
Tolera'ng	Hardware	Faults	In	
Commodity	So8ware:	Problems,	

Solu'ons,	and	a	Roadmap	
	

Karthik	Pa*abiraman	
(h*p://blogs.ubc.ca/karthik),		

Electrical	and	Computer	Engineering	
University	of	Bri'sh	Columbia	(UBC)	

	
	

Mo'va'on:	Hardware	Errors	
•  Errors	are	becoming	more	common	in	processors	

–  So8	errors	and	device	varia'ons	('ming	errors)	
–  Processors	experience	wear-out	and	thermal	hotspots	

2	

Source:	Shekar	Borkar	(Intel)		-		Stanford	talk	in	2005	

Hardware	Errors:	Tradi'onal	Solu'ons	
•  Guard-banding	 •  DuplicaGon	

Average	 Worst-case	

Guard-banding	wastes	
power	as	gap	between	
average	and	worst-case	
widens	due	to	varia'ons	

Guard-band	

Hardware	duplica'on	
(DMR)	can	result	in	2X	
slowdown	and/or	energy	
consump'on	

3	

An	alterna've	approach	

4	

Architecture	

Opera'ng	System	

Applica'on	

Devices/Circuits	

User interacts with the
application

SoHware	

Hardware	

User	

Allow	errors	across	
the	hardware-

soHware	boundary,	
but	make	sure	user	
does	not	perceive	it	

Device/Circuit	Level	

Architectural	Level			

OperaGng	System	Level	

ApplicaGon	Level	

Why	do	so8ware	techniques	work	?	

ImpacRul	Errors	
5	

So8ware	Techniques	

6	

ApplicaGon	
ProperGes	

Targeted	protecGon	mechanisms	

Leverage the properties of the application to provide
targeted protection, only for the errors that matter to it

Device/Circuit	Level	

Architectural	Level			

OperaGng	System	Level	

ApplicaGon	Level	

Outline	
	
•  Mo'va'on	

•  Techniques	developed	by	my	group	[DSN’13][CASES’14]	

•  A	brief	history	of	so8ware	techniques	

•  Adop'on	in	Industry	

•  Research	opportuni'es	and	roadmap	

7	

EDCs: Soft Computing Applications	

Ø Applica'ons	in	machine	learning,	mul'media	processing		
Ø Expected	to	dominate	future	workloads	[Dubey’07]	

	
	

8	

Original	image	(le8)	versus	faulty	image:	JPEG	decoder	

EDCs:	Egregious	Data	Corrup'ons	

9	

Ø Large	or	unacceptable	devia'on	in	output		

EDC	image	(PSNR	11.37)	Vs.	Non-EDC	image	(PSNR	44.79)	

EDCs:	Goal	

Ø Selec'vely	detect	EDC	causing	faults,	but	not	others	
	
	

	

10	

Non-EDC	

EDC	

Detector	

Benign	

Applica'on	Execu'on	

EDCs:	Fault	model	

•  Transient	hardware	faults	
– Caused	by	par'cle	strikes,	supply	noise	

•  Our	Fault	Model	
– Assume	one	fault	per	applica'on	execu'on	
– Processor	registers	and	execu'on	units	
– Memory	and	cache	protected	with	ECC	
– Control	logic	protected	with	other	methods		

		
11	

EDCs:	Main	Idea	

12	

Corrupted	by	
hardware	
faults	

Cri'cal	
Data	

ApplicaGon	
Data	

Our	prior	work:	EDCs	are	
caused	by	corrup'on	of	a	
small	frac'on	of	program	
data	[Flikker	-	ASPLOS’11]	
	
This	work:	Cri'cal	data	
can	be	iden'fied	using	
sta'c	and	dynamic	
analysis,	without	any	
programmer	annota'ons	

	

	
IniGal	
Study	
	

HeurisGc	 Algorithm	

EDCs:	Ini'al	Study	

	

