
Security	and	Reliability	of	the	
Internet	Of	Things	(IoT):
A	Smart	Meter	Case	Study

KarthikPattabiraman
FaridMolazemTabrizi,	Maryam	Raiyat,	Abraham	Chan,

Ivan	Beschastnikh

University	of	British	Columbia	(UBC)



My	Research
• Building	fault-tolerant	and	secure	software	systems

• Application-level	fault	and	attack	tolerance
• Software	resilience	techniques	 [SC’16][DSN’16][DSN’15][DSN’14A][DSN14B]
• Web	applications’	reliability	[ICSE’16][ICSE’15][ICSE’14A][ICSE’14B]
• IoT Security	[ACSAC’16][EDCC’15][HASE’14]

• This	talk
• IoT Security	and	Reliability:	Smart	Meter	Case	Study

2



IoT Systems	are	Everywhere

3



IoT Security	and	Reliability

4



IoT Security	and	Reliability:	Challenges

• IoT devices	are	resource	constrained
• Low	memory	and	computing	capacity
• Sometimes	energy	constrained

• Large	scale	of	deployment
• Worms	can	spread	quickly	in	the	network
• Need	scalable	solutions	with	low	false	positives

• Autonomous	operation
• Need	for	human	intervention	 should	be	minimal	or	none
• Must	be	capable	of	operating	continuously	 for	a	long	time



IoT Example:	Smart	Meters

Thermostat

TV Fridge

Smart	Meter

Light	
Control

Lock
Control



Smart	Meter

7

Energy

Sensors

Power	line/Wireless

Utility	Server

- Cellular
- Internet



Global	Status	of	Smart	Meters

8

21,500,000

312,000

95,000,000

120,000

600,000

1,275,000

2009:	76	million 2010:	118	million 2012:	1	billion



Smart	Meter	Security
• Smart	meter	Attacks
• No	need	for	physical	presence
• Hard	to	detect	by	inspection	or	testing
• Attacks	can	be	large-scale

9

Analog	Meter Smart	Meter



Smart	Meter	Security	is	a	concern



Outline

• Motivation	and	Goals

• Host-based	 Intrusion	Detection	System	(IDS)	for	smart	meters	
[EDCC’15	– Distinguished	Paper	Award][HASE’14]

• Model	checking	to	find	design	vulnerabilities	in	smart	meters	
[ACSAC’16]

• Ongoing	Work	and	Conclusions	



IDS:	Goal

• Goal:	Make	IoT embedded	devices	secure
• Build	a	host-based	intrusion	detection	system

• Important	constraints

• Small	embedded	 devices	=>	Low	memory	capacity

• Large	scale	=>	No	false	positives

• Low	cost	=>	Automated,	no	special	hardware	etc.



IDS	Challenge:	False	Positives

13

Center

device

device

device

device

device

device

device



IDS	Challenge:	Memory	Constraints

14

{
a	=	receive();
if	(a	>	0)
foo(a);

else
bar(a);

}

void	foo(int a)	{
if	(a	%	2	==	0)
even(a);

else
odd(a);

}

void	bar(int a)	{
if	(a	==	-1)
error1();
else	if	(a	==	-2)
error2();

}

a	>	0 a	<=	0

a	%	2	==	0 a	%	2	==	1 a	==	-1 a	==	-2



IDS	Existing	Solutions
Fa
lse

-P
os
iti
ve
s

Memory	Consumption

Program
Analysis	
Techniques
[Wagner][Giffin]

Statistical	
Techniques
[Moradi][Warrender]

Our	goal



IDS	Threat	model	

• Adversary:	Wants	to	change	the	execution	of	the	software	(in	subtle	
ways)	to	avoid	detection.	Do	not	consider	privacy	or	confidentiality.

University	of	British	Columbia	(UBC) 16

Read	
Consumption	

data

Send	
consumption	
data	to	the	
server

Read	
consumption	

data

Multiply	
consumption	

by	0.01

Write	
modified	data	
to	memory



IDS:	Main	Idea
• Quantify	security	to	detect	only	the	most	critical	
attacks,	subject	to	memory	constraints

17



IDS	Approach:	Overview

18

Our	work
Software	
Design	

Documents	
(SDD)

Code

Coverage	function

Invariants

IDSMonitoring	
Software	trace



IDS	Approach:	Details

19

Our	work
Software	
Design	

Documents	
(SDD)

