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Motivation: Hardware Errors

 Soft errors are becoming more common in processors

e Caused by alpha particles and cosmic rays
* More sensitive to errors as feature sizes shrink

~8% degradation/bit/generation
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Source: Shekar Borkar (Intel) - Stanford talk



Traditional Solutions

* Dual Modular Redundancy (DMR) (e.g., IBM
Mainframes, Tandem Non-Stop etc.)

* DMR incurs significant energy overheads -
undesirable in commodity systems




Our Approach: Good Enough Dependability

Leverage the properties of the application to provide
targeted protection, only for the errors that matter to it

Application
Application Level Properties

Ope: ...

Architec wel

Device/Circuit .

Targeted protection mechanisms



Error Resilience

* Silent Data Corruption (SDC)

* Incorrect output without any indication (Most critical)

 Error Resilience:

* Conditional probability that a fault does not produce an
SDC given that 1t has occurred

* Vulnerability:

* Product of error resilience and execution time of program
* Assume transient faults occur uniformly over time



Compiler Optimizations

* Typically used to make programs faster by
transforming the code

* Processor performance has plateaued for a decade

Dual-Core Itanium 2 /

Intel CPU Trends

{sources: Intel, Wikipedia, K. Olukotun}
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This Paper

Compiler Optimizations
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——
S S——

Goal: Identify optimizations that provide same error resilience

__0 Performance -
Resilience trade off




RQ1: What effect do compiler

optimizations haveon a
program’s resilience?



Fault Injection Study

* Fault Model: Faults that occur in the computational
components and register files of the processor

* Single bit flip fault
* One fault per run

* Injected using LLFI fault injector



Fault Injection Study

* 10 random compiler optimizations from LLVM compiler

* Benchmark programs — Blackscholes and Swaptions (Parsec)
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* 3000 fault injections

e Error bars: 1.8%, 0.7%

ormalized Resilience (in %)
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unOptlmlzed program Individual Optimizations

Same optimization can have ditferent effects
for different programs
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Example optimization - 1: Loop
Invariant Code Motion (LICM)

Un-optimized Optimized

alpha = (x c)+s

2 for(i=¢C 0; 1++)

{ ,
alpha=(x*c) +s; 3 1
=i+ (alpha *7); | 4 rsl[i] =i+ (alpha * 7);
<,

rsl|i|=
}

for(i=0; i< 10; i++) 1

o B WN -

LICM reduces overall resilience
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Example Optimization - 2

LOOP-REDUCE

Un-optimized

Optimized

1 alpha= k™ c}l™ s
L
CA |
4 rsl[i] =i * alpha;
5}

1 alpha=(x *c¢) *s;
2 temp = &rsl;

3 templ =0;
orli= 031 10,43

5 {

6 *temp =templ * alpha;
7 templ =templ + 1;

8 temp = temp+sizeof(int);
9 3

LOOP-REDUCE improves resilience
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RQ1: Summary

* Different optimizations have different effects
(degrade/improve/no impact) on error resilience

* Optimization’s effect on resilience differs based on
the application characteristics — no one size fits all

We need techniques for finding resilience-friendly
optimization for a given application



RQ2: Can we find resilience-
friendly optimizations that
preserve the error resilience of a
given program ?



Finding Resilience-Friendly Optimizations

* Impact of an optimization depends on:
* Application
* Hardware platform

e Error resilience 1s sensitive to the order of
optimizations In a sequence

* Search space 1s very large (2 * n * n!), where n 1s
the number of optimizations

{ Meta-Heuristic Search Techniques J




Genetic Algorithm (GA)

Evolve the solution by mutating 1t in every iteration till
we converge to a candidate solution

- Kill the weak mutants based on fitness function

Append

E Candidatel | a | b | ¢ | d Candidate 2
\
New Candidate| 3 | b | ¢ | d

Swap

Candidatel | a | b c d Candidatezﬁ
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GA-based Approach
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GA-based Approach

Initialization

instcombine
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Loop-unroll

Loop-unswitch
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GA-based Approach

Rectombiamtean $¥paataéions

instcombine
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Loop-unroll
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Crossover - Append

-loop-reduce -loop-unroll m
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Experimental Setup

* Twelve Benchmark programs
* Five from PARSEC
* Seven from Parboil

* LLVM compiler (widely used in industry)

* Performed fault injections using LLFI [DSN’14]
* 1000 fault injections, one fault per run
* Error bars: 0.85% - 2.5%
* Total fault mnjections: 60,000 fault injections



Evaluation

 Resilience
 Execution Time

* Vulnerability

Compared with standard levels O1, O2 and O3 as
most prior work focuses on the standard levels
[Sangchoolie’14][Demertzi’10]
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Results: Resilience

+ ve values : higher resilience (better)
— ve values : lower resilience(worse)
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Results: Normalized SDC Rates

+ ve values : higher SDC rate (worse)
— ve values : lower SDC rates (better)
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Results: Execution Time
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Results: Vulnerability

Unoptimized
GA-Candid@ate SOIULION [« s
01
02
03

Ak

XXX

------ - Optimization  Vulnerability
...... : Reduction

GA -33.46%

SRR+

RRX

9.8,

QIR

X2

SRR

9.9,

0000
ONDPOOHENDNENN

Vulnerability (SDC rate* Runtime)

\
J

X

AR IR IR IO XXX XXX X]

SRRKBEL

RS

O3 -6.26

9,

"
KX

.,v‘.
R

9.

()]
o

(%
o

FN
o

N W
o

=

Vulnerability (SDC rate*Runtime
o

] N
ﬁ& &9 §§
2
oS
= ke Optimization  Vulnerability
= o 1 Increase
22X 03
O1 +7%
j 02 +0.35%
i R o B o oy
& o S & 2 Vulnerability =
QY \g@ C o
& ¥ SDC rate*run time

Benchmark Programs 26




RQ2: Summary

* Candidate solutions using Genetic Algorithms
* Outperform optimization levels in resilience

* Provide reasonable performance improvements better than
O1, O2 and only slightly worse than O3 (by about 2%)

* Significant vulnerability reduction (by 27%)
compared to O3, and much better than O1 and O2

* Takeaway: It is possible to achieve both high
performance and high resilience using optimizations

* But they must be carefully chosen on a per-application basis



Related Work

* Analyzed the impact of standard levels O1, O2 and O3 on
program’s resilience[l - Demertzi][2 - Sangchoolie]

* Proposed new optimizations that targets vulnerability reduction,
without performance improvement [3 - Rehman]

* Focused on soft computing applications for EDC (Egregious
Data Corruptions) outcomes [4 - Thomas][5 - Cong]
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Conclusion

* Studied the impact of individual compiler
optimizations on error resilience

* Observed varied effects of optimizations on different
programs

* Used Genetic Algorithms (GAs) to find resilience
friendly compiler optimizations for each program

* Candidate solutions have much better resilience and
lower vulnerability than standard optimizations
levels with only small performance degradation