13	

Monitor	Control/
Pointer	Data	

Ø Instrument	code	
Ø Fault	Injec'on		

	
Ø  Correla'on	between	program	data	use	&	fault	outcome	

Performed	using	LLFI	fault	injector	
[DSN’14],	at	the	LLVM	IR	code	level	

	
Ini'al	
Study	
	

Heuris'c	 Algorithm	

EDCs:	Ini'al	Study	
	
	

14	

6%	

43	%	

23%	

28%	

	
Ini'al	
Study	
	

Heuris'c	 Algorithm	

	
	
	

15	

void	conv422to444	(char	*src,	char	*dst,		int	height,	int	width,	int	
offset)	{	
					for(j=0;	j	<	height;	j++){	
								for(i=0;	i	<	width;	i++)	{	
											im1	=	(i	<	1)	?	0	:	i	–	1	
											…	
											…	
									}	
									if	(j	+	1	<	offset)	{	
													src	+=	w;	
													dst	+=	width;	}	
						}	
}	

High	EDC	
Likelihood	

Ø Fault	in	offset	
Ø Branch	Flip	

	
Ini'al	
Study	
	

Heuris'c	 Algorithm	

Low	EDC	Likelihood	

EDCs:	Example	Heuris'c	
Faults	affec+ng	branches	with	large	amount	of	data	within	their	
bodies	have	a	higher	likelihood	of	resul+ng	in	EDC	outcomes	

EDCs:	Algorithm	

	
	
	
	

16	

Compiler	 EDC	Ranking	
Algorithm	

Selec'on	
Algorithm	

IR		

	Applica'on		
Source	Code	

Performance	Overhead	

Data	Variables	or	Loca'ons	to	Protect	

Representa've	inputs	

Backward	slice	replica'on	

	
Ini'al	
Study	
	

Heuris'c	 Algorithm	

EDCs:	Detec'on	Coverage	

17	

Average	EDC	Coverage	of	82%	at	10%	
performance	overhead	

Higher	is	beuer	

𝐸𝐷𝐶 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒= ​𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐸𝐷𝐶𝑠/𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝐷𝐶𝑠 	

EDCs:	Selec'vity	

18	

Average	Benign	and	Non-EDC	Coverage	of		10	
to	15%	for	overheads	from	10	to	25%	

Lower	is	beuer	

SDCTune:	Silent	Data	Corrup'on	(SDCs)	

19	

Fault	occurs	

Error	ac'vated	

Error	Masked	
Benign	

Crash/Hang	

SDC	

Program	

Finished	

Correct output SDC Output

Results lost:

SDCTune:	Goals	

•  ProtecGng	criGcal	data	in	soH-compuGng	
applicaGons	from	EDCs	
–  Can	we	extend	this	to	Silent	Data	Corrup'ons	(SDCs)	
in	general-purpose	applica'ons?	

•  Challenge:	
– Not	feasible	to	iden'fy	SDCs	based	on	the	amount	of	
data	affected	by	the	fault	as	was	the	case	with	EDCs	

– Need	for	comprehensive	model	for	predic'ng	SDCs	
based	on	sta'c	and	dynamic	program	features	

20	

SDCTune:	Main	Idea	

•  Start	from	Store	and	Cmp	instrucGons	and	go	
backward	through	program’s	data	dependencies
	

•  Use	machine	learning	(CART)	to	predict	the	SDC	
proneness	of	Store	and	Cmp	instrucGons
–  Extract the related features by static/dynamic analysis	
–  Quantify the effects by classification and regression
–  Estimate SDC rates of different Stores and Cmp instructions

21	

SDCTune:	Example	Model	

22	

Not	used	in	Masking	
opera'ons	

Linear	Regression		for	SDC-proneness	

SDCTune:	Benchmarks	

23	

(a) Data dependency of
detector-free code

(b) Basic detector in-
strumented

(c) concatenate dupli-
cated instructions

Figure 5: The shaded portion of (a) shows the instructions need protection.
(b) shows the duplicated instructions (the shaded nodes) and the detector
inserted at the end of the two dependency chains. (c) shows one added
instruction to protect(node e’) that concatenates the two dependency chains
and save one checker

1 for (=0;; ++){
2 // loop body
3 = < ?1:0;
4 if (== 1)
5 break;
6 // decompose exit

predication
to

simulate
instruction
�level
behaviour .

