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Motivation:	Hardware	Errors
• Soft	errors	are	becoming	more	common	in	processors
• Caused	by	alpha	particles	and	cosmic	rays
• More	sensitive	to	errors	as	feature	sizes	shrink
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Source:	Shekar Borkar (Intel)		- Stanford	talk



Traditional	Solutions
• Dual	Modular	Redundancy	(DMR)	(e.g.,	IBM	
Mainframes,	Tandem	Non-Stop	etc.)
• DMR	incurs	significant	energy	overheads	-
undesirable	in	commodity	systems	
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Our	Approach:	Good	Enough	Dependability
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Application
Properties

Targeted	protection	mechanisms

Leverage the properties of the application to provide 
targeted protection, only for the errors that matter to it

Device/Circuit	Level

Architectural	Level		

Operating	System	Level

Application	Level



Error Resilience

• Silent Data Corruption (SDC)
• Incorrect output without any indication (Most critical)

• Error Resilience: 
• Conditional probability that a fault does not produce an 

SDC given that it has occurred

• Vulnerability: 
• Product of error resilience and execution time of program
• Assume transient faults occur uniformly over time
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Compiler	Optimizations
• Typically	used	to	make	programs	faster	by	
transforming	the	code	
• Processor	performance	has	plateaued	for	a	decade
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This	Paper
Compiler	Optimizations
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Improve	Performance! Resilience	

Goal:	Identify	optimizations	that	provide	same	error	resilience

Performance	-
Resilience	trade	off



RQ1: What effect do compiler 
optimizations have on a 
program’s resilience?
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Fault Injection Study

• Fault Model: Faults that occur in the computational 
components  and register files of the processor

• Single bit flip fault

• One fault per run

• Injected using LLFI fault injector
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Fault Injection Study
• 10 random compiler optimizations from LLVM compiler

• Benchmark programs – Blackscholes and Swaptions (Parsec)

• 3000 fault  injections

• Error bars: 1.8%, 0.7%

• Resilience normalized
to the resilience of 
unoptimized program
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Same optimization can have different effects 
for different programs 



Example optimization - 1: Loop 
Invariant Code Motion (LICM)
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Un-optimized Optimized

LICM reduces overall resilience



Example Optimization - 2: 
LOOP-REDUCE
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Un-optimized Optimized

LOOP-REDUCE improves resilience



RQ1: Summary

• Different optimizations have different effects 
(degrade/improve/no impact) on error resilience

• Optimization’s effect on resilience differs based on 
the application characteristics – no one size fits all
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We need techniques for finding resilience-friendly 
optimization for a given application



RQ2: Can we find resilience-
friendly optimizations that 

preserve the error resilience of a 
given program ?
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Finding Resilience-Friendly Optimizations

• Impact of an optimization depends on:
• Application
• Hardware platform

• Error resilience is sensitive to the order of 
optimizations in a sequence

• Search space is very large (2 ^ n * n!), where n is 
the number of optimizations
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Meta-Heuristic Search Techniques



Genetic Algorithm (GA)
Evolve the solution by mutating it in every iteration till 

we converge to a candidate solution
- Kill the weak mutants based on fitness function 
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GA-based Approach
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GA-based Approach
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Loop-reduce

GA-based Approach
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GA-based Approach
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Experimental Setup

• Twelve Benchmark programs
• Five from PARSEC
• Seven from Parboil

• LLVM compiler (widely used in industry)

• Performed fault injections using LLFI [DSN’14]
• 1000 fault injections, one fault per run
• Error bars: 0.85% - 2.5% 
• Total fault injections: 60,000 fault injections
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Evaluation

• Resilience

• Execution Time

• Vulnerability
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Compared with standard levels O1, O2 and O3 as 
most prior work focuses on the standard levels

[Sangchoolie’14][Demertzi’10]



Results: Resilience
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Optimization Resilience 
Improvement

GA +4.46%

Optimization Resilience 
Reduction

O1 -4.64%

O2 -4.21%

O3 -3.80%

+ ve values : higher resilience (better)
̶̶̶  ve values : lower resilience(worse)



Results: Normalized SDC Rates

24

Optimization SDC rate
Reduction

GA -23.99%

Optimization SDC rate
Increase

O1 +26.50%

O2 +22.79%

O3 +23.38%

+ ve values : higher SDC rate (worse)  
̶̶  ve values : lower SDC rates (better)



Results: Execution Time
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Optimization Performance
Improvement

O1 6.56%

O2 7.21%

O3 11.10%

GA 8.99%



Results: Vulnerability
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Optimization Vulnerability
Reduction

GA -33.46%

O3 -6.26

Optimization Vulnerability
Increase

O1 +7%

O2 +0.35%

Vulnerability = 
SDC rate*run time



RQ2: Summary

• Candidate solutions using Genetic Algorithms
• Outperform optimization levels in resilience
• Provide reasonable performance improvements better than 

O1, O2 and only slightly worse than O3 (by about 2%)

• Significant vulnerability reduction (by 27%) 
compared to O3, and much better than O1 and O2

• Takeaway: It is possible to achieve both high 
performance and high resilience using optimizations
• But they must be carefully chosen on a per-application basis
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Related Work
• Analyzed the impact of standard levels O1, O2 and O3 on 

program’s resilience[1 - Demertzi][2 - Sangchoolie]

• Proposed new optimizations that targets vulnerability reduction, 
without performance improvement [3 - Rehman]

• Focused on soft computing applications for EDC (Egregious 
Data Corruptions) outcomes [4 - Thomas][5 - Cong]
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Conclusion

• Studied the impact of individual compiler 
optimizations on error resilience 
• Observed varied effects of optimizations on different 

programs

• Used Genetic Algorithms (GAs) to find resilience 
friendly compiler optimizations for each program

• Candidate solutions have much better resilience and 
lower vulnerability than standard optimizations 
levels with only small performance degradation

29