Code

Coverage	function

1- Study	
Software	
Design	

Document

2-Generating	
abstract	
Invariants

3-Static	
Analysis

4-Generating	
concrete	
invariants

Software	
Design	

Documents	
(SDD)

Code

Coverage	function

5- Select	
optimized	
invariants



• Storage/Retrieval	integrity

20

Receive	
sensor	
data

Store	on	
flash	

memory

Sensor	data	must	eventually	be	stored	on	flash	memory
□(𝑔𝑒𝑡𝑡𝑖𝑛𝑔	𝑠𝑒𝑛𝑠𝑜𝑟𝐷𝑎𝑡𝑎⟹	 ◊ 𝑠𝑡𝑜𝑟𝑒	𝑜𝑛	𝑓𝑙𝑎𝑠ℎ )

1- Study	
Software	
Design	

Document

2-Generating	
abstract	
Invariants

3-Static	
Analysis

4-
Generating	
concrete	
invariants

5- Select	
optimized	
invariants



IDS	Approach:	Steps	3-4

21

Abstract	invariants Concrete	invariants
(contain	system	calls)

1- Study	
Software	
Design	

Document

2-Generating	
abstract	
Invariants

3-Static	
Analysis

4-Generating	
concrete	
invariants

Software	
Design	

Documents	
(SDD)

Code

Coverage	function

5- Select	
optimized	
invariants



22

□(𝑔𝑒𝑡𝑡𝑖𝑛𝑔	𝑠𝑒𝑛𝑠𝑜𝑟𝐷𝑎𝑡𝑎(𝑑𝑎𝑡𝑎)⟹	 ◊ 𝑠𝑡𝑜𝑟𝑒	𝑜𝑛	𝑓𝑙𝑎𝑠ℎ(𝑑𝑎𝑡𝑎) )

□(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑑)⟹	 ◊𝑤𝑟𝑖𝑡𝑒(𝑑) )

{
….
data	=	socket.receive();
….

}

{
….
write(f,	data);
….

}

1- Study	
Software	
Design	

Document

2-Generating	
abstract	
Invariants

3-Static	
Analysis

4-
Generating	
concrete	
invariants

5- Select	
optimized	
invariants

…
recv(4,	0x47cf68,	8192,	0)
…
write(1,	0x47cf68,	4)	=	4
…



IDS	Approach:	Step	5

23

1- Study	
Software	
Design	

Document

2-Generating	
abstract	
Invariants

3-Static	
Analysis

4-Generating	
concrete	
invariants

Software	
Design	

Documents	
(SDD)

Code

Coverage	function

5- Select	
optimized	
invariants



IDS	Approach:	Building	the	IDS

1- Study	
Software	
Design	

Document

2-Generating	
abstract	
Invariants

3-Static	
Analysis

4-Generating	
concrete	
invariants

5-Generating	
IDS

Memory	Capacity

Formulate	building	the	IDS	as	an	optimization	problem,	
where	we	maximize	coverage	subject	to	cost	constraints



IDS	Coverage:	MaxMin Coverage

𝑣 8 𝑣 9

𝑝 8 𝑝 ;

In
va
ria

nt
s

Se
cu
rit
y	

Pr
op

er
tie

s

𝑝 9

𝑣 ; 𝑣 < 𝑣 = 𝑣 >

𝑝 <

MaxMin Coverage	IDS:	Maximize	minimum	coverage
i.e.,	distribute	coverage	among	all	properties



IDS	Coverage:	MaxProperty IDS

𝑣 8 𝑣 9

𝑝 8 𝑝 ;

In
va
ria

nt
s

Se
cu
rit
y	

Pr
op

er
tie

s

𝑝 9

𝑣 ; 𝑣 < 𝑣 = 𝑣 >

𝑝 <

MaxProperty IDS:	
Maximize	security	properties	 that	are	fully	covered



IDS:	Building	the	IDS
Select	the	invariants	from	the	graph
according	to	the	coverage	function

Automatically	convert	it	to	Buchi Automaton

Monitor	the	invariants	at	runtime



IDS	Evaluation:	Testbed
• Testbed:	Smart	Meter

• Meter:
• Arduino	board

• ATMEGA	32x	series	
microcontroller

• Sensors
• Gateway	board

• Broadcom	BCM	3302	240MHz	
CPU

• 16	MB	RAM
• 4	MB	available	for	IDS
• OpenWRT Linux

• IDS	runs	on	the	Gateway	board



IDS	Evaluation:	Fault	injection

• Flipping	branches	(surreptiously)	

29

if	(data_file ~=	nil)	then
big_string =	data_file:read("*all")
…

end

if	(data_file ==	nil)	then
big_string =	data_file:read("*all")
…

end



IDS	Results	(MaxMin IDS:	2	MB	memory)
• How	good	is	the	coverage	of	the	IDS	(left)?
• How	good	the	graph-based	optimization	is	reflected	at	run-time	(right)?