7 }
8

(a) Detector-free code

1 =0;
2 // duplication of i
3 =0;
4 for (;;) {
5 // loop body
6 = < ?1:0;
7 =

< ?1:0;
8 if(flag != dup_flag)
9 Assert();

10 // inconsistent
11 if (== 1)
12 break;
13 }

(b) Basic detector in-
strumented

1 =0;
2 // duplication of i
3 =0;
4 for (;;) {
5 // loop body
6 = < ?1:0;
7 =

< ?1:0;
8 if (== 1)
9 break;

10 }
11 if(flag != dup_flag)
12 Assert();
13 // inconsistent

(c) Lazy checking ap-
plied

Figure 6: (b) shows how the loop index i in original code (a) is protected
with bold code as check. (c) shows how we move the check out of the loop
body

5. Experimental Setup
In this section, we empirically evaluate SDCTune for config-

urable SDC protection through fault injection experiments. All the
experiments and evaluations are conducted on a Intel i7 4-core
machine with 8GB memory running Debian Linux. Section 5.1
presents the details of benchmarks and section 5.2 presents our
evaluation metrics. Section 5.3 presents our methodology and
workflow for performing the experiments.
5.1 Benchmarks

We choose a total of 12 applications from a wide variety of do-
mains for training and testing. They are from SPEC benchmark
suite [12], SPLASH2 benchmark suite [30], NAS parallel bench-
mark suite [1], PARSEC benchmark suite [2] and Parboil bench-
mark suite [27]. We divide the 12 applications into two groups
of 6 applications each, one for training and the other for testing.
The four benchmarks studied in Section 2.3 are incorporated in the
training group. The details of these training and testing benchmarks
are shown in Table 5 and Table 6 respectively. All the applications
are compiled and linked into native executables with -O2 optimiza-
tion flags and run in a single threaded mode.
5.2 Evaluation Metrics

To gauge the accuracy of SDCTune, we use it for estimating the
overall SDC rate of an application, as well as the SDC coverage

Table 5: Training programs

Program Description Benchmark
suite Input Stores Compar-

isons
IS Integer sorting NAS default 21 20
LU Linear algebra SPLASH2 test 41 110

Bzip2 Compression SPEC test 681 646

Swaptions Price portfolio
of swaptions

PARSEC Sim-
large 36 101

Water Molecular
dynamics

SPLASH2 test 187 224

CG
Conjugate
gradient
method

NAS default 32 97

Table 6: Testing programs

Program Description Benchmark
suite Input Stores Compar-

isons

Lbm Fluid
dynamics

Parboil short 71 34

Gzip Compression SPEC test 251 399

Ocean
Large-scale

ocean
movements

SPLASH test 322 813

Bfs Breadth-First
search

Parboil 1M 36 57

Mcf Combinatorial
optimization

SPEC test 87 158

Libquantum Quantum
computing

SPEC test 39 136

for different performance overhead bounds. The former is used for
comparing the resilience of different applications, while the latter
is used to insert detectors for configurable protection.
Estimation of overall SDC rates: We perform a random fault in-
jection experiment to determine the overall SDC rate of the appli-
cation. We then compare the SDC rate obtained with SDCTune with
that obtained from the fault injection experiment. We also consider
the relative SDC rate compared to other applications (i.e., its rank).
We use the same experimental setup for fault injection as described
in Section 2.3.
SDC coverages for different performance overhead bounds: We
use SDCTune to predict the SDC coverage for different instructions
to satisfy the performance overhead bounds provided by the user.
We start with the most SDC prone instructions and iteratively ex-
pand the set of instructions until the performance overhead bounds
are met. We perform fault injection experiments on the program in-
strumented with our detectors for these instructions, and measure
the percentages of SDCs detected. We then compare our results
with those of full duplication, i.e., when every instruction is dupli-
cated in the program, and hot-path duplication, i.e., when the top
10% most executed instructions are duplicated in the program.
SDC detection efficiency: Similar to the efficiency defined in
prior work [25], we define the SDC detection efficiency as the
ratio between SDC coverage and performance overhead for a de-
tection technique. We calculate the efficiency of each benchmark
under a given performance overhead bound, and compare it with
the efficiencies of full duplication and hot-path duplication. The
SDC coverage of full duplication is assumed to be a hundred per-
cent [23].
5.3 Work Flow and Implementation

