EPVF: AN ENHANCED PROGRAM
VULNERABILITY FACTOR METHODOLOGY
FOR CROSS-LAYER RESILIENCE ANALYSIS

Bo Fang T, Qining Lu T, Karthik Pattabiraman T, Matei Ripeanu T
and Sudhanva Gurumurthi *
t The University of British Columbia, Canada
*Cloud Innovation Lab, IBM, USA

Iy
I T Y _‘\g/

What are we facing?

= SoC soft
[DATE 20

1000

100

SoC SER FIT rate per node

150 100 50

Memory SER

Logic SER

)C IS increasing

C
d
0

aplaceo n

€k

Why Software-based Fault Tolerance

=" Hardware-based techniques Applicatior Level

Operating System Level

Architectural Level

Hardware

Device/Circuit Level Faults

Impactful Errors

Software-based techniques: more cost-effective

aplace of mind

Mitigating Silent Data Corruption (SDC): Key to
Error Resilience

Incorrect
output

Normal execution

Error Resilience Estimation: Accuracy vs Cost

A

Accuracy

A
!

Conservative
estimation of Error
Resilience

High resource
consumption, low

‘predictive power

[HPCA2010,MICRO2003]

€k

|dentifying SDC-causing Bits

= AVF/PVF: Identify Architecturally Correct Execution (ACE) Bits
[MICROO03, HPCA10]

ACE bits

SDC- Crash- Total bits for

causing causing bits execution
bits

e(nhanced)PVF: a methodology that distinguishes

crash-causing bits from ACE bits

6

PVF Analysis [Sridharan, HPCA10']

R1=LD R2

R4 = ADD R1, R3
R5 = ADD R6*4, R7
ST R4, R5

R8 = LD R2

= ACE Bits= Y./_, Bits in Ri
= Total Bits = >, Bits in Ri
ACE Bits

= PVF = — =88.9%
Total Bits

-
-

ADDR1
<D
LD
<
ADD
AD
R4
ST
ADD
ADDR2 Jvw_

R3
D

€k

=

ADD

C

BC| aplace of mind

€

Our Approach: ePVF

= Source of crashes

= Segmentation faults (99% of
ADDR1 crashes are due to segfaults)

LD
RD " Direct crash-causing bits
o = Crash model

-
-
-

ADD : : .
* " Indirect crash-causing bits
R4 ADD . Source of crashes
= Propagation model
T = w

M Segfaults = Others

—

N\

Identify bits that cause
Overa“ M @7 a program to make an
invalid memory access
and crash
Obtaining PVF-
Program # |dentify #

Trace

ACE bits

Crash
Model

—

Propagation
Model

Identify bits on the
backward slice of bits
that directly cause

crashes

7

aplace of min

E-'.'W"‘:
Obtaining r PVE- I Crash EPropagationé
Crash model progam mmp eniy mm S MR
TS B it Its |

» Determining the bits that cause an out-of-bound memory access

" Applied on every memory instruction

R1 =LD R2 \
R4 = ADD R1, R3

: R2 € [addr_min, addr_max]
RS = ADD R6*4, R7 N\ -
ST R4, R5 vma_start vma_end
R8 = LD R2 ! E /€10001010010...

ESP 0

W
Obtaining PVF-

Propagation model voeem = ey mp T30 Propesstir

Trace ACE bits

= [dentifying all possible bits that can affect the bits identified by the
crash model

R1 =LD R2
R4 = ADD R1, R3

RS = ADD R6*4 + R7
ST R4, R5 “*Q\. min(R5),max(R5)

R8 = LD R2 /\
—

max(R6) = (max(R5) — R7)/4 max(R7) = max(R5) — R6*4
min(R6) = (min(R5) — R7)/4 min(R7) = min(R5) — R6*4

Overall ePVF methodology

Obtaining
Program
Trace

PVF-
Identify
ACE bits

—

€k

Crash
Model

‘ Propagation
Model

ePVF Bits that potentially
lead to SDCs

-

12

Experimental setup

= Scientific benchmarks
= 8 from Rodinia [IISWC 09]
= Matrix Multiplication
= LULESH: DOE proxy app [IPDPS 2013]

= Fault Model

= | LFI [DSN 14]
= 3,000 runs per benchmark

€
Tl
Hite)

o

C
d
0

|

Evaluation

=" RQ1: Accuracy of the models
= RQ2: Effectiveness of the ePVF methodology

= RQ3: Performance

ACE bits

SD;— i Crash- - Total bits for
causing | EEETISTT: : execution
bits : bits

aplace of mind

14

RQ1: Accuracy of the models

Fl experiment

" Pre:

Recall of the Model

100°
90%
80% _
70% §
60Y £
50% =

S

5

_ 100%
3
290% = m e o oA
2

2 80%
s 0%
< 60%
3

50%

Randomly pick
a bit from the
models

| Our models achieve average

89% recall and 92%
precision

Crash triVs

Flip the exact
bit during the
K execution

bit for a crgsh

Check if a
crash occurs
Ch

for the m:)d—e/

C
d
0

aplaceo n

15

RQ1. Accuracy of the Models

ACE bits

SDF- Crash- Total bits for
causing causing execution

bits bits

On average, 90% of the time the ePVF methodology
is accurate to identify crash-causing bits

16

RQ2: Effectiveness of the ePVF

= SDC estimate using PVF analysis, ePVF analysis and Fault Injection

O
100% 17| ePVF significantly tightens the
0% 7111 upper bound of estimated SDCs

60% ||
w0 | by 61% on average

20%

0% - NN NEIE \WH \NE (Sl SNEE \WE NSl SNE "SI \W
S & &S LA & LS8
TLHS ¥ s S TS
R & & w
> &

] >

€
Tl
Hite)

ePVF-informed Duplication

= Rank instructions based on their ePVF value

ACE bits —Crash—cuasing bits

ACE bits
» Higher the ePVF value, Higher chance to lead to SDCs

= ePVF value per instruction =

" Duplication highly-ranked ePVF instructions

" 30% more SDC coverage than hot-path duplication for the same
performance overhead

RQ3: Performance

C

BC

€

" Modeling time ranges from 30s (lavaMD) to ~ 4 hours (pathfinder).

= Depending on the size of the DDG, hence the number of dynamic instructions

= Optimization (Sampling and Extrapolation)
" |ntuition — scientific applications usually have repetitive behaviors.

Opredicted ePVF Bcomputed ePVF

ﬂﬂuﬂﬂﬂ

@

45%

30%

15% |—I|_I

0%
&
&(096 o\‘«’Q \0
&

\z
AN \‘b {0

Q‘b

&
ao& &QJ‘ &
v§

Q

Extrapolated ePVF values

based on 10% of the graph,

and showing less than 1%
difference on average

aplace of mind

C
d
0

Conclusion

= ePVF removes the crash-causing bits from PVF to get a more accurate
estimate of SDC rate.
= A crash model that predicts direct crash-causing bits
= A propagation model that identifies bit that lead to direct crash-causing bits
* Implementation with LLVM compiler
= Drive selective protection of SDC-causing instructions

Email: bof@ece.ubc.ca
Code: https://github.com/flyree/enhancedPVF

20

aplaceo n

