ePVF Bits	that	potentially	
lead	to	SDCs	

12



Experimental	setup

§ Scientific	benchmarks
§ 8	from	Rodinia [IISWC	09]
§ Matrix	Multiplication
§ LULESH:	DOE	proxy	app	[IPDPS	2013]

§ Fault	Model
§ LLFI	[DSN	14]	

§ 3,000	runs	per	benchmark

13



Evaluation

§ RQ1:	Accuracy	of	the	models
§ RQ2:	Effectiveness	of	the	ePVF methodology
§ RQ3:	Performance

14

Total	bits	for	
execution

ACE	bits

SDC-
causing	
bits

Crash-
causing	
bits



RQ1:	Accuracy	of	the	models

§ Recall

§ Precision

50%

60%

70%

80%

90%

100%

R
ec

al
l o

f t
he

 M
od

el

50%

60%

70%

80%

90%

100%

P
re

ci
si

on
 o

f 
th

e 
M

od
el

Our	models	achieve	average	
89%	recall	and	92%	

precision

15

FI experiments

Crash trials

Pick the flipped 
bit for a crash 

trail

Check that bit 
for the model

Randomly pick 
a bit from the 

models

Flip the exact 
bit during the 

execution

Check if a 
crash occurs

50%

60%

70%

80%

90%

100%

R
ec

al
l o

f t
he

 M
od

el
FI experiments

Crash trials

Pick the flipped 
bit for a crash 

trail

Check that bit 
for the model



RQ1.	Accuracy	of	the	Models

16

On	average,	90%	of	the	time	the	ePVF methodology	
is	accurate	to	identify	crash-causing	bits

Total	bits	for	
execution

ACE	bits

SDC-
causing	
bits

Crash-
causing	
bits



RQ2:	Effectiveness	of	the	ePVF

§ SDC	estimate using PVF	analysis,	ePVF analysis	and	Fault	Injection

0%

20%

40%

60%

80%

100%
PVF value ePVF value SDC rate from FI

ePVF significantly	tightens	the	
upper	bound	of	estimated	SDCs	

by	61%	on	average

17



ePVF-informed	Duplication

§ Rank	instructions	based	on	their	ePVF value

§ ePVF value	per	instruction	=	/01	:+34	;0<74=;>?74+@A	:+34	
/01	:+34	

§ Higher	the	ePVF value,	Higher	chance	to	lead	to	SDCs
§ Duplication	highly-ranked	ePVF instructions
§ 30%	more	SDC	coverage	than	hot-path	duplication	for	the	same	
performance	overhead

18



RQ3:	Performance

§Modeling	time	ranges	from	30s	(lavaMD)	to	~	4	hours	(pathfinder).
§ Depending	 on	the	size	of	the	DDG,	hence	 the	number	of	dynamic	 instructions

§ Optimization	(Sampling	and	Extrapolation)
§ Intuition	– scientific	 applications	 usually	have	repetitive	 behaviors.

0%

15%

30%

45%
predicted ePVF computed ePVF

Extrapolated	ePVF values	
based	on	10%	of	the	graph,	
and	showing	less	than	1%	
difference	on	average

19



Conclusion

§ ePVF removes the	crash-causing	bits	from	PVF	to	get	a	more	accurate	
estimate	of	SDC	rate.	
§ A	crash	model	 that	predicts	direct	crash-causing	 bits
§ A	propagation	model	that	 identifies	 bit	that	 lead	to	direct	crash-causing	bits
§ Implementation	 with	LLVM	compiler
§ Drive selective protection of	SDC-causing	 instructions

Email:	bof@ece.ubc.ca
Code:	https://github.com/flyree/enhancedPVF

20