Figure 7 shows the workflow for estimating the overall SDC
rates and providing configurable protection using SDCTune. The

Training	programs	 TesGng	programs	
(a) Data dependency of
detector-free code

(b) Basic detector in-
strumented

(c) concatenate dupli-
cated instructions

Figure 5: The shaded portion of (a) shows the instructions need protection.
(b) shows the duplicated instructions (the shaded nodes) and the detector
inserted at the end of the two dependency chains. (c) shows one added
instruction to protect(node e’) that concatenates the two dependency chains
and save one checker

1 for (=0;; ++){
2 // loop body
3 = < ?1:0;
4 if (== 1)
5 break;
6 // decompose exit

predication
to

simulate
instruction
�level
behaviour .

7 }
8

(a) Detector-free code

1 =0;
2 // duplication of i
3 =0;
4 for (;;) {
5 // loop body
6 = < ?1:0;
7 =

< ?1:0;
8 if(flag != dup_flag)
9 Assert();

10 // inconsistent
11 if (== 1)
12 break;
13 }

(b) Basic detector in-
strumented

1 =0;
2 // duplication of i
3 =0;
4 for (;;) {
5 // loop body
6 = < ?1:0;
7 =

< ?1:0;
8 if (== 1)
9 break;

10 }
11 if(flag != dup_flag)
12 Assert();
13 // inconsistent

(c) Lazy checking ap-
plied

Figure 6: (b) shows how the loop index i in original code (a) is protected
with bold code as check. (c) shows how we move the check out of the loop
body

5. Experimental Setup
In this section, we empirically evaluate SDCTune for config-

urable SDC protection through fault injection experiments. All the
experiments and evaluations are conducted on a Intel i7 4-core
machine with 8GB memory running Debian Linux. Section 5.1
presents the details of benchmarks and section 5.2 presents our
evaluation metrics. Section 5.3 presents our methodology and
workflow for performing the experiments.
5.1 Benchmarks

We choose a total of 12 applications from a wide variety of do-
mains for training and testing. They are from SPEC benchmark
suite [12], SPLASH2 benchmark suite [30], NAS parallel bench-
mark suite [1], PARSEC benchmark suite [2] and Parboil bench-
mark suite [27]. We divide the 12 applications into two groups
of 6 applications each, one for training and the other for testing.
The four benchmarks studied in Section 2.3 are incorporated in the
training group. The details of these training and testing benchmarks
are shown in Table 5 and Table 6 respectively. All the applications
are compiled and linked into native executables with -O2 optimiza-
tion flags and run in a single threaded mode.
5.2 Evaluation Metrics

To gauge the accuracy of SDCTune, we use it for estimating the
overall SDC rate of an application, as well as the SDC coverage

