Security and Reliability of the
Internet Of Things (1oT):
A Smart Meter Case Study

Karthik Pattabiraman

UBC Farid Molazem Tabrizi, Maryam Raiyat, Abraham Chan,
=N v lvan Beschastnikh

University of British Columbia (UBC)

My Research

* Building fault-tolerant and secure software systems

* Application-level fault and attack tolerance
» Software resilience techniques [SC’16][DSN’16][DSN’15][DSN’14A][DSN14B]
* Web applications’ reliability [ICSE’16][ICSE’15][ICSE’14A][ICSE’14B]
* |oT Security [ACSAC’16][EDCC’15][HASE’14]

* This talk
* |oT Security and Reliability: Smart Meter Case Study

loT Systems are Everywhere

loT Security and Reliability

HACRERS REMOTELY RILL A JEEP ON THE Software Radio Attacks and Zero-Power Defenses
HIGHWAY—WITH ME INIT .

Pacemake

/ Heart

Leads

Coursny of

Nest Thermostat Glitch Leaves Users in the Cold

Disruptions 0

By NICK BILTON JAN. 13, 2016

Smart meters can be hacked to cut power
bills

By Mark Warg
Technology comespondent, BBC News.

© 16 0ctoer 2014 | gy & s
The Nest Learning Thermostat is
dead to me, lterally. Last week, my
once-beloved “smart” thermostat
suffered from a mysterious
Software bug that drained its
battery and sent our home into a
chill in the middle of the night.

Although I had set the thermostat
t070 degrees overnight, my wife
and I were woken by a crying baby
at 4 a.m. The thermometer in his
room read 64 degrees, and the Nest

‘mart moters couk hel pecple o a boter ob of managing power use

Smertmtrs ity st Spican ke 1 ncer or sy 4
i ioe

loT Security and Reliability: Challenges

* |oT devices are resource constrained
* Low memory and computing capacity
* Sometimes energy constrained

* Large scale of deployment
* Worms can spread quickly in the network
* Need scalable solutions with low false positives

 Autonomous operation
* Need for human intervention should be minimal or none
* Must be capable of operating continuously for a long time

loT Example: Smart Meters

@

Light
Control

Smart Meter

Energy

Sensors
Utility Server

Power line/Wireless

Global Status of Smart Meters

95,000,000 ©00,000

21,500,000

312,000

Smart Meter Security

* Smart meter Attacks
* No need for physical presence
* Hard to detect by inspection or testing
» Attacks canbe large-scale

Analog Meter Smart Meter

Smart Meter Security Is a concern

A series of hacks perpetrated a;

securi
: co . Curity j
pB.v Richarg o, StS Utilities pIenlty in smart
Osted in Securi "owin - Gg Y Sters

t
Frea yp: ty e
%€ Whitepape, _ g, 9th April 2013 5y rom this

00 Gy author
The FBI is seer [v’T

Ifo,
€eing j man
COnSUmerS ng Increasin e anajy

~ﬁCS re
POWer i acks “port
er Withoyt pay’_ngofn ele tric ity sm
orjt art mete
rs.

09 FBI: Smart Meter Hacks Likely to Spread

gainst so-called “smart meter” installations over the past several

vears may have costa single U.S. electric utility hundreds of millions of dollars annually, the

FBI said in 2 cyber intelligence bulletin obtained by KrebsOnSecurity. The law enforcement
agency said this is the first known report of criminals compromising the hi-tech meters, and

that it expects this type of fraud to spread across the country as more utilities deploy smart

grid technology-

Smart meters are intended to improve
efficiency, reliability, and allow the electric
utility to charge different rates for

UREAU OF INVESTIGATION
NCE BULLETIN

Outline

 Motivation and Goals

* Host-based Intrusion Detection System (IDS) for smart meters
[EDCC’15 — Distinguished Paper Award][HASE'14]

* Model checking to find design vulnerabilities in smart meters
[ACSAC’'16]

* Ongoing Work and Conclusions

IDS: Goal

* Goal: Make loT embedded devices secure
* Build a host-based intrusion detection system

* Important constraints

* Small embedded devices => Low memory capacity
* Large scale => No false positives

* Low cost => Automated, no special hardware etc.