IDS	Results	(MaxProperty IDS:	2	MB	memory)
• How	good	is	the	coverage	of	the	IDS	(left)?
• How	good	the	graph-based	optimization	is	reflected	at	run-time	(right)?



Outline

• Motivation	and	Goals

• Host-based	 Intrusion	Detection	System	(IDS)	for	smart	meters	
[EDCC’15	– Distinguished	Paper	Award][HASE’14]

• Model	checking	to	find	design	vulnerabilities	in	smart	meters	
[ACSAC’16]

• Ongoing	Work	and	Conclusions	



Model	Checking:	Problem

33

embedded	
device

void	 foo()	 {
…
}
int	bar()	 {
…
}

Environment

Attacker

Action

Enumerate	all	possible	attacks



Model	Checking:	Challenge

• Formal	analysis	requires	well-defined	properties	(e.g.	TCP/IP)
• Unclear	in	IoT devices

• The	state	space	may	be	very	large
• Require	the	right level	of	abstraction
• High-level	enough	to	avoid	state	space	explosion
• Low-level	enough	to	be	translatable	to	device	code

34



Model	Checking:	Our	approach

• Key	Idea:	Each	class	of	embedded	
devices performssimilar	operations
• We	can	abstract	the	operations
• Create	an	abstract	model

• Formalize the model (using 
Maude)

• Formalize attacker actions
• Define unsafe states
• Run model checking to find 

attacker actions leading to unsafe 
states

35

State space

Unsafe 
state



Model	Checking:	Formal	model

SENSOR-STATES

1.mod SENSOR-STATES	is

2.	op getSensorDataList :	—>	SensorDataList.

3.	var dataList :	SensorDataList.
4.	var r	n	:	Nat.

5.	rl [r1]:			getSensorDataList —>	sensorDataElement(0,0).

6.	crl [r2]:	sensorDataElement(r,n)	—>	sensorDataElement(r,n)
sensorDataElement(r+1,	0)				if	r	<	maxSensorNumber.

7.	crl [r3]:	sensorDataElement(r,n)	—>			sensorDataElement(r,n+1)
if	n	<	maxSensorData.

8.	endm

Defines	the	operation	of	
receiving	data	from	sensors
SensorDataList is	a	list	of	tuples,	
each	called	sensorDataElement

Defines	necessary	variables	for	
defining	the	operations

Recursively	defining	the	rule	to	
extend	one	sensorDataElement,	
to	up	to	maxSensorNumber
elements.	Each	tuple	is:	[value,	
sensor	channel	number].

Base	of	recursion

sensors
Gateway	
board

Data:	(s1,	v1)	(s2,	v2),	…	



Model	Checking:	Threat	model

• Actions
• Dropmessages
• Replay	messages
• Reboot	meter

37

Read/Write	access	to	communication	
interfaces	[McLaughlin	et	al.	2010]

Root	access	to	a	node	in	
grid	network	[Mo et	al.	

2012]



Model	Checking:	Results

•For	each	attacker	action:	query	for	paths	to	unsafe	
states,	e.g.,

• search	sensor(N1,	M1)	sensor(N2,	M2)	sensor(N3,	M3)	
⇒ sensor(N1,	M1)	sensor(N2,	M2)

• Checks	if	any	data	may	be	lost	via	dropping	messages

• Found	many	attacks:	Many	map	to	the	same	execution	path

38



Model	Checking:	Attacks example	1

39

Meter ServerServer

Root	
access	to	a	
routing	
node

Add	IPTables
rule:	drop	

messages	to	
time	server

Function	confirm_time_is_OK()
while	time_is_ok ==	false	do
...
time_is_ok =	check_time()
if	(time_is_ok ==	true)	then					
set_time()
break
end

end
end

Gets	stuck	in	the	
loop

:	iptables −	A	INPUT	−	d	ADDRESS	−	j	DROP	



Model	Checking:	Attack example	2

40

Sensor	
board

Communica
tion	board

RequestData

Normal	behavior
Find	serial	communication	
configuration	(a	handful	
common	configs,	a	couple	
of	hundreds	total	configs