Table 5: Training programs

Program Description Benchmark
suite Input Stores Compar-

isons
IS Integer sorting NAS default 21 20
LU Linear algebra SPLASH2 test 41 110

Bzip2 Compression SPEC test 681 646

Swaptions Price portfolio
of swaptions

PARSEC Sim-
large 36 101

Water Molecular
dynamics

SPLASH2 test 187 224

CG
Conjugate
gradient
method

NAS default 32 97

Table 6: Testing programs

Program Description Benchmark
suite Input Stores Compar-

isons

Lbm Fluid
dynamics

Parboil short 71 34

Gzip Compression SPEC test 251 399

Ocean
Large-scale

ocean
movements

SPLASH test 322 813

Bfs Breadth-First
search

Parboil 1M 36 57

Mcf Combinatorial
optimization

SPEC test 87 158

Libquantum Quantum
computing

SPEC test 39 136

for different performance overhead bounds. The former is used for
comparing the resilience of different applications, while the latter
is used to insert detectors for configurable protection.
Estimation of overall SDC rates: We perform a random fault in-
jection experiment to determine the overall SDC rate of the appli-
cation. We then compare the SDC rate obtained with SDCTune with
that obtained from the fault injection experiment. We also consider
the relative SDC rate compared to other applications (i.e., its rank).
We use the same experimental setup for fault injection as described
in Section 2.3.
SDC coverages for different performance overhead bounds: We
use SDCTune to predict the SDC coverage for different instructions
to satisfy the performance overhead bounds provided by the user.
We start with the most SDC prone instructions and iteratively ex-
pand the set of instructions until the performance overhead bounds
are met. We perform fault injection experiments on the program in-
strumented with our detectors for these instructions, and measure
the percentages of SDCs detected. We then compare our results
with those of full duplication, i.e., when every instruction is dupli-
cated in the program, and hot-path duplication, i.e., when the top
10% most executed instructions are duplicated in the program.
SDC detection efficiency: Similar to the efficiency defined in
prior work [25], we define the SDC detection efficiency as the
ratio between SDC coverage and performance overhead for a de-
tection technique. We calculate the efficiency of each benchmark
under a given performance overhead bound, and compare it with
the efficiencies of full duplication and hot-path duplication. The
SDC coverage of full duplication is assumed to be a hundred per-
cent [23].
5.3 Work Flow and Implementation

Figure 7 shows the workflow for estimating the overall SDC
rates and providing configurable protection using SDCTune. The

SDCTune:	Evalua'on	Method	

24	

Features	
extracted	based	
on	heuris'c	

knowledge	from	
training	
programs	

SDC	rate	for	each	
instruc'on	

P(SDC|I)	from	
training	
programs	

Training	(CART	
Method)	

P(SDC|I)	
Predictor	

Es'mate	the	
SDC	proneness	of	
different	program	

instruc'ons	

Find	the	set	of	
instruc'ons	for	
an	overhead	
bound	(∑P(I))	

Random	Fault	
Injec'on	Results	
from	tesGng	
programs	

Actual	SDC	
coverage	for	

tesGng	programs	

Features	
extracted	from	
tesGng	programs	

Training	phase	

TesGng	and	using	phase	

EvaluaGon	
Phase	

Usage	
Phase	

SDCTune:	Model	Valida'on	

25	

Training	programs	 TesGng	programs	

Rank	correla'on*	 0.9714	 0.8286	
P-value**	 0.00694	 0.0125	

0	

2	

4	

6	

8	

0	 1	 2	 3	 4	 5	 6	 7	Ra
nk

	o
f	o

ve
ra
ll	
SD

C	
ra
te
s	b

y	
es
Gm

aG
on

Rank	of	overall	SDC	rates	by	fault	injecGon	experiment

Training	
programs	

Tesing	
program	
Tes'ng	
programs	

SDCTune:	SDC	Coverage	

26	

Training	programs:	 TesGng	programs:	

Overhead	 Coverage	

10%	 44.8%	

20%	 78.6%	

30%	 86.8%	

Overhead	 Coverage	

10%	 39%	

20%	 63.7%	

30%	 74.9%	

SDCTune:	Full	Duplica'on	and	Hot-Path	
Duplica'on	Overheads	

27	

Full	duplica'on	overhead:	53.7%	to	73.6%	
Hot-path	duplica'on	overhead:	43.5	to	57.6%	

