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Abstract—With the projected future increase in hardware
error rates, application software needs to be resilient to hardware
faults. An important factor affecting an application’s error
resilience and vulnerability is the set of optimizations used when
compiling it. We propose an automated technique based on
genetic algorithms to find the application-specific set of compiler
optimizations that can boost performance without degrading
the application’s error resilience. We find that the resulting
optimized code has significantly better error resilience than when
being compiled with the standard optimization levels (i.e., O1,
O2, O3), while attaining comparable performance improvements,
thus leading to lower overall vulnerabilities.
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I. INTRODUCTION

Transient hardware faults (i.e., soft errors) are becoming
more frequent as feature sizes shrink and manufacturing
variations increase [1]. Unlike in the past, when such faults
were handled predominantly by the hardware, researchers have
predicted that hardware will expose more of these faults to the
software application [2], [3]. This is because the traditional
methods of handling hardware faults such as dual modular
redundancy and guard banding often lead to high energy
overheads [4]. These faults are especially a concern for high-
performance computing applications (HPC) which run for long
periods of time on large scale machines.

One of the most important decisions a programmer of
HPC applications must make is whether to run compiler
optimizations on it. Compiler optimizations typically make
programs run faster thereby boosting performance. As a result,
optimizations make the program less vulnerable to hardware
errors as it runs for a shorter time. However, optimizations
also change the code structure of a program often removing
redundancy, thereby making the program less error resilient
or less capable of handling an error should it occur. Thus, the
effect of compiling a program with optimizations on its overall
reliability is unclear. The question we ask is: “Do compiler
optimizations hurt or improve reliability?”.

Prior work [5], [6] has investigated this question by
studying the effect of compiling with the standard optimization
levels (i.e., O1, O2 and O3) on programs’ error resilience and
vulnerability. While this is useful, the standard optimization
levels group together many optimizations, and hence these
papers do not disambiguate the effects of individual optimiza-
tions. Thomas et al. [7] have considered the effect of individual

optimizations on error resilience, but they limit themselves to
soft-computing applications, or those applications that are in-
herently error tolerant, e.g., multimedia applications. Similarly,
Jones et al [8] have looked at the effect of individual compiler
optimizations on the architectural vulnerability factor (AVF)
of an application with the goal of finding optimizations that
do not substantially degrade the AVF. However, the AVF does
not take the final outcome of the program into account, for
example, whether the fault results in a Silent Data Corruption
(SDC) or a crash. For HPC applications, SDCs are often the
most important failure outcome of an application as crashes
can be recovered through checkpointing.

In this paper, we first perform an experimental study using
fault-injection to understand the effect of individual optimiza-
tions on a program’s error resilience. Although vulnerability
is often the key concern in practice, it incorporates both
the execution time of the program and the code structure.
Resilience on the other hand, depends only on the code struc-
ture. Because optimizations typically reduce execution time
we primarily focus on their effects on the code structure, i.e.,
resilience. We define resilience as the conditional probability
that given that an error affects the program, it does not result
in an SDC. We find that there is a significant difference in
the error resilience achieved by individual optimizations, and
that this effect varies significantly across applications. Further,
contrary to what prior studies have shown [5], [6], we find
that there are compiler optimizations that can improve the
error resilience of the program in addition to its performance.

Based on the above insight, we devise an automated tech-
nique to find, for a given application, a sequence of compiler
optimizations that preserves its error resilience while improv-
ing its performance, thus reducing its overall vulnerability1.
As the space of all possible optimizations is extremely large,
we leverage Genetic Algorithms (GA), a meta-heuristic search
technique. GAs have been used in prior work to find compiler
optimization sequences that optimize for performance [9],
[10], energy consumption [11], and code size [12]. None of
them consider error resilience, which is our focus. To the best
of our knowledge, we are the first to use a meta-heuristic
search algorithm such as GA to find compiler optimization

1In this work, we focus primarily on compiler optimizations for sequential
programs, as this is what most commodity compilers currently support.
Extending our results to parallel programs is a subject of future work.



sequences that can improve performance of an application
without degrading its error resilience.

Our contributions are:
• Study the effect of individual optimizations on different

programs’ error resilience through fault-injection experi-
ments (Section III),

• Propose a GA-based technique to find an optimization
sequence for a given application that does not degrade
the error resilience (Section IV),

• Implement the technique in a production, open-source
compiler, LLVM [13] (Section V),

• Experimentally tune the parameters of the GA approach
to achieve fast convergence to solution (Section VII) ,

• Evaluate the GA-based technique on 12 programs from
the PARSEC [14] and Parboil [15] benchmark suites
using fault-injection experiments, in terms of its error
resilience, performance and vulnerability, and compare
it to the standard optimization levels.

Our experimental evaluation (Section VII) shows that:
• The GA-based technique is able to find optimization

sequences that maintain or improve application resilience
compared to both the resilience of the original application
and that of the application compiled using the standard
optimization levels, O1, O2 and O3;

• The performance of the optimized code with our GA-
based technique is on par with the performance of the
code optimized with the standard optimization levels (GA
based is generally better than O1, O2 and slightly worse
than O3 by 0.39%);

• On average, the GA-based technique considerably lowers
the overall vulnerability of the application (8.12 (±0.21))
compared to the unoptimized version (9.25 (±0.25)).
On the other hand, the standard optimization level O1
increases the overall vulnerability of the application (O1-
9.53 (±0.25) on average), while O2 and O3 lower it
slightly (O2-9.22 (±0.24) and O3-9.11 (±0.24)). Thus,
the GA-based technique significantly reduces the over-
all application vulnerability (by 11%) compared to the
standard optimization levels and the unoptimized code.

Our results thus demonstrate that compiler optimizations
need not necessarily degrade resilience, and for a very small
performance loss, can lead to improved resilience and lower
vulnerability than the standard optimization levels (and even
the original program).

II. BACKGROUND AND FAULT MODEL

In this section, we first define our metrics, error resilience
and vulnerability. We then present a brief overview of genetic
algorithms, and describe our fault model.

