Finding Resilience-Friendly
Compiler Optimizations
using Meta-Heuristic Search

Techniques
BC Nithya Narayanamurthy
e Karthik Pattabiraman

\/ Mate1 Ripeanu

University of British Columbia (UBC)

Motivation: Hardware Errors

 Soft errors are becoming more common in processors

e Caused by alpha particles and cosmic rays
* More sensitive to errors as feature sizes shrink

~8% degradation/bit/generation

o
>
=
=
o
oc

RO I I L L
Soft Error FIT/Chip (Logic & Mem)

Source: Shekar Borkar (Intel) - Stanford talk

Traditional Solutions

* Dual Modular Redundancy (DMR) (e.g., IBM
Mainframes, Tandem Non-Stop etc.)

* DMR incurs significant energy overheads -
undesirable in commodity systems

Our Approach: Good Enough Dependability

Leverage the properties of the application to provide
targeted protection, only for the errors that matter to it

Application
Application Level Properties

Ope: ...

Architec wel

Device/Circuit .

Targeted protection mechanisms

Error Resilience

* Silent Data Corruption (SDC)

* Incorrect output without any indication (Most critical)

 Error Resilience:

* Conditional probability that a fault does not produce an
SDC given that 1t has occurred

* Vulnerability:

* Product of error resilience and execution time of program
* Assume transient faults occur uniformly over time

Compiler Optimizations

* Typically used to make programs faster by
transforming the code

* Processor performance has plateaued for a decade

Dual-Core Itanium 2 /

Intel CPU Trends

{sources: Intel, Wikipedia, K. Olukotun}

10,000
a
1,000 .,
= A
100 -
A
A
L A
L]
A
'o
. L

ooooooo

This Paper

Compiler Optimizations

T~

Improve Performance! Resilience

——
S S——

Goal: Identify optimizations that provide same error resilience

__0 Performance -
Resilience trade off

RQ1: What effect do compiler

optimizations haveon a
program’s resilience?

Fault Injection Study

* Fault Model: Faults that occur in the computational
components and register files of the processor

* Single bit flip fault
* One fault per run

* Injected using LLFI fault injector

Fault Injection Study

* 10 random compiler optimizations from LLVM compiler

* Benchmark programs — Blackscholes and Swaptions (Parsec)

1

gL/ I Blackscholes [

waptions

* 3000 fault injections

e Error bars: 1.8%, 0.7%

ormalized Resilience (in %)

* Resilience normalized 2-

to the resilience of €8 A g £

\(\é"oo R
unOptlmlzed program Individual Optimizations

Same optimization can have ditferent effects
for different programs

10

Example optimization - 1: Loop
Invariant Code Motion (LICM)

Un-optimized Optimized

alpha = (x c)+s

2 for(i=¢C 0; 1++)

{ ,
alpha=(x*c) +s; 3 1
=i+ (alpha *7); | 4 rsl[i] =i+ (alpha * 7);
<,

rsl|i|=
}

for(i=0; i< 10; i++) 1

o B WN -

LICM reduces overall resilience

11

Example Optimization - 2

LOOP-REDUCE

Un-optimized

Optimized

1 alpha= k™ c}l™ s
L
CA |
4 rsl[i] =i * alpha;
5}

1 alpha=(x *c¢) *s;
2 temp = &rsl;

3 templ =0;
orli= 031 10,43

5 {

6 *temp =templ * alpha;
7 templ =templ + 1;

8 temp = temp+sizeof(int);
9 3

LOOP-REDUCE improves resilience

12

RQ1: Summary

* Different optimizations have different effects
(degrade/improve/no impact) on error resilience

* Optimization’s effect on resilience differs based on
the application characteristics — no one size fits all

We need techniques for finding resilience-friendly
optimization for a given application

RQ2: Can we find resilience-
friendly optimizations that
preserve the error resilience of a
given program ?

Finding Resilience-Friendly Optimizations

* Impact of an optimization depends on:
* Application
* Hardware platform

e Error resilience 1s sensitive to the order of
optimizations In a sequence

* Search space 1s very large (2 * n * n!), where n 1s
the number of optimizations

{ Meta-Heuristic Search Techniques J

Genetic Algorithm (GA)

Evolve the solution by mutating 1t in every iteration till
we converge to a candidate solution

- Kill the weak mutants based on fitness function

Append

E Candidatel | a | b | ¢ | d Candidate 2
\
New Candidate| 3 | b | ¢ | d

Swap

Candidatel | a | b c d Candidatezﬁ

16

4)

GA-based Approach

_ S _/
(¥r) - Fitness Function

Application Individual One Iteration/Generation
Sourc1 Code Optimifations /

(!
L Termination }

e Tournament Recombination .
Initialization :) Elimination
@ Selection Operations @

17

/

o

GA-based Approach

Initialization

instcombine

licm

Loop-unroll

Loop-unswitch

cse
Loop-reduce

Population

%))

%))

WY

=
(00}

/

o

GA-based Approach

Rectombiamtean $¥paataéions

instcombine

Loon-unswitch

Loop-unroll

B scop

Crossover - Append

-loop-reduce -loop-unroll m

19

/ Application Individual One Iteration/Generation \
Sour01 Code Optimifations A
Initialization Tou.;'nar.nent Recombl.n aaaaa Elimination
G) | Selection Operations [©)
Terminati

Recombitktinin dfiparations

instcombine Crossover - Append

-loop-reduce -loop-unroll m

inline

Loon-unswitch

Loop-unroll

20

Experimental Setup

* Twelve Benchmark programs
* Five from PARSEC
* Seven from Parboil

* LLVM compiler (widely used in industry)

* Performed fault injections using LLFI [DSN’14]
* 1000 fault injections, one fault per run
* Error bars: 0.85% - 2.5%
* Total fault mnjections: 60,000 fault injections

Evaluation

 Resilience
 Execution Time

* Vulnerability

Compared with standard levels O1, O2 and O3 as
most prior work focuses on the standard levels
[Sangchoolie’14][Demertzi’10]

22

Results: Resilience

+ ve values : higher resilience (better)
— ve values : lower resilience(worse)

E==1 Unoptimized

B GA-Candidate solution

EEE Ol .