Normalized	DetecGon	
Efficiency	

10%	
overhead	

20%	
overhead	

30%	
overhead	

Training	programs	 2.38	 2.09	 1.54	
Tes'ng	programs	 2.87	 2.34	 1.84	

EDCs	and	SDCTune:	Summary	

•  SoHware	level	techniques	for	tunable	and	
selecGve	protecGon	from	EDCs	and	SDCs	
[DSN’13][DSN’14][CASES’14][TECS1][TECS2]	

	
•  Completely	automated	–	no	programmer	
intervenGon	or	annotaGons	are	needed	

•  Significant	efficiency	gain	over	full	duplicaGon	

28	

Outline	
	
•  Mo'va'on	

•  Techniques	developed	by	my	group	[DSN’13][CASES’14]	

•  A	brief	history	of	so8ware	techniques	

•  Adop'on	in	Industry	

•  Research	opportuni'es	and	roadmap	

29	

History	of	S/W	techniques:	Pre-2000	

•  Long	history	of	soHware	techniques	for	high	reliability	
systems	going	back	to	IBM	MVS,	Tandem	Guardian	
–  Relied	on	architectural	support	from	the	hardware	
–  Assumed	so8ware	was	wriuen	in	transac'onal	style	

•  Algorithm	Based	Fault	Tolerance	–	1984	[Huang	and	
Abraham]:	specialized	applica'ons	in	linear	algebra	

•  Many	control-flow	checking	techniques	from	1980’s	
–  Only	protected	the	program’s	control-flow	instruc'ons	

30	

History	of	S/W	techniques:	2000-2005	

•  SoH	error	problem	[Sun	Server	–	Baumann	2000]	
•  ARGOS	project	from	Stanford	(McCluksey,	2001)	

–  EDDI	–	so8ware-based	instruc'on	duplica'on		
–  CFCSS	–	Lightweight	control-flow	checking	

•  Reliability	and	Security	Engine	(RSE)	from	UIUC	(2004)	
–  Targeted	checking	of	applica'on	proper'es	at	run'me	

•  SWIFT	from	Princeton	(2005)	
–  Low-overhead	checking	through	compiler	op'miza'ons	

•  First	SELSE	workshop	launched	(2005)	
–  Focus	on	en're	system	spanning	so8ware	and	hardware	

	
31	

SELSE	Papers	(2009-2017)	

Data	unavailable	for	years	2005	to	2008.	Based	on	'tle	and	abstracts	only.	

32	

0%
20%
40%
60%
80%

100%

2009 2010 2011 2012 2013 2014 2015 2016 2017

Papers	at	SELSE	2009-2017	 (source:	SELSE	website)

Software Hardware Both

0%
20%
40%
60%
80%

100%

2009 2010 2011 2012 2013 2014 2015 2016 2017

Papers	at	SELSE	2009-2017	 (source:	SELSE	website)

Software Hardware Both

0%
20%
40%
60%
80%

100%

2009 2010 2011 2012 2013 2014 2015 2016 2017

Papers	at	SELSE	2009-2017	 (source:	SELSE	website)

Software Hardware Both

History	of	S/W	techniques:	2010-today	

•  Cross-Layer	Resilience	becomes	a	buzz	word:	Many	
groups	working	on	this	problem	including	ours	

•  MulGple	domains:	HPC	systems,	Embedded	Systems	

•  Calls	from	different	funding	agencies	(DoE,	NSF,	etc.)	
for	Cross-Layer	Resilience	Techniques	–	white	papers	

•  Conjoined	twin:	Approximate	CompuGng	takes	off	
–  Papers	at	top	PL/architecture	conferences	

33	

Outline	
	
•  Mo'va'on	

•  Techniques	developed	by	my	group	[DSN’13][CASES’14]	

•  A	brief	history	of	so8ware	techniques	

•  Adop'on	in	Industry	

•  Research	opportuni'es	and	roadmap	

34	

What	about	So8ware	Researchers	?	