A. Error Resilience and Vulnerability

A hardware fault can cause a program to fail in one of
three ways: it may cause the program to crash, hang, or
have a silent data corruption (SDC). SDC is an outcome that
results in incorrect output without any indication, hence the

name “silent”. We focus on SDCs as they are considered the
most severe kind of failures in a program (the other failures,
namely crashes and hangs, can be detected through hardware
exceptions and timeout mechanisms respectively).

Error resilience is the ability of a program to prevent an
error that has occurred during runtime from becoming an SDC.
In other words, resilience is the conditional probability that a
program does not produce an SDC given that it is affected
by a hardware fault (i.e., the fault is activated). Resilience
is a characteristic of the application’s code structure, and is
independent of its execution time. Vulnerability on the other
hand, takes execution time into account to account for the
higher likelihood of a fault for a longer running program.

More precisely, we define the Resilience =
(1 − SDCrate), and V ulnerability = (SDCrate ∗
Executiontime), where SDCrate is the fraction of SDCs
observed over the set of all activated faults (i.e., faults that
manifest to the software).

Note that our definition of vulnerability differs from the
commonly used notion of the Architectural Vulnerability Fac-
tor [16], which is defined in terms of the number of bits
in a hardware structure that are needed for architecturally
correct execution (ACE). We eschew this definition as it is
tied to the architectural state of the processor, while we
want to capture the effect of the error on the application.
Further, AVF studies often employ detailed micro-architectural
simulators which are slow, and hence do not execute the
application to completion. On the other hand, we want to
execute applications to completion on the real hardware as we
are interested in the ultimate effect of the error (i.e., whether
or not it results in an SDC).

As mentioned earlier, we focus on resilience to separate
the effects of compiler optimizations on code structure and
execution time. Since all the optimizations we choose aim at
improving performance, the vulnerability will be reduced if the
error resilience is maintained the same after the optimization
is applied (due to shorter execution time). We show later in
the paper that the convergence of our approach when choosing
optimizations for resilience is much faster than directly choos-
ing them for vulnerability, while yielding comparable results
(Section VII-D).

B. Genetic Algorithm (GA)

A Genetic Algorithm (GA) [17] is a meta-heuristic search
algorithm that is inspired by natural evolution. The algorithm
starts with an initial set of candidate solutions. They are
collectively called as the Population. The algorithm has a
fitness function that is used to calculate a candidate’s fitness
score. The fitness score depends on how good the candidate is
at solving a problem, and it is the parameter that evaluates
a candidate’s rank towards the optimal solution. One or
two candidates are chosen from the population to perform
recombination at each stage.

The recombination operations are of two types: Crossover
and Mutation. Two candidates undergo Crossover whereas,
for mutation, only one candidate takes part. The crossover
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operation performs a randomized exchange between solutions,
with the possibility to generate a better solution from a good
one. This operation tends to narrow the search and move
towards a solution. On the other hand, mutation involves
flipping a bit or an entity in a solution, which expands the
search exploration of the algorithm. Crossover and mutation
rate are the probabilities at which the respective operations are
performed [18] [19]. The choice of these probability values
reflects the trade-off between exploration and exploitation (or
convergence). A higher mutation rate for example, leads to
better exploration but can delay convergence. On the other
hand, a high crossover rate can lead to faster convergence, but
may get stuck in a local maxima.

Typically, recombination gives rise to new better performing
members, which are added to the population. Members in the
population that have poor fitness scores are thus eliminated
gradually. This process is repeated iteratively until either
a population member has the desired fitness score, thereby
finding a solution, or the algorithm exceeds the time allocated
to it and is terminated.

C. Fault Model

In this paper, we consider transient hardware faults that
occur in the computational elements and register file of the
processor. These faults occur when particle strikes or cosmic
rays affect the flip-flops or the logic elements. Particle strike
or cosmic rays might impact various chip components, namely
memory, instruction cache, data cache, ALU, pipeline stages.
Memory and cache are typically protected by error correcting
codes or parity. They have the ability to correct/detect single
bit flips caused by the particle strike. Therefore, we do not
consider faults that affect memory. Likewise, faults occurring
in the instructions’ encoding can be detected by the use of
simple codes - therefore we do not consider these faults
either. However, when a particle strikes the computational
components like the ALU, registers, processor pipelines, logic
gates etc, they affect the result of the instruction that is cur-
rently being executed in that component. This faulty result is
consumed by the subsequent dependent instructions ultimately
impacting the application’s outcome if allowed to propagate.

Cho et. al. [20] have found that there may be significant
differences in the raw rates of faults between fault injections
performed in the hardware and software. However, we are
interested in faults that are not masked by the hardware and
make their way to the software application. Therefore, we
inject faults directly at the application level. A similar fault
model has been used by prior work in this area [3], [2], [21].

III. INITIAL STUDY

In this section, we perform an initial fault-injection study
that analyzes the effect of individual compiler optimizations on
error resilience. The experimental setup and the benchmarks
considered here are described later in Section VI.

Fault Injection Results: We chose 10 individual optimiza-
tions at random from about 50 optimizations available in the
LLVM compiler [13]. We performed an initial study to analyze

TABLE I: Different optimizations used in the initial study

Optimization Expansion
licm Loop Invariant Code Motion

inst-combine Instruction Combine
cse Common Subexpression Elimination
gvn Global Value Numbering

ip-sccp Inter-procedural Sparse Conditional Constant Propagation
inline Function Inlining

loop-reduce Loop Operator Strength Reduction
loop-unroll Loop Unrolling

loop-unswitch Loop Unswitching
sccp Sparse Conditional Constant Propagation

the impact of individual optimizations on the error resilience of
two applications from the PARSEC benchmark suite, namely
Blackscholes and Swaptions. We first compiled the programs
with each of the ten chosen optimizations using LLVM. The
optimizations chosen are shown in Table I.