IDS Challenge: False Positives

IDS Challenge: Memory Constraints

{
a = receive();
if (@>0)

foo(a);
else
bar(a);
}

void foo(int a) {
if (@% 2==0)
even(a);
else
odd(a);
}

void bar(int a){
if (@a==-1)
errorl();
else if (a==-2)
error2();

}

14

IDS Existing Solutions

False-Positives

Statistical
Techniques
[Moradi][Warrender]

Our goal

Memory Consumption

Program
Analysis
Techniques
[Wagner][Giffin]

IDS Threat model

» Adversary: Wants to change the execution of the software (in subtle
ways) to avoid detection. Do not consider privacy or confidentiality.

Write Multiply Read
modified data consumption consumption
to memory by 0.01 data

Send Read

consumption Consumption
daatothe P P

data
server

University of British Columbia (UBC) 16

IDS: Main Idea

e Quantify security to detect only the most critical
attacks, subject to memory constraints

17

IDS Approach: Overview

Coverage function

Software
Desigh ——>
Documents
(SDD)

Code

Monitoring

Software trace

—

-

Invariants

18

IDS Approach: Details

Coverage function

Coverage function

4- Generating
concrete
invariants

5-Select
optimized
invariants

Software
Design —> 2-Generating
Doc abstract
Software 1- Study Invariants
Desigu (Software |
Design
Documen Document Code
(SDD) 3-Static
Analysis
7))

Code

19

2-Generating
s abstract n
- Study Invariants T 5- Select
Software Generating .
X] optimized
Design concrete . .
. . invariants
Document invariants
3-Static
Analysis

 Storage/Retrieval integrity

Sensor data must eventually be stored on flash memory
O(getting sensorData= (0 store on flash))

Receive Store on
sensor — e flash
data memory

20

Software
Design
Documents
(SDD)

IDS Approach: Steps 3-4

Coverage function

2-Generating

abstract
1-Study Invariants 4-Generating 5-Select
Software ..
X concrete optimized
Design - o . .
invariants invariants
Document
3-Static
Analysis
Code

Abstract invariants

—

Concrete invariants
(containsystem calls)

21

2-Generating

T Stud abstract 2
- Study Invariants " 5- Select
Software Generating ..
X] optimized
Design concrete . .
. . invariants
Document invariants
3-Static
Analysis

recv(4, 0x47cf68,8192, 0)
data =socket.receive(); # write(f, data);

write(1,0x47cf68,4) = 4

O(getting sensorData(data) = () store on flash(data)))

—

O(receive(d) = (0 write(d)))

Software
Design
Documents
(SDD)

IDS Approach: Step 5

Coverage function
2-Generating
abstract
1-Study Invariants 4-Generating 5-Select
Software ..
) concrete optimized
Design
invariants invariants
Document
3-Static /
Analysis
Code

23

1-Study
Software
Design
Document

e

2-Generating
abstract
Invariants

IDS Approach: Building the IDS

3-Static
Analysis

4-Generating
concrete
invariants

Memory Capacity

l

5-Generating

IDS

Formulate building the IDS as an optimization problem,
where we maximize coverage subject to cost constraints

IDS Coverage: MaxMin Coverage

MaxMin Coverage IDS: Maximize minimum coverage
i.e., distribute coverage among all properties

Security
Properties

Invariants

IDS Coverage: MaxProperty IDS

MaxProperty IDS:
Maximize security properties that are fully covered

Security
Properties

Invariants

IDS: Building the IDS

Select the invariants from the graph
according to the coverage function

!

Automatically convert it to Buchi Automaton

!

Monitor the invariants at runtime

IDS Evaluation: Testbed

e Testbed: Smart Meter

* Meter:

* Arduino board

e ATMEGA 32x series
microcontroller

* Sensors
* Gateway board

* Broadcom BCM 3302 240MHz
CPU

* 16 MB RAM
* 4 MB available for IDS
* OpenWRT Linux

* IDS runs on the Gateway board

IDS Evaluation: Fault injection

* Flipping branches (surreptiously)

if (data_file ~=nil) then
big_string = data_file:read("*all")

end

- Data loss

I Crash

[Wrong format
[]Duplicate data
[JTiming error
[Benign

Il Miscellancous

if (data_file ==nil) then
big_string = data_file:read("*all")

end

29

IDS Results (MaxMin IDS: 2 MB memory)

* How good is the coverage of the IDS (left)?