•  Papers	in	the	top	soHware	engineering/tesGng/
reliability	conferences	about	hardware	faults	
and	errors	over	the	last	10	years	(2006	onwards)	
–  ICSE:	5	papers	(IEEE	DL)	
–  FSE:	6	papers	(ACM	DL)	
– ASE:	7	papers	(ACM	DL)	
–  ISSTA:	3	papers	(ACM	DL)	
–  ICST:	2	papers	(IEEE	DL)	
–  ISSRE:	10	papers	(IEEE	DL)	
–  Total:	33	out	of	over	3000	papers	(about	1%)	

35	

Example	conversa'ons	with	So8ware	
Developers	in	Industry	

•  Developer	1	(large	s/w	
company	you’ve	heard	of)	

•  Me:	How	do	you	handle	
hardware	faults	?	

•  D1:	Do	these	even	occur	in	
the	real	world	?	

•  Me:	Showing	him	data	
gathered	by	his	own	
company	on	h/w	faults	

•  D1:	Hmmm…	sounds	like	a	
problem	for	QA	folks.	We	
don’t	deal	with	faults.	

•  Tester	1	(large	s/w-h/w	
company	you’ve	heard	of)	

•  Me:	How	do	you	handle	
hardware	faults	?	

•  T1:	Our	hardware	folks	put	in	
various	mechanisms	such	as	
ECC	memory	to	mask	these	

•  H/w	guy:	Not	really,	we	don’t	
handle	everything	

•  T1:	Oh,	well	–	that’s	not	part	of	
our	requirements	doc.	Maybe	if	
we	meet	our	bug	targets...	

36	

So8ware	Developers	

•  Most	soHware	developers	(and	testers)	
ignore	hardware	faults,	or	assume	faults	will	
be	handled	by	hardware		(e.g.,	ECC	memory)	

	
•  Even	if	they	recognize	the	importance	of	the	
problem,	many	think	it’s	not	their	problem	
– QA	or	tes'ng	people	should	take	care	of	it	
– Not	part	of	requirements/specifica'on	document	

37	

Should	we	care	about	developers	?	

UlGmately,	developers	are	the	ones	who	drive	adopGon	
and	assimilaGon	within	the	broader	soHware	ecosystem	

38	

Barriers	to	Adop'on:	Possible	Reasons	

•  Reason	1:	So8ware	developers	don’t	care	about	
anything	to	do	with	hardware		

•  Reason	2:	Too	much	'me	and	effort	–	many	
other	priori'es	in	so8ware	development		

•  Reason	3:	Lack	of	high-level	abstrac'ons		

•  Reason	4:	No	easy-to-use	tools	that	integrate	
with	the	so8ware	development	workflow	

39	

Barriers	to	Adop'on:	Reason	1	

•  SoHware	engineers	don’t	care	about	
anything	to	do	with	hardware	

•  Not	true.	Many	counter-examples:	
– Parallelism,	both	coarse	and	fine-grained	
– Cache	conscious	data-structures	and	algorithms	
– Energy	efficiency	and	energy-aware	programming	
– Determinism,	memory	models,	etc.		

40	

Barriers	to	Adop'on:	Reason	2	

•  Too	much	Gme	and	effort	consuming:	many	
other	prioriGes	in	soHware	development	

•  ParGally	true,	but	not	always	
– Many	other	'me-consuming	ac'vi'es	are	used	
e.g.,	con'nuous	tes'ng,	sta'c	analysis	

– Techniques	for	tolera'ng	hardware	faults	don’t	
need	to	be	'me	consuming	or	effort-intensive	

41	

Barriers	to	Adop'on:	Reason	3	

•  Lack	of	high-level	abstracGons	

•  My	experience:	Mostly	True		
– Developers	want	to	reason	with	quan''es	they’re	
familiar	with	(e.g.,	run'me,	defect	rates	etc.),	not	
necessarily	things	like	FIT	rates,	or	even	coverage	

– Need	to	be	able	to	reason	about	cost-benefit	
tradeoffs	of	different	techniques	at	the	abstract	
level	without	going	into	details	