We performed fault injection experiments on the unopti-
mized version and the ten different optimized versions of the
programs to measure their respective error resilience values.
We performed a total of 3000 fault injection runs and com-
puted error bars at the 95% confidence intervals. Figure 1
shows the resilience (in %) of the different versions of the
two programs compared to the resilience of the unoptimized
version (baseline). The figure shows that some optimizations
degrade the error resilience of the program, while some opti-
mizations improve the resilience. For example, the loop-reduce
optimization improves the error resilience of Blackscholes,
while instcombine degrades the error resilience. Further, the
resilience effect of an optimization differs from one application
to another. For example, while the loop-reduce optimization
improves the resilience of Blackscholes, it degrades that of
Swaptions.
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Fig. 1: Resilience of blackscholes and swaptions optimized
with different individual optimizations (Black line at bot-
tom represents the resilience of the unoptimized version of
Blackscholes; Blue line at top represents the resilience of the
unoptimized version of Swaptions). Error bars are for the 95%
confidence interval.

To further understand why individual optimizations enhance
or degrade a program’s error resilience, we wrote a series
of micro-benchmarks that each attempt to exercise a single
optimization. We then performed fault-injection studies into
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these micro-benchmarks in order to study the effect of these
optimizations. This gives us an idea of why a particular
optimization increases or decreases error resilience. We give
two examples, one of an optimization that degrades resilience,
and the other of an optimization that enhances resilience.

Resilience degrading optimization: Consider the com-
monly used loop optimization loop-invariant code motion
(LICM), which attempts to reduce the operations performed
inside loops. It moves the loop-invariant expressions inside
the loop to the pre-header block of the loop without affecting
the semantics of the program.

Figure 2a shows a code snippet (unoptimized) from the
micro-benchmark, and Figure 2b shows the code optimized
by the LICM optimization. Our original code snippet includes
multiple such loops with similar operations - however, we
show only one loop for simplicity. It can be seen that the
expression that computes alpha (line 3 in Figure 2a) inside the
loop does not depend on the induction variable of the loop.
Thus the LICM optimization moves those expressions to the
pre-header block of the loop and minimizes the computations
performed inside the loop as shown in Figure 2b.

1 for(i=0; i<10; i++) 1 alpha=(x*c)+s;
2 { 2 for(i=0; i<10; i++)
3 alpha=(x*c)+s; 3 {
4 rs1[i]= 4 rs1[i]=

i+(alpha*7); i+(alpha*7);
5 } 5 }

Fig. 2: Effect of running the LICM optimization on a code
snippet (a) Unoptimized version, (b) Optimized version.

From our fault injection experiments, we observed that
the LICM optimization reduces the error resilience of the
program compared to the unoptimized version. To under-
stand why the resilience is degraded, assume that the
LICM optimized code experiences a fault in the computa-
tion alpha = (x * c) + s (line 1 in Figure 2b). This
fault will affect all values of the array rs1 in all loop
iterations. The original code on the other hand, computes
alpha = (x * c) + s (line 3 in Figure 2a) on every
iteration of the loop, and hence a fault in the computation
affects only the values of the array in that loop iteration,
namely rs1. Therefore, the LICM transformed code has a
greater likelihood of experiencing an SDC due to the fault,
and its resilience is lowered. This is an example of how an
optimization may lower the error resilience of an application.

Resilience enhancing optimization: Consider another loop
optimization loop strength reduction (LOOP-REDUCE), that
performs strength reduction on array references by replac-
ing complex operations inside the loop involving the loop
induction variable with equivalent temporary variables and
simpler operations. Similar to the previous example, Figure 3a
shows a sample code snippet and how it is transformed by
the LOOP-REDUCE optimization. The loop induction variable
that is used for array references and value computation in the
expression, rs1[i] = i*alpha (line 4 in Figure 3a) is

replaced with temporary variables temp and temp1 for the
address and value of array rs1 as shown in Figure 3b (line
6-8). Hence the induction variable here is only used to control
the loop entry and exit after the optimization.

From our fault-injection experiments, we observed that the
LOOP-REDUCE optimization enhances the resilience of the
program compared to the unoptimized version. To understand
why the resilience is enhanced, consider a fault that occurs
in the computation of the loop induction variable. In the
unoptimized version, the fault would affect the value and
references of array rs1. On the other hand, in the optimized
version, the loop induction variable is restricted to the role
of iterating and exiting the loop, and a fault occurring in this
induction variable would not affect the array reference and its
contents. Thus the optimized version is more resilient that the
unoptimized version. This example shows how an optimization
can improve the error resilience of an application.

1 alpha=(x*c)*s; 1 alpha=(x*c)*s;
2 for(i=0; i<10;i++) 2 temp=&rs1;
3 { 3 temp1=0;
4 rs1[i]=i*alpha; 4 for(i=0; i<10;i++)
5 } 5 {

6 *temp=temp1*alpha;
7 temp1=temp1+1;
8 temp=temp+

sizeof(int);
9 }

Fig. 3: Effect of running the LOOP-REDUCE optimization on
a code snippet (a) Unoptimized version, (b) Optimized version.

Therefore, different optimizations have different effects on a
program’s error resilience, with some optimizations degrading
resilience and others improving it. Further, it is often difficult
to judge apriori whether an optimization will lower or improve
the error resilience, as it is dependent on the application’s
characteristics. This is why we need an automated method to
find optimization sequences for an application that preserve
its error resilience with respect to the unoptimized version.

IV. METHODOLOGY

In this section, we first present the problem statement
and discuss its complexity. We then present our GA-based
approach for solving the above problem.

A. Problem Statement and Complexity

We devise an automated method to solve the following
problem: given a program P , find an optimization sequence
that provides performance improvement without degrading
resilience. If γ = [α1, α2, α3, ...αn] where α1, α2, α3, ..αn

are individual compiler optimizations and γ is the super-
set of optimizations, our goal is to find a non-empty op-
timization sequence ϕ = {αx1αx2...αxt}, where 1 ≤
x1, x2, ..xt ≤ n, that retains the resilience of the program, i.e.,
Resilience(ϕ(P )) ≥ Resilience(P ) and |ϕ| ≥ 1. The latter
constraint is necessary to prevent the trivial solution where ϕ
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is an empty set, i.e., when no optimizations are performed on
the program and the resilience is the same.