* How good the graph-based optimization is reflected at run-time (right)?

By 100
8 E 5o}
X g
60+ = 601
ok
é 40} o 40t
"
' z 20f
O
0
x?vxo vxwvx vg&‘
0,
M*‘Z as‘ o
@%& e S ‘&W «z@%&i%& ~e° e@ é" @Q

Security Properties Security Properties

IDS Results (MaxProperty IDS: 2 MB memory)

* How good is the coverage of the IDS (left)?

* How good the graph-based optimization is reflected at run-time (right)?

100

100

80} S
S :

o OV 2 60}
= g
© [o

2 40 o 40}
D o0
= =

20} = 20}
&)

0 0

@vx@v@vx vg@ \;5‘,;\9\?‘\9\?\,’9?»\,&6‘2‘5‘6\&
‘ﬁd’?@w%@ Q’A)Q:l & ‘§@ Q‘b)éx)GQQ %&
«23‘@6@%@%\@ @%@ O (@ Q@‘Z@ ég@%xe 6"66 *&Qo
g,

Security Properties Security Properties

Outline

 Motivation and Goals

* Host-based Intrusion Detection System (IDS) for smart meters
[EDCC’15 — Distinguished Paper Award][HASE'14]

* Model checking to find design vulnerabilities in smart meters
[ACSAC’'16]

* Ongoing Work and Conclusions

Model Checking: Problem

Enumerate all possible attacks

embedded
device

Environment

33

Model Checking: Challenge

* Formal analysis requires well-defined properties(e.g. TCP/IP)
* Unclearin loT devices

* The state space may be very large
* Requirethe right level of abstraction
* High-level enough to avoid state space explosion
* Low-level enough to be translatable to device code

Model Checking: Our approach

* Key Idea: Each class of embedded
devices performssimilar operations

* Wecan abstractthe operations
« Createanabstractmodel

Formalize the model (using

Maude)

Formalize attacker actions
Define unsafe states

Run model checking to find
attacker actions lea ing to unsafe
states

State space

35

Model Checking: Formal model

[Data: (s1, v1)(s2, v2), ...

— SENSOrS

N Gateway

SENSOR-STATES

1. mod SENSOR-STATES is

2. op getSensorDatalist : —> SensorDatalist.

3. var datalist : SensorDatalist.
4.varrn : Nat.
5.rl[r1]: getSensorDatalist —> sensorDataElement(0,0).]

(e}

. crl[r2]:sensorDataElement(r,n) —> sensorDataElement(r,n)
sensorDataElement(r+1, 0) if r < maxSensorNumber.

7. crl[r3]:sensorDataElement(r,n) —> sensorDataElement(r,n+1)
if n < maxSensorData.

8.endm

Definesthe operation of
receiving data from sensors
SensorDatalist isa list of tuples,
eachcalledsensorDataElement

Defines necessary variablesfor
defining the operations

Base of recursion

Recursively defining the rule to
extend one sensorDataElement,
to up to maxSensorNumber
elements. Eachtupleis: [value,
sensor channel number].

Model Checking: Threat model

Root access to anodein

grid network [Mo et al.
2012]

* Actions

* Drop messages _ o
* Replay messages Read/Write access to communication

e Reboot meter interfaces [Mclaughlin et al. 2010]

37

Model Checking: Results

* For each attacker action: query for paths to unsafe
states, e.g.,

 search sensor(N1, M1) sensor(N2, M2) sensor(N3, M3)
= sensor(N1, M1) sensor(N2, M2)

* Checks if any data may be lost via dropping messages

* Found many attacks: Many map to the same execution path

Model Checking: Attacks example 1

Function confirm_time_is_OK()
while time_is_ok ==false do

;('i'me_i s_ok =check_time()

e : Root
== Add IPTables
Ifs(etil:n:ien—,:ZUOk true) then access to a rule:drop iptables - AINPUT - d ADDRESS - j DROP
break rﬂgﬂ:g messages to
end time server

end
end \ /
Gets stuck in the .

loop
Server

Model Checking: Attack example 2

Data Request

Communica

tion board

Normal behavior

Replay data
request

Find serial communication
configuration (a handful
common configs, acouple
of hundreds total configs

One of the common
configs worked in our case

Use USB to 6-pin serial
connector from laptop to
meter

Receive dataon
the laptop — data
deleted from
sensor board

40

Model Checking: Attack example 3

electricity
| 11

Meter operations
follow specific
timing rules

"

Profile
timing
behavior

reboot

ta if
window

Open file in write
maode

1

2

9

8.