Use	USB	to	6-pin	serial	
connector	from	laptop	to	

meter

Replay	data	
request

Receive	data	on	
the	laptop	– data	
deleted	from	
sensor	board

One	of	the	common	
configs worked	in	our	case



Model	Checking:	Attack example	3

41

meter

electricity

Network

Meter	operations	
follow	specific	
timing	rules

Meter	operations	
follow	specific	
timing	rules

Profile	
timing	
behavior

Profile	
timing	
behavior

Vulnerable	
code

Vulnerable	
code

Open	 file	 in	write	
mode

Open	 file	 in	write	
mode

Vulnerability	 windowVulnerability	 window

Program	solid	state	
timer	to	reboot	meter	at	
vulnerability	window

Program	solid	state	
timer	to	reboot	meter	at	
vulnerability	window

Will	 lose	data	if	
reboot

Will	 lose	data	if	
reboot



Model	Checking:	Performance

Attacker	
action

Time	(hrs) Attacks	
found

Dropping	
packets

0.002 12

Replay 0.005 845
System	
reboot

1.9 6452



Outline

• Motivation	and	Goals

• Host-based	 Intrusion	Detection	System	(IDS)	for	smart	meters	
[EDCC’15	– Distinguished	Paper	Award][HASE’14]

• Model	checking	to	find	design	vulnerabilities	in	smart	meters	
[ACSAC’16]

• Ongoing	Work	and	Conclusions



Invariants:	ARTINALI
•A	Real-Time-specific	Invariant	
iNferenceALgorIthm
•Mining	independent	
properties

•Finding		Temporal	
relationship	of	independent	
properties

•Incorporating	time	
properties	into	data	invariants



Invariants:	ARTINALI	VS.	Previous	work
Data

Event

Time

Daikon [IEEE’01]

Dysy [ICSE’08]

Quarry	[ICSE’15]

Gk-tail	[ICSE’08]

Pefume [ASE’14]

ARTINALI
(D|T	Miner)

ARTINALI
(D|E	Miner)

ARTINALI
(T|E	Miner)



Invariants:	Synchronization	Tampering	Attack

Detection	:	violation	in	time	per	event	invariant:
send	(T0	+	K*15)à send	(T0+(K+1)*15)

send recv

recv

send recv send

send

TimeT0 T0+15 T0+30

recv

send

Get-seg-data=	true
Command=all-nodes
Partial=nil

Get-seg-data=	true
Command=all-nodes
Partial=nil
)

Get-seg-data=	true
Command=all-nodes
Partial=nil

Get-seg-data=	false
Command=nil
Partial=DATA

Get-seg-data=	false
Command=nil
Partial=DATA

Get-seg-data=	false
Command=nil
Partial=DATA

Get-seg-data=	false	√
Command=nil	√
Partial=DATA		√	

Get-seg-data=	false	×
Command=nil ×
Partial=DATA		×

Get-seg-data=	false	√
Command=nil	√
Partial=DATA		√

Get-seg-data=	false	×
Command=nil ×
Partial=DATA		×

T0+45

Get-seg-data=	true ×
Command=all-nodes	×
Partial=nil	×

Synchronization	
tampering	attack

ts ts tsNormal
Execution



Diversity:	Motivation
• One	compromised	device	will	not	lead	to	attacks	on	other	similar	
devices

47

p1
p2

p3
pn

……..



Diversity:	Code	Reuse	Attacks

48Code	Injection	Attack Code	Reuse	Attack



Diversity:	Functional	Correctness	vs	Security?

49

Semantic	
Preserving	
Variants

Semantic	Non-
Preserving	Variants	
but	Passes	Tests

Variants	Break	Tests
Compilable
Variants



Conclusions

• IoT Security	and	Reliability	are	important
• Challenging	due	to	memory	and	resource	constraints
• Physical	access	to	the	device	is	possible

• Smart	Meters:	Important	class	of	IoT device
• Host-Based	IDS	to	detect	intrusions
• Model	checking	to	find	design	defects

• Ongoing	Work
• Extracting	invariants	for	runtime	monitoring	 (ArtiNali)
• Enhancing	diversity	among	deployed	variants	(NVerD)



Security	and	Reliability	of	the	
Internet	Of	Things	(IoT):
A	Smart	Meter	Case	Study

KarthikPattabiraman
FaridMolazemTabrizi,	Maryam	Raiyat,	Abraham	Chan,

Ivan	Beschastnikh

University	of	British	Columbia	(UBC)