Note that a modern compiler has more than 50 optimizations
at its disposal. So a naive search strategy to solve this problem
would have to search through 250 combinations, simply to
find the sets of optimizations to run on the program. Each set
can in turn be permuted in different ways (with repetitions
allowed), and hence there is an exponential number of pos-
sibilities for solving this problem. Also, as mentioned in our
initial study in Section III, the effect of optimizations varies
significantly across applications. Hence we need an efficient
way to search the space of optimizations for resilience, which
a meta-heuristic search method such as our GA-based method
provides. While other meta-heuristic search methods are also
possible (e.g., Simulated annealing), we use GA as we found
that they yield high quality solutions in a small period of time.

B. GA-Based Approach

We explain our GA-based approach for finding the appropri-
ate compiler optimization sequence for an application that does
not degrade its error resilience. We begin with a set of unique
individual compiler optimizations as our initial population. In
GA terms, these individual optimizations constitute the gene
and the resulting combinations of optimizations constitute
the chromosomes. The optimizations can consist of all the
optimizations available in a standard optimizing compiler
such as gcc or llvm. We obtain the initial error resilience
of the unoptimized version of the application through fault
injection experiments. This is the target error resilience for
the algorithm.

The GA-based algorithm is presented in Algorithm 1. The
steps are further explained as follows.

1. Initialization: Every individual member of the population
is called as a candidate. The candidates in the initial population
are unique individual compiler optimizations. The fitness score
of every candidate in the population is calculated using the
fitness function (discussed in Step 2). This is shown in the
initialization part of the Algorithm 1. The size of the initial
population determines the convergence rate of the algorithm
and the quality of its solution. We experimentally choose the
initial population size in Section VII.

We first check if there is any candidate in the initial
population that does not lower the program’s error resilience.
If such a candidate exists, then it is considered as an optimal
candidate solution with the desired resilience and the algorithm
terminates (lines 2-4). This is a trivial condition and is unlikely
to occur. For example, we did not encounter this condition in
any of our experiments.

2. Fitness Function: In GA, the fitness score of a candidate
is used to determine whether the candidate should be carried
forward to the next generation. We need a fitness function(Θ())
that measures the error resilience of a candidate optimization
sequence. The fitness function can be based on a resilience
model or on fault injection experiments. We use fault injection
for this purpose. However, it is also possible to use models for

Algorithm 1 Algorithm 1: GA-based approach to find an
optimization sequence that does not degrade error resilience
α1, α2, α3, ...← Individual optimizations
Θ()← FitnessFunction()
smin ← Minimum fitness score of population
αmin ← Candidate with fitness score smin

smax ← Maximum fitness score of population
αmax ← Candidate with fitness score smax

starget ← Resilience of unoptimized version
δc ← CrossoverRate
δm ←MutateRate
population← [(α1,Θ(α1)), (α2,Θ(α2)), (α3,Θ(α3)), ...]
Input: Source code, population
Output: Optimization sequence that retains the resilience
of the given source code

1: procedure OPTIMIZATION SEQUENCE FOR RESILIENCE
2: smax = max(Θ(α1),Θ(α2),Θ(α3), ...)
3: αmax = getCandidate(population[smax])
4: while smax ≤ starget do
5: αa, αb = TournamentSelection(population)
6: if Random() < δc then
7: α̂ = crossover(αa, αb)
8: else
9: α̂ = αa

10: end if
11: if Random() < δm then
12: α̂ = mutation(α̂)
13: end if
14: smin = min(Θ(α1),Θ(α2),Θ(α3), ...)
15: if smin < Θ(α̂) then
16: αmin = getCandidate(population[smin])
17: Eliminate(population, αmin)
18: Add(population, (α̂,Θ(α̂)))
19: end if
20: smax = max(Θ(α1),Θ(α2),Θ(α3), ...)
21: αmax = getCandidate(population[smax])
22: end while
23: return αmax

24: end procedure

predicting the resilience of an application based on its code
structure that have been proposed in recent work [21], [22].

The fitness function Θ is used to rank the resilience of the
candidate. Based on this rank, the GA decides whether the
candidate should be considered for the next evolution round.
It is important to ensure that we can obtain tight confidence
intervals on the error resilience as we use it to compare
solutions with each other in terms of resilience. Therefore, we
perform a few thousand fault injection experiments in each
iteration of the GA to determine the fitness score, depending
on the benchmark’s characteristics.

3. Tournament Selection: The goal of the tournament se-
lection is to determine which pair of candidates should be
recombined with each other to form the next generation of
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the GA. In our algorithm, we choose two candidates from the
population based on a heuristic(line 5). We consider two differ-
ent heuristics: (i) Random selection (ii) Score based selection.
In random selection, we pick two candidates randomly from
the population. In score based selection, we pick the two best
candidates (top two fitness scores), the intuition being that the
fittest candidates can give rise to better offspring. We evaluate
the effectiveness of both these heuristics in Section VII.

4. GA Recombination operations: We perform recombina-
tion operations on the candidates chosen from tournament
selection (line 6 -13). Recombination operations are of two
types: (i) Crossover (ii) Mutation. CrossoverRate and Mutat-
eRate determine the probability at which these operations are
performed. The CrossoverRate is chosen as suggested and used
by classical papers in the GA area [23], [24], [25], [26], [27].
The MutateRate was chosen based on our analysis discussed
in the Section VII, as there is no consensus in the literature
on this value.

We devise new crossover and mutation operations in order
to explore the large space of optimizations and drive the
algorithm towards obtaining an optimization set that retains
the resilience. We briefly describe these operators.

(i) Crossover: Crossover operation involves either append
or swap operations. These operations increase the chances
of combining the sequences of the two chosen candidates to
evolve a new candidate with a higher resilience. The append
operation simply appends the entities of the two selected
candidates The swap operation is similar to the two-point
crossover, where the entities within the two selected index
are swapped between the candidates.

(ii) Mutation: In some cases, we found that a single com-
piler optimization in the candidate set degrades the overall
resilience, and hence by replacing it with another individual
optimization or deleting it, the GA can generate a better
candidate. Thus we devise a mutation operation to add, delete
or replace an individual optimization with another one.

