
Finding Resilience-Friendly
Compiler Optimizations

using Meta-Heuristic Search
Techniques

Nithya Narayanamurthy
Karthik Pattabiraman

Matei Ripeanu

University of British Columbia (UBC)

1

Motivation:	Hardware	Errors
• Soft	errors	are	becoming	more	common	in	processors
• Caused	by	alpha	particles	and	cosmic	rays
• More	sensitive	to	errors	as	feature	sizes	shrink

2

Source:	Shekar Borkar (Intel)		- Stanford	talk

Traditional	Solutions
• Dual	Modular	Redundancy	(DMR)	(e.g.,	IBM	
Mainframes,	Tandem	Non-Stop	etc.)
• DMR	incurs	significant	energy	overheads	-
undesirable	in	commodity	systems	

3

Our	Approach:	Good	Enough	Dependability

4

Application
Properties

Targeted	protection	mechanisms

Leverage the properties of the application to provide
targeted protection, only for the errors that matter to it

Device/Circuit	Level

Architectural	Level		

Operating	System	Level

Application	Level

Error Resilience

• Silent Data Corruption (SDC)
• Incorrect output without any indication (Most critical)

• Error Resilience:
• Conditional probability that a fault does not produce an

SDC given that it has occurred

• Vulnerability:
• Product of error resilience and execution time of program
• Assume transient faults occur uniformly over time

5

Compiler	Optimizations
• Typically	used	to	make	programs	faster	by	
transforming	the	code	
• Processor	performance	has	plateaued	for	a	decade

6

This	Paper
Compiler	Optimizations

7

Improve	Performance! Resilience	

Goal:	Identify	optimizations	that	provide	same	error	resilience

Performance	-
Resilience	trade	off

RQ1: What effect do compiler
optimizations have on a
program’s resilience?

8

Fault Injection Study

• Fault Model: Faults that occur in the computational
components and register files of the processor

• Single bit flip fault

• One fault per run

• Injected using LLFI fault injector

9

Fault Injection Study
• 10 random compiler optimizations from LLVM compiler

• Benchmark programs – Blackscholes and Swaptions (Parsec)

• 3000 fault injections

• Error bars: 1.8%, 0.7%

• Resilience normalized
to the resilience of
unoptimized program

10

Same optimization can have different effects
for different programs

Example optimization - 1: Loop
Invariant Code Motion (LICM)

11

Un-optimized Optimized

LICM reduces overall resilience

Example Optimization - 2:
LOOP-REDUCE

12

Un-optimized Optimized

LOOP-REDUCE improves resilience

RQ1: Summary

• Different optimizations have different effects
(degrade/improve/no impact) on error resilience

• Optimization’s effect on resilience differs based on
the application characteristics – no one size fits all

13

We need techniques for finding resilience-friendly
optimization for a given application

RQ2: Can we find resilience-
friendly optimizations that

preserve the error resilience of a
given program ?

14

Finding Resilience-Friendly Optimizations

• Impact of an optimization depends on:
• Application
• Hardware platform

• Error resilience is sensitive to the order of
optimizations in a sequence

• Search space is very large (2 ^ n * n!), where n is
the number of optimizations

15

Meta-Heuristic Search Techniques

Genetic Algorithm (GA)
Evolve the solution by mutating it in every iteration till

we converge to a candidate solution
- Kill the weak mutants based on fitness function

16

Candidate 1 a b c d Candidate 2

Append

Swap

e f a

a b c d e f a

a f a d

Candidate 1 a b c d Candidate 2 e f a

New Candidate

New Candidate

GA-based Approach

17

- Fitness Function

Tournament
SelectionInitialization Recombination

Operations Elimination

Termination

Application
Source Code

Individual
Optimizations

FF FF

FF

Candidate
solution

One Iteration/Generation

GA-based Approach

18

licm
instcombine

Loop-unroll	
inline

sccp

Loop-reduce
cse

gvn

Loop-unswitch

Optimization Fitness	Score

57

59

50

59

57

61

64

52

55

PopulationInitialization

Loop-reduce

GA-based Approach

19

licm
instcombine

Loop-unroll	

inline

sccp
Loop-reduce

cse

gvn
Loop-unswitch

Optimization Fitness	Score

57

59

50

59

57

61

64

52

55

Loop-unroll	

Crossover	- Append
-loop-reduce				-loop-unroll 60

Tournament SelectionRecombination Operations

GA-based Approach

20

Loop-reduce

licm
instcombine

Loop-unroll	

inline

sccp
Loop-reduce

cse

gvn
Loop-unswitch

Optimization Fitness	Score

57

59

50

59

57

61

64

52

55

Loop-unroll	

-loop-reduce				-loop-unroll 60

Crossover	- Append

Recombination OperationsEliminationTermination

Experimental Setup

• Twelve Benchmark programs
• Five from PARSEC
• Seven from Parboil

• LLVM compiler (widely used in industry)