42	

Barriers	to	Adop'on:	Reason	4	

•  No	easy-to-use	tools	that	integrate	with	the	
soHware	development	workflow	

•  My	experience:	One	of	the	main	reasons	
– Need	to	understand	so8ware	developers’	
workflow	and	integrate	with	it	–	no	devia'on	

– Must	be	able	to	handle	legacy	code,	weird	setups,	
and	mul'ple	languages	and	libraries	

– S/W	maintenance	accounts	for	60%	of	costs	

43	

What	we	got	right	(in	my	opinion)	

•  Automated	workflow,	so	li*le	to	no	effort	on	
the	part	of	the	programmer	was	needed	

•  AbstracGon	in	terms	that	ordinary	programmers	
can	understand	(e.g.,	performance,	coverage)	
–  Can	do	beuer	on	this	front	though	

•  Use	of	popular	open-source	tool	(LLVM)	,which	
is	easy	to	integrate	with	workflow	(in	theory)	

44	

What	we	got	wrong	(in	my	opinion)	

•  Our	abstracGon	was	sGll	too	low	level	– many	
programmers	didn’t	understand	coverage	

•  Legacy	code:	LLVM	can’t	compile	old	code,	
inline	assembly,	customized	build	systems	

•  Did	not	have	an	easy	path	to	QA	tesGng	or	
soHware	maintenance	in	our	long	term	plan	

45	

Outline	
	
•  Mo'va'on	

•  Techniques	developed	by	my	group	[DSN’13][CASES’14]	

•  A	brief	history	of	so8ware	techniques	

•  Adop'on	in	Industry	

•  Research	opportuni'es	and	roadmap	

46	

Open	Challenges	

•  Need	to	build	soHware-based	techniques	
that	ordinary	programmers	can	reason	about	

	
•  Need	soHware	techniques	that	can	integrate	
seamlessly	with	overall	soHware	workflow	
– Should	not	impede	QA	and	tes'ng	process	
– So8ware	maintenance	should	be	considered	
– Legacy	code	and	build	systems	(if	relevant)	

47	

The	Opportunity:	Evereu	Roger’s	
Model	for	Disrup've	Innova'on	

We	are	sGll	in	the	innovator/early	adopter	stage	-
need	to	cross	chasm	and	move	to	“early	majority”	

48	

Poten'al	Research	Roadmap		

49	

Understand	the	issues	facing	so8ware	developers	and	testers	in	
adop'ng	so8ware	techniques	for	tolera'ng	hardware	faults	

Build	techniques	to	address	these	issues	in	a	common	research	
framework	for	the	community	to	avoid	effort	duplica'ons	

Have	developers	use	the	framework	in	actual	prac'ce	and	iden'fy	
the	issues	that	come	up	during	the	use	of	the	framework			

Conclusions	

•  SoHware	techniques	for	toleraGng	hardware	
faults	in	commodity	systems	have	mushroomed	
–  Can	be	tuned	based	on	the	needs	of	the	applica'on	
–  Can	offer	significant	efficiency	over	full	duplica'on	

•  Unfortunately,	the	techniques	have	seen	limited	
adopGon	in	industry	&	by	soHware	community	
– We,	in	the	SELSE	community,	all	need	to	address	this	
–  Emphasis	should	be	on	complete	so8ware	life-cycle	
–  Take	our	message	to	the	so8ware	engineering	venues	

50	

Acknowledgements	
My	graduate	students	(7	current,	10	graduated):	Anna	Thomas,	Qining	Lu,	
Layali	Rashid,	Majid	Dadashi,	Bo	Fang,	Jiesheng	Wei,	Frolin	Ocariza,	Kar'k	
Bajaj,	Shabnam	Mirshokraie,	Xin	Chen,	Farid	Tabrizi,	Saba	Alimadadi,	
Sheldon	Sequira,	Nithya	Murthy,	Abraham	Chan,	Maryam	Raiyat,	Jus'n	Li	

Collaborators	and	funding	agencies	(selected	ones	below)	

51	

h:p://blogs.ubc.ca/karthik/	