5. Elimination: The goal of the elimination step is to elimi-
nate the unfit candidates from the population. The fitness score
of the weakest candidate from the population is compared
with the fitness score of the new candidate generated from
the recombination operations. If the weakest candidate’s fitness
score is smaller than that of the new candidate, it is eliminated
from the population. In this case, the new candidate with a
better resilience is added to the population, hence will be
considered for the next generation’s evolution. If its fitness
score is not smaller, the new candidate is not added to the
population, and the population remains unmodified. This is
shown in lines 14-19 in Algorithm 1. The main intuition here
is that weaker candidates have lower probability of giving rise
to stronger offspring, and hence need to be eliminated from
the pool of candidates to carry forward to the next generation.

6. Termination: If a new candidate is added to the popula-
tion, we check whether its resilience is greater than or equal
to the target resilience i.e., the resilience of the unoptimized
program. If this is the case, we call it the candidate solution
and stop the algorithm (line 4, and line 23). Otherwise, we

repeat the above steps of Recombination and Elimination
until we obtain a candidate solution. It is possible that such
a candidate solution takes too long to obtain, or is never
obtained. To resolve this, we terminate the algorithm if the
average fitness score of the entire population does not change
for numerous generations. In this case, the algorithm returns
the best candidate from the population that is closest to the
resilience of the unoptimized version as the candidate solution.

V. IMPLEMENTATION

We implemented our approach using the LLVM com-
piler [13] and the open-source LLFI fault injection tool [28].
LLVM is a popular optimizing compiler that includes a host of
standard optimizations. We leverage the machine-independent
optimizations in the LLVM compiler, and do not consider
backend optimizations for portability. For seeding our tech-
nique, we pick a subset of optimizations consisting of data-
flow, loop, global and a few other optimizations available in
the LLVM compiler [13]. This subset comprises around 10
different optimizations (we explain why 10 in Section VII).

For the fitness function in our approach, we use LLFI, a
fault injection tool that operates at the LLVM Intermediate
Representation (IR) code level [13] to inject hardware faults
into the program’s code. We use LLFI as it has been found
to be accurate for measuring the SDC rate of an application
relative to assembly-level fault injection [28].

LLFI first takes the IR code as the input and determines the
target instructions/operands for fault injection. It then instru-
ments the target instructions/operands with appropriate calls
to the fault injection functions. These fault injection functions
are the ones that inject faults. In each fault injection run, the
compiled program is executed, and LLFI randomly chooses
a single dynamic instance of the instrumented instructions to
inject a fault into. It then flips a single bit in the destination
register of the instruction (after it is written). We consider
single bit flips as it is the de-facto model for simulating
transient faults. Note that the optimizations are run before the
instrumentation by LLFI to prevent the instrumentation from
interfering with the optimizations.

VI. EXPERIMENTAL SETUP

Benchmarks: We evaluate our technique on twelve pro-
grams, five from the PARSEC [14] and seven from the
Parboil [15] benchmark suites. The benchmarks represent
a wide variety of tasks ranging from video processing to
scientific computing, and are all written in C/C++. They range
in size from a few hundred to a few thousand lines of code.
We choose these programs as they were compatible with
our experimental setup (i.e., we could compile them with
LLFI). The benchmarks chosen and their characteristics are
shown in Table II. We use the small inputs that come with
these benchmarks for our experiments, as we need to perform
thousands of runs of each program for fault injections.

Tuning of the GA parameters: We first evaluate the
performance of the GA approach to tune its parameters to
obtain faster convergence. One way to measure performance of
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TABLE II: Benchmark programs that are used in our experi-
ments

Program Benchmark
suite

Description

Blackscholes PARSEC Computes the price of options using
blackscholes partial differential equation.

Swaptions PARSEC Computes the price of portfolio of swap-
tions by employing Monte Carlo(MC) Sim-
ulations.

x264 PARSEC An H.264/AVC video encoder, that achieves
higher output quality with lower bit rate.

Fluidanimate PARSEC Simulates an incompressible fluid for inter-
active animation purposes.

Canneal PARSEC Minimizes the routing cost of a chip design
using a cache-aware simulated annealing.

Bfs Parboil Implements a breadth first search algorithm
that computes the path cost from a node to
every other reachable node.

Histo Parboil Computes a 2-D saturating histogram with
a maximum bin count of 255.

Stencil Parboil An iterative Jacobi solver of heat equation
using 3-D grids.

Spmv Parboil Implements a Sparse-Matrix Dense-Vector
Product

Cutcp Parboil Computes short-range electrostatic poten-
tials induced by point charges in a 3D
volume

Sad Parboil Computes sum of absolute differences for
pairs of blocks which is based on the full-
pixel motion estimation algorithm

Sgemm Parboil Performs a register-tiled matrix-matrix mul-
tiplication

the algorithm is by using wall clock execution time. However,
the execution time for the GA is dominated by the time
it takes to perform the fault injections in each iteration of
the GA to evaluate the fitness of each candidate2. Therefore,
the number of generations taken by the algorithm is a more
meaningful measure of performance, as the greater the number
of generations, the more the number of candidate sequences
generated, and hence the more the number of total fault
injections that must be performed to evaluate the candidates.
We consider the effects of the following parameters. These
parameters are explained in Section IV.

(1) MutateRate: We vary this value based on what the
literature on GA recommends [29], from low to high values.

(2) Population size: We vary this value from 10 to 40 as we
have a total of 50 optimizations in LLVM.

(3) Tournament selection strategy: We consider two strate-
gies, random selection and score-based selection.

(4) Optimization Types: We vary the optimization types
(data-flow, loop, global and others) in the population.

Once we tune the GA parameters, we use these values
to derive the candidate solutions used in the resilience and
performance evaluation experiments described next.

Resilience Evaluation: We first compile each of the pro-
grams using LLVM with the -O0 option (no optimizations)
for generating the unoptimized program. We then measure
its resilience by performing fault injection experiments using

2Note however that fault injection is an instance of an embarrassingly
paralllel problem, and can be accelerated using large clusters or clouds.

the fault injection tool LLFI (as explained in Section V). We
consider this as the baseline for our experiments. We perform
a total of 1000 fault injection experiments per benchmark
program (one fault per run). The error bars range from 0.85%
to 2.501% depending on the benchmark’s SDC rate, for the
95% confidence interval.