• Performed fault injections using LLFI [DSN’14]
• 1000 fault injections, one fault per run
• Error bars: 0.85% - 2.5%
• Total fault injections: 60,000 fault injections

21

Evaluation

• Resilience

• Execution Time

• Vulnerability

22

Compared with standard levels O1, O2 and O3 as
most prior work focuses on the standard levels

[Sangchoolie’14][Demertzi’10]

Results: Resilience

23

Optimization Resilience
Improvement

GA +4.46%

Optimization Resilience
Reduction

O1 -4.64%

O2 -4.21%

O3 -3.80%

+ ve values : higher resilience (better)
̶̶̶ ve values : lower resilience(worse)

Results: Normalized SDC Rates

24

Optimization SDC rate
Reduction

GA -23.99%

Optimization SDC rate
Increase

O1 +26.50%

O2 +22.79%

O3 +23.38%

+ ve values : higher SDC rate (worse)
̶̶ ve values : lower SDC rates (better)

Results: Execution Time

25

Optimization Performance
Improvement

O1 6.56%

O2 7.21%

O3 11.10%

GA 8.99%

Results: Vulnerability

26

Optimization Vulnerability
Reduction

GA -33.46%

O3 -6.26

Optimization Vulnerability
Increase

O1 +7%

O2 +0.35%

Vulnerability =
SDC rate*run time

RQ2: Summary

• Candidate solutions using Genetic Algorithms
• Outperform optimization levels in resilience
• Provide reasonable performance improvements better than

O1, O2 and only slightly worse than O3 (by about 2%)

• Significant vulnerability reduction (by 27%)
compared to O3, and much better than O1 and O2

• Takeaway: It is possible to achieve both high
performance and high resilience using optimizations
• But they must be carefully chosen on a per-application basis

27

Related Work
• Analyzed the impact of standard levels O1, O2 and O3 on

program’s resilience[1 - Demertzi][2 - Sangchoolie]

• Proposed new optimizations that targets vulnerability reduction,
without performance improvement [3 - Rehman]

• Focused on soft computing applications for EDC (Egregious
Data Corruptions) outcomes [4 - Thomas][5 - Cong]

[1]	Demertzi,	Melina,	Murali Annavaram,	and	Mary	Hall.	"Analyzing	the	effects	of	compiler	optimizations	on	application	
reliability."Workload	Characterization	(IISWC),	2011	IEEE	International	Symposium	on.	IEEE,	2011.
[2]	Sangchoolie,	Behrooz,	et	al.	"A	Study	of	the	Impact	of	Bit-Flip	Errors	on	Programs	Compiled	with	Different	Optimization	
Levels." European	Dependable	Computing	Conference	(EDCC),	2014	Tenth	European.	IEEE,	2014.
[3]	Rehman,	Semeen,	 et	al.	"Reliable	software	for	unreliable	hardware:	embedded	code	generation	aiming	at	
reliability." Proceedings	of	the	seventh	IEEE/ACM/IFIP	international	conference	on	Hardware/software	codesign and	system	
synthesis.	ACM,	2011.
[4]	Thomas,	Anna,	Jacques	Clapauch,	and	Karthik Pattabiraman.	"Effect	of	compiler	optimizations	on	the	error	resilience	of	
soft	computing	applications."		In	AER	(2013).
[5]	J.	Cong	and	C.	H.	Yu.	 Impact	of	loop	transformations	on	software	reliability.In ICCAD,	2015 28

Conclusion

• Studied the impact of individual compiler
optimizations on error resilience
• Observed varied effects of optimizations on different

programs

• Used Genetic Algorithms (GAs) to find resilience
friendly compiler optimizations for each program

• Candidate solutions have much better resilience and
lower vulnerability than standard optimizations
levels with only small performance degradation

29