.function update_node_list()

// state 3

. all_data = get_node_list()
// state 4

. all_data =
merge_tables(current_data,all_data)

. data_file = assert(io.open(dataFile, “w"))

// state 5
. for key, value in pairs(node_list) do

data_file:write(data)
. end

assert(data_file:close())

.end

_ Pro, solid state
timer to reboot meter at
vulnerability window

41

Model Checking: Performance

Attacker Time (hrs) |Attacks
action found
Dropping 0.002 12
packets

Replay 0.005 845
System 1.9 6452
reboot

Outline

 Motivation and Goals

* Host-based Intrusion Detection System (IDS) for smart meters
[EDCC’15 — Distinguished Paper Award][HASE'14]

* Model checking to find design vulnerabilities in smart meters
[ACSAC’'16]

* Ongoing Work and Conclusions

Invariants: ARTINALI

*A Real-Time-specific Invariant
iNference ALgorithm
*Mining independent
properties

*Finding Temporal
relationship of independent
properties

*Incorporating time
properties into data invariants

P,

Invariants: ARTINALI VS. Previous work

Data

Dysy [ICSE’08] @ ARTINALI

D|T Miner,
ARTINALI @ O Daikon [IEEE’01] (bl)
(D | E Miner)
Quarry [ICSE’15] @
Gk-tail [ICSE’'08] ©
> Time
< @ Pefume [ASE’14]
3 % @ ARTINALI
Event %é S (T| E Miner)

Invariants: Synchronization Tampering Attack

Time
TO TO+15 TO+30 TO+45
—] R]] R]] ¢] T
S S S
Normal &———>, > >, I
Execution| | | : | | |
(send > recv. i send sl recv s(send N recv I
| | | | | | 1
I I I I I I I
| Get-seg-data= true iGet-seg-data= false 1 Get-seg-data=truei Get-seg-data= false | Get-seg-data= truei Get-seg-data= falel
I Command=all-node§Command=nil I Command=all-node$ Command=nil I Command=all-node5 Command=nil !
| Partial=nil IPartial=DATA | Partial=nil | Partial=DATA | Partial=nil | Partial=DATA |
I I 1) | | | I
I I I I I I I
I I I 1 I I I
I I i I I I I
[1 | 1 | [|
send > I recv 1 > send |
I 1 | | | 1 1
1 1 1 T 1 1
Get-seg-data= false VGet-seg-data= fale XGet-seg-data= falke V Get-seg-data= fale X Get-seg-data= true x
Synchronization Command=nil V Command=nil x Command=nil V Command=nil x Command=all-nodes x
tampering attack Partial=DATA V Partial=DATA x Partial=DATA V Partial=DATA x Partial=nil x

Detection :violationin time per eventinvariant:
send (TO+ K*15) 2 send (TO+(K+1)*15)

Diversity: Motivation

* One compromised device will not lead to attacks on other similar
devices

47

Diversity: Code Reuse Attacks

Code Injection Attack

Code Reuse Attack

48

Diversity: Functional Correctness vs Security?

Compilable

Variants Variants Break Tests

Semantic Non-
Preserving Variants
but Passes Tests

Semantic
Preserving
Variants

49

Conclusions

* |oT Security and Reliability are important
* Challenging due to memory and resource constraints
* Physical access to the device is possible

* Smart Meters: Important class of loT device
* Host-Based IDS to detect intrusions
* Model checking to find design defects

* Ongoing Work
» Extracting invariants for runtime monitoring (ArtiNali)
* Enhancing diversity among deployed variants (NVerD)

Security and Reliability of the
Internet Of Things (1oT):
A Smart Meter Case Study

Karthik Pattabiraman

Farid Molazem Tabrizi, Maryam Raiyat, Abraham Chan,
lvan Beschastnikh

=
oy
9

.!;
)

)
o
X
|

University of British Columbia (UBC)