We compare the results of our technique with the standard
optimization levels O1, O2 and O3, as this is what prior
work has used for evaluating error resilience of compiler
optimizations [5], [6]. We repeat the above process for each of
the optimization levels O1, O2, and O3, for each benchmark
program, and obtain their error resilience values. We then run
our GA-based optimization to identify a candidate solution
(i.e., optimization sequence) for each benchmark program, and
then repeat the same experiment for this candidate solution.
We compare each of the resilience values to the baseline
resilience of the unoptimized version.

There are a total of 60000 injections performed in our
experiments (12 benchmarks, 1000 injections, 5 executables
namely, O1, O2, O3, unoptimized and candidate solution).

Performance Evaluation: We measure the execution time
of the executable compiled with the appropriate set of opti-
mizations i.e., O1, O2, O3 and the candidate solution on our
hardware platform. The platform we use is a Intel E5 Xeon
machine with 32G memory running Ubuntu Linux 12.04.
We measure the execution time by taking an average of
10 trials (standard deviation ranging from 0.0031 to 0.028).
The average value of the error bars is 1.71% for the 95%
confidence intervals.

VII. RESULTS

We first present the results of how we tune the parameters
of our GA-based algorithm for faster convergence. We then
present the results for evaluating the error resilience of the
candidate solution (i.e., optimization sequences) found by our
GA-based approach, and that of the standard optimization
levels. We also present the results of the performance improve-
ment and vulnerability reduction of each of these optimization
sequences compared with the unoptimized version. Finally,
we compare our resilience-enhancing fitness function with
one that optimizes directly for the vulnerability, with an
unbounded GA-based approach (GA-based approach without
a predefined conditional termination), and with a random walk
based technique.

A. Effect of GA Parameters

We consider the effect of four parameters on our GA-based
approach’s convergence rate. Due to space constraints, we only
present the results for two benchmarks, bfs and blackscholes,
but we obtained similar results for the other programs. We
do not consider the quality of the solution obtained in this
experiment - rather, our goal is only to tune the algorithm for
fast convergence.

Mutation Rate: We first considered the effect of varying the
mutation rate of the algorithm, keeping the other parameters
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Fig. 4: Number of generations taken to generate the candidate
solution with different mutation rate values.

fixed. As explained tion II, this parameter represents the trade-
off between search space exploration (leading to potentially
better solutions) and convergence (leading to faster solutions).
A larger mutation rate is associated with better exploration but
slower convergence.

Figure 4 shows the effect of varying the mutation rate on
the convergence rate. We performed these experiments with
four different mutation rate values: 0.01, 0.1, 0.3, 0.5. We
observe that the algorithm that obtains the candidate solution
in the least number of generations is for mutation rate = 0.3.
Therefore, we choose a mutation rate of 0.3 for our technique.

Selection Strategy: As mentioned in Section IV-B, there
are two possible selection strategies in each iteration of
our algorithm. One strategy is to randomly choose any two
candidates in the population to move forward to the next gen-
eration (random). Another strategy is to choose the two best
candidates, i.e., the candidates with the highest fitness scores
in each generation (score-based). We compared the number of
generations taken by each strategy to attain convergence across
the benchmark programs (all other values are kept the same).
The results of this comparison are shown in Figure 5. It can be
observed that for both benchmarks, the score based selection
method takes more generations than the random selection to
obtain the candidate solution. The poor performance of score
based selection is because it moves faster, but gets stuck at
local maxima, trying to select the best candidates in every
generation, following which it takes a long time to attain
convergence. On the other hand, the random selection method
moves towards the candidate solution slower, but does not
get stuck in the local maxima, making it converge faster. We
therefore use the random selection strategy in our approach.

Population Size: This represents the number of individ-
ual optimizations present in the initial population considered
by our GA-based approach. To evaluate the effect of the
population size, we examined the number of generations
that the algorithm takes to converge for different population
sizes ranging from 10 to 40 (recall that we have around 50
optimizations).

Figure 6 shows the results of this experiment. The figure
shows that the number of generations taken to attain conver-
gence increases with the increasing population size. Hence, a
smaller population size would arrive at a candidate solution
faster. On the other hand, increasing the population size may
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Fig. 5: Number of generations taken to generate the candidate
solution by the random selection and score based selection
strategies.
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Fig. 6: Number of generations taken to generate the candidate
solution with different population sizes.

lead us to a better solution. We however find that even by
restricting the population size to just 10 optimizations, we
are able to achieve satisfactory performance without degrading
the error resilience (Section VII-C). Based on our results, we
choose a population size of 10 for our GA-based approach.

Optimization Types: Compiler optimizations are classified
into different types based on the transformation they perform
on the program. They are classified into data-flow optimiza-
tions, loop optimizations, global optimization and others. For
the initial population in our approach, we pick a subset that
contains a combination of optimizations from the available
classes. We wanted to investigate if we could achieve faster
convergence by using only a specific class of optimizations as
the population. For this experiment, we restrict the types of
optimizations to each of the above categories, and compare
the number of generations taken to obtain the candidate
optimization sequence. We also compare it to the convergence
rate obtained when all the categories are combined together,
called “combination of all’.

The results are shown in Figure 7. From the figure, it
is evident that no single class of optimization outperforms
the rest for both benchmarks. This suggests that there is
no one universal set of optimizations that can accelerate the
convergence. Hence, we chose a population that consists of a
combination of all the optimization types in our experiments,
i.e., we do not restrict ourselves to a specific optimization type.

B. Resilience Evaluation

We first present the aggregate results across benchmarks
for the unoptimized, original versions of the programs. The
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average percentages of SDCs observed across all benchmarks
is 19.0%. Crashes constitute 36.8% and benign injections
constitute 44.2% of the injections on average (these are
injections the resulted in the program completing with the
correct output). We observed that hangs are negligible in our
experiments. Note that we include only the activated faults in
the above results, or those faults that are actually read by the
system and affect the program’s data - this is in line with the
definition of resilience (see Section II-A).