HEl 02
XXX 03

10

O —

OO

04

80 il & f

0% %%
XXXA
DXOXAKXX

XXX
X

70

XD

ST T OIS
OO

60

XXAXX
OXXXK

OX

e
XX

Resilience (in %)

XXX

NG

50

XXX XX

1202070767676 7 0% %% % % % %6 %6 %6 %6 %6 % % e %

XX

Benchmark Programs

Optimization Resilience Optimization Resilience

Reduction Improvement
01 -4.64% GA +4.46%
02 -4.21%

03 -3.80% 23

Results: Normalized SDC Rates

+ ve values : higher SDC rate (worse)
— ve values : lower SDC rates (better)

16
14 Il Candidate solution ||
— 1 E Ol
o~ 35 | q I B 02
£ == 03
g 80 . g
S 60 Z1
Q40 i
a 20 i ¥
©
g OJQﬂ P ii“ + R !dl-l-* -QH ‘zlz-l-d-
< -20
£ .
= 40 l |
= -60 l
-80
-100 2 ‘\6’ N o) 2 ™ N Q Q O 2 ((\ &
F 9 & & & e & O @ ¥ L $
& S S+ R S ¢
S o R o Y S
& 2 & SR
d N
T Benchmark Programs
Optimization SDC rate Optimization SDC rate
Increase Reduction
01 +26.50% GA -23.99%
02 +22.79%

03 +23.38% 24

Results: Execution Time

0.0
=2 Unoptimized
’G Il GA-Candidate solution
® 0.05 | mm o1
H 02
= OOA XXX 03

Optimization Performance

Improvement
o1 6.56%
02 7.21%
o
== Unoptimized 03 11'100/0
1.6 i - Eandidat solloiesrssanmnmransna e s s
|| w01 - 22 GA 8.99%
02
| =X¥ 03

me (in sec)
e
=N D

|
=
|

PLOO 000 00 0000000020 0200900000000 420:4

n =N
c&'& ébb

25
Benchmark Programs

i

e

Results: Vulnerability

Unoptimized
GA-Candid@ate SOIULION [« s
01
02
03

Ak

XXX

------ - Optimization Vulnerability
...... : Reduction

GA -33.46%

SRR+

RRX

9.8,

QIR

X2

SRR

9.9,

0000
ONDPOOHENDNENN

Vulnerability (SDC rate* Runtime)

\
J

X

AR IR IR IO XXX XXX X]

SRRKBEL

RS

O3 -6.26

9,

"
KX

.,v‘.
R

9.

()]
o

(%
o

FN
o

N W
o

=

Vulnerability (SDC rate*Runtime
o

] N
ﬁ& &9 §§
2
oS
= ke Optimization Vulnerability
= o 1 Increase
22X 03
O1 +7%
j 02 +0.35%
i R o B o oy
& o S & 2 Vulnerability =
QY \g@ C o
& ¥ SDC rate*run time

Benchmark Programs 26

RQ2: Summary

* Candidate solutions using Genetic Algorithms
* Outperform optimization levels in resilience

* Provide reasonable performance improvements better than
O1, O2 and only slightly worse than O3 (by about 2%)

* Significant vulnerability reduction (by 27%)
compared to O3, and much better than O1 and O2

* Takeaway: It is possible to achieve both high
performance and high resilience using optimizations

* But they must be carefully chosen on a per-application basis

Related Work

* Analyzed the impact of standard levels O1, O2 and O3 on
program’s resilience[l - Demertzi][2 - Sangchoolie]

* Proposed new optimizations that targets vulnerability reduction,
without performance improvement [3 - Rehman]

* Focused on soft computing applications for EDC (Egregious
Data Corruptions) outcomes [4 - Thomas][5 - Cong]

[1] Demertzi, Melina, Murali Annavaram, and Mary Hall. "Analyzing the effects of compiler optimizations on application
reliability." Workload Characterization (IISWC), 2011 IEEE International Symposium on. |IEEE, 2011.

[2] Sangchoolie, Behrooz, et al. "A Study of the Impact of Bit-Flip Errors on Programs Compiled with Different Optimization
Levels." European Dependable Computing Conference (EDCC), 2014 Tenth European. IEEE, 2014.

[3] Rehman, Semeen, et al. "Reliable software for unreliable hardware: embedded code generation aiming at

reliability." Proceedings of the seventh IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis. ACM, 2011.

[4] Thomas, Anna, Jacques Clapauch, and Karthik Pattabiraman. "Effect of compiler optimizations on the error resilience of
soft computing applications." In AER (2013).

[5]J. Cong and C. H. Yu. Impact of loop transformations on software reliability.In ICCAD, 2015 28

Conclusion

* Studied the impact of individual compiler
optimizations on error resilience

* Observed varied effects of optimizations on different
programs

* Used Genetic Algorithms (GAs) to find resilience
friendly compiler optimizations for each program

* Candidate solutions have much better resilience and
lower vulnerability than standard optimizations
levels with only small performance degradation