We compare the resilience of the program compiled with the
optimization sequence (i.e., candidate solution), obtained from
our technique, with the resilience of the unoptimized program,
and that of the compiler optimization levels O1, O2 and O3.
Figure 8 shows the resilience (in %) of the unoptimized and
the different optimized versions of the program (candidate
solution, O1, O2 and O3). In this graph and the next few
graphs, we show the error bars at the 95% confidence interval.

As can be seen in the figure, the optimization levels O1,
O2 and O3 have degraded the resilience of the application
compared to the unoptimized version, for all the benchmarks.
On the other hand, the candidate solution generated by our
technique provides a resilience better than or on par with
the unoptimized version of the program for all benchmarks.
The arithmetic mean of the error resilience across benchmarks
in percentages, of the unoptimized version, GA-candidate
solution, O1, O2 and O3 levels are respectively 76.14 (±1.54),
79.125 (±1.57), 72.77 (±1.6), 73.15 (±1.6) and 73.38 (±1.54)
3. Thus, the candidate solution achieves better average re-
silience than even the most aggressive optimization level, O3.

Figure 9 shows the difference in the SDC rates of the
candidate solution and the optimization levels normalized to
the SDC rate of the unoptimized code. As can be seen in the
figure, the SDC rates of the candidate solutions are lower by
5 to 45%, while the SDC rates of the optimization levels are
higher by 5-120% depending on the program. On average,
the SDC rate of the benchmarks compiled with the candidate
solution is lower than that of the unoptimized code by 20%,
while the SDC rates of the benchmarks compiled with the
optimization levels is higher by about 20%. 4

3± refers to the error bars.
4We use the geometric means (GMs) as we are comparing the normalized

SDC rates.
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C. Performance Evaluation

As in the resilience experiment, we compare the perfor-
mance of the unoptimized version of the program with the
candidate solution, O1, O2 and O3. Figure 10 shows the
execution time (measured in seconds) of the unoptimized code,
candidate solution found by our technique and the optimization
levels O1, O2 and O3.

The figure shows that the candidate solution from our
technique provides better performance than the unoptimized
version, as do the optimization levels (as is expected). Further,
the candidate solution’s average of execution time across
benchmarks is better than those of the optimization levels
O1 and O2, and only slightly worse than O3 (by 0.39%
on average). This shows that resilience friendly optimizations
obtain performance improvements that are comparable to
those obtained by the standard optimization levels.

In fact, we observe that the performance of the candidate
solution found by our approach is better than the performance
provided by the optimization levels in some benchmarks.
For example, in the case of the blackscholes program, our
optimization sequence provides better performance than the
optimization levels O1 and O2. However, this is not the
case for other benchmarks such as fluidanimate and canneal,
where the candidate solution’s performance is much worse
than the optimization levels. Analyzing further, we observed
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that the “union” data type in the fluidanimate program has
been optimized by -scalarrepl optimization, and caused this
major performance improvement. However, -scalarrepl was
not included in our initial population.

D. Vulnerability Evaluation

Similar to the above evaluations, we compare the vul-
nerability of different versions of the program. Figure 11
compares the vulnerability of the candidate solution with the
optimization levels O1, O2 and O3. The 95% confidence
interval error bars for vulnerability (product of SDC rate and
execution time) are calculated by adding the relative errors,
which is the standard way for calculating the uncertainity
of a product [30]. The figure shows that in most of the
benchmark programs, the candidate solution obtained from our
technique reduces the overall vulnerability of the program. On
the other hand, the optimization level O1 increases the overall
vulnerability of the program, while O2 and O3 both reduce the
vulnerability, but not to the level of the candidate solution.

On an average, the vulnerability of programs compiled with
standard optimization levels O1,O2 and O3 are 9.53 (±0.25)
, 9.22 (±0.24) and 9.11 (±0.24). These are slightly higher or
only marginally lower than the vulnerability of the unoptimized
version (9.25 (±0.25). In comparison, the candidate solution
found by our GA-based approach lowers the vulnerability
by a significant amount to 8.12 (±0.21). This constitutes a
vulnerability reduction of about 11%, on average, compared
to even the most aggressive optimization level O3.

However, there are two exceptions to the vulnerability
reduction achieved by the candidate solution, namely fluidani-
mate, and the O3 level in sad and blackscholes. In the case of
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fluidanimate, the standard optimizations reduce vulnerability
much more than our candidate solution. This is because the
standard optimizations reduce the program’s execution time
by 50% or more, which far outweighs the increased SDC rate
due to the optimizations. We have explained the reason for
this substantial reduction in execution time in Section VII-C.

In the case of blackscholes and sad, our candidate so-
lutions do worse than the optimization level O3 in terms
of vulnerability reduction. Again, the optimization level O3
reduces the execution time by nearly 40% in these programs,
and this reduction outweighs the increase in the SDC rate,
resulting in lower vulnerability. However, the difference in the
vulnerability reduction between the candidate solution and the
O3 optimization is small in these programs.

E. Optimizing for Vulnerability

To test if optimizing directly for vulnerability would yield
better results than optimizing for resilience as we have done so
far, we modified the fitness function in Algorithm 1 to optimize
for the vulnerability, In this case, our goal was to find an
optimization sequence that does not increase the vulnerability
of the program compared to the unoptimized version. The
results were similar to the above results, and hence we do
not report them. However, the algorithm with the vulnerability
measuring fitness function took about 1.2x to 10x the number
of iterations as the original algorithm. This is because the
algorithm with vulnerability measuring fitness function tries to
optimize for both time and resilience, and hence has a larger
state space to deal with. This is why we optimize for resilience
rather than directly for vulnerability in this paper.
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F. Resilience-Enhancing Compiler Optimizations

In this paper, we restricted ourselves to finding compiler
optimizations that preserve the error resilience of the un-
optimized version. However, as we found earlier, compiler
optimizations can often enhance the resilience of a program.
So we ask what happens if we remove the restriction of simply
preserving the error resilience of the program, and attempt to
improve the resilience instead through compiler optimizations.
To explore this notion, we modified our GA-based algorithm to
an Unbounded GA-based algorithm in which the terminating
condition is that the average fitness score of the candidates in
the population remains constant for numerous generations.

The results are shown in Figure 12. As can be seen, the
solutions obtained from the Unbounded GA-based approach
generates optimization sequences with resilience either com-
parable to or only slightly better than the original GA-based
approach. Further, the difference in the arithmetic means of
the two approaches is only 2%, which is within the error bars
of the measurement. This shows that the solutions obtained
by our GA-based approach are comparable to the solutions
obtained by the unbounded GA-based approach in terms of
error resilience. However, the Unbounded GA-based approach
took about 2x to 20x the number of iterations as the GA-based
approach. Thus, our original GA-based approach achieves
similar results as the Unbounded GA-based approach, but
takes much less time.

flu
id

an
im

at
e

bf
s

ca
nn

ea
l

hi
st

o

sw
ap

tio
ns

x2
64

st
en

ci
l

sp
m

v

cu
tc

p
sa

d

bl
ac

ks
ch

ol
es

sg
em

m

Ave
ra

ge

Benchmark Programs

40

50

60

70

80

90

100

R
e
si

lie
n
ce

 (
in

 %
)

GA-Candidate solution

Unbounded GA-Candidate
solution

Fig. 12: Resilience of the candidate solutions obtained from
GA-based and Unbounded GA-based approaches. Higher val-
ues are better.

G. Comparison with Random-Walk

We compare our algorithm with a random walk based
approach. In the random walk, we begin with the same
individual optimizations that constituted the initial population
in our experiments. In every iteration, a random optimization
sequence is generated from these individual optimizations
and its resilience is evaluated. This process is repeated until
a random optimization sequence that does not degrade the
program’s resilience is obtained. The main difference between
the random walk and our approach is that there is no fitness
function in the random walk. We observed that the random
walk never converged to a solution even after a long time.
For example, in the case of the Blackscholes program, the

random walk did not obtain a solution even after 4 days
(230 iterations), whereas our GA-based approach obtained a
solution in 4 hours time (24 iterations). Similar results were
obtained for other programs.

VIII. RELATED WORK

Demertzi et al. [6] have analyzed the effect of standard
optimization levels on the application’s vulnerability. There
are two differences between their work and ours. First, they
do not consider the final outcome of the application due to
the error, and whether the error results in an SDC. Second,
our technique uses fault injections to evaluate the applications’
resilience, while they use ACE analysis [16], which is typically
much less accurate than fault injection [31].

Jones et al. [8] have experimentally examined the effect
of individual optimization on application vulnerability, and
attempt to find a set of optimizations that offer both resilience
and performance. Similar to the above study, they also do
not consider the final outcome of the application due to the
error, and use AVF to measure vulnerability. Further, they
do not provide any method to choose the optimal set of
optimizations for an application - as we have seen, this set
is highly application-dependent.

Sangchoolie et. al. [5] consider the effect of compiler
optimization level on the SDC rates of different applications.
They find that the optimization levels degrade the resilience
of the application (though they argue that this degradation
is within acceptable limits). There are two main differences
between their work and ours. First, we consider individual
optimizations such as loop invariant code motion, rather than
the standard optimization levels. Secondly, by choosing the
individual optimizations, our technique can adapt to the error
resilience characteristics of the application.

Thomas et al [7] study the impact of optimizations on
error resilience for soft computing applications. They measure
the impact of optimization on Egregious Data Corruptions
(EDCs), which are significant deviations from fault-free out-
comes. There are two main differences between their work
and ours. First, EDCs are only a subset of SDCs, and do not
apply to general purpose applications where any deviation in
the output from the fault-free outcome, no matter how small, is
unacceptable. Second, they do not have an automated method
to choose the set of optimizations for a given application and
platform, relying instead on simple heuristics such as dynamic
code size which may not work across different applications.

In very recent work, Cong et al [32] proposed a metric
for measuring loop reliability to analyze the impact of loop
transformations on software reliability. Similar to Thomas et
al., they mainly focus on soft computing applications and
EDC outcomes. Further, they restrict their analysis for loop
optimizations, while we consider all compiler optimizations.

Rehman et. al. [33] propose novel compiler optimizations
that take into account the vulnerability of individual instruc-
tions to soft errors. They show that their technique can
achieve high reliability for a given performance overhead
bound provided by the programmer. Further, Lu et al [21]
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and Laguna et al. [22] propose a compiler-based technique
to identify instructions in the program and selectively protect
them. The main difference between these techniques and ours
is that they focus on increasing the resilience of programs by
transforming the code, thereby incurring a performance over-
head. In contrast, our technique focuses on finding compiler
optimizations that improve the performance of the code.

Finally, Kanev et. al. [34] have explored the effect of
compiler optimizations on voltage noise in microprocessors.
While voltage noise can lead to timing violations, we are
interested in soft errors that lead to transient faults. Further,
they consider the effect of the standard optimization levels
only, while we consider the effect of individual optimizations.

IX. CONCLUSION

In this paper, we reexamined the effect of compiler opti-
mizations on programs’ error resilience. Prior work has found
that optimizations degrade a programs’ resilience; we find
that this is not always the case and that some optimizations
can improve resilience, but the effects are very application-
specific. This demonstrates that resilience and performance
optimization need not be odds with each other, and one can
improve both by judiciously choosing compiler optimizations.

Based on this insight, we developed a technique that
leveraged Genetic Algorithms (GA), a meta-heuristic search
approach, to find an optimization sequence that improves the
program’s performance without degrading its error resilience.
We evaluated our technique on twelve benchmark programs,
and found that the optimization sequences it generates provide
better error resilience than the standard optimization levels
(O1, O2 and O3), and often even better than the unoptimized
code’s resilience, while achieving comparable performance
improvement as the standard optimization levels.

For future work, we plan to explore the use of other search
heuristics, and to look at other aspects than performance. such
as energy consumption.
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