Tolerating Hardware Faults In
Commodity Software: Problems,
Solutions, and a Roadmap

Karthik Pattabiraman

% (http://blogs.ubc.ca/karthik),
PSRN Yy . . .
Electrical and Computer Engineering

University of British Columbia (UBC)



Motivation: Hardware Errors

* Errors are becoming more common in processors

— Soft errors and device variations (timing errors)
— Processors experience wear-out and thermal hotspots

0

100 120 140 160 180 200
Vi(mV)
Extreme device variations

~8% degradation/bit/generation

o
2
[t
L
[
o

o
>
=
o
[
o

ORI M
Soft Error FIT/Chip (Logic & Mem)

Source: Shekar Borkar (Intel) - Stanford talk in 2005




Hardware Errors: Traditional Solutions

e Guard-banding * Duplication

Hardware duplication
(DMR) can result in 2X
slowdown and/or energy
consumption

Guard-banding wastes
power as gap between
average and worst-case
widens due to variations

Guard-band

Average Worst-case




An alternative approach

User interacts with the
application

Application
Software

Operating System

Allow errors across
the hardware-
software boundary,

. " but make sure user
J Devices/Circuits L
— does not perceive it

>1€

Architecture

Hardware




Why do software techniques work ?

Impactful Errors



Software Techniques

Leverage the properties of the application to provide
targeted protection, only for the errors that matter to it

Application
Application Level Properties

Ope..-.-.

Architec avel

Device/Circuit .

Targeted protection mechanisms



Outline

Motivation

Techniques developed by my group [DSN’13][CASES’14]
A brief history of software techniques

Adoption in Industry

Research opportunities and roadmap



EDCs: Soft Computing Applications

» Applications in machine learning, multimedia processing
» Expected to dominate future workloads [Dubey’07]

Original image (left) versus faulty image: JPEG decoder



EDCs: Egregious Data Corruptions

» Large or unacceptable deviation in output

EDC image (PSNR 11.37) Vs. Non-EDC image (PSNR 44.79)



EDCs: Goal

» Selectively detect EDC causing faults, but not others

—*—»@

Application Execution




EDCs: Fault model

* Transient hardware faults
— Caused by particle strikes, supply noise

e Our Fault Model

— Assume one fault per application execution
— Processor registers and execution units
— Memory and cache protected with ECC
— Control logic protected with other methods



Initial
Study

EDCs: Main Idea

Application
Data

Corrupted by
hardware

Critical

Heuristic

> Algorithm

Our prior work: EDCs are
caused by corruption of a

small fraction of program
data [Flikker - ASPLOS’11]

This work: Critical data
can be identified using
static and dynamic
analysis, without any
programmer annotations

12



Initial
Study

EDCs: Initial Study

P  Heuristic 2 Algorithm

» Correlation between program data use & fault outcome

Pointer
Control

Monitor Control/
Pointer Data

Control Pointer
T Deviation Deviation \ o
> Instrument code . Control
Non Pointer :
> Fault Injection Pointer Control /
No Deviation No Deviation

Non-Pointer
NonControl

Performed using LLFI fault injector
[DSN’14], at the LLVM IR code level

13



Outcome %

45.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

Initial
>

Study Heuristic & Algorithm

EDCs: Initial Study

43 %

2Q0

& /U
B NonPointer NenControl

23%
M Pointer Non Control
B Control Non Pointer,
W Control Pointer
6%
CRASH EDC Non-EDC BENIGN

14



Initial
Study

EDCs: Example Heuristic

| Heuristic 2 Algorithm

Faults affecting branches with large amount of data within their

bodies have a higher likelihood of resulting in EDC outcomes

for(j=0; j < height; j++){
for(i=0; i < width; i++) {

iml=(i<1)?0:i—-1
( 1) » Fault in offset

» Branch Flip
}
if (j + 1 < offset) { e
STC += W Low EDC Likelihood
dst += Width; } LINCTIIIUUU

15



Initial . .
Sy > Heuristic > Algorithm

EDCs: Algorithm

Application Performance Overhead
Sou FCICOde l Representative inputs
L
_ IR | EDC Ranking Selection TN
Compiler == Algorithm — Algorithm 550
i y
]

I $10Takd

\ 2
Data Variables or Locations to Protect

!

Backward slice replication

16



EDCs: Detection Coverage

EDC Coverage=Number of Detected FDCs/Total Number of FDCs

100

90

- - it iflmili
SN BEE BB N NN

Average EDC Coverage of 82% at 10%

performance overhead

HI-II-II-I-II-II
iHIIEIIEIIEIINI]
10 -

MEE NN NEE NEN NEE HE

10| 20|25 10| 20(25 10|20 25 10| 20|25 10|20 (25 10(20| 25

Blackscholes X264 Canneal Swaptions JPEG MPEG2
Performance Overhead (%)

Higher is better

17



EDCs: Selectivity

Average Benign and Non-EDC Coverage of 10

to 15% for overheads from 10 to 25%

Performance Overhead (%)

Lower is better

18



SDCTune: Silent Data Corruption (SDCs)

44829 44827
44830 44828
44831 44829
44832 44830
44833 44831
44834 44832
44835 44833
44836 44834
44837 44835
44838 44836
44839 44837
44840 44838
44841 44839
44842 44840
44843 44841
44844 44842
44845 44843
44846 44844
44847 44845

44848 |

SDC Output

Correct output

526
527
527
519
529
547
527
524
531
532
525
526
525
526
531
530
539
542
511

44844 44547
44845 44843
44846 44844
44847 44845
€ 44848 44846

44849 44847

44850 44848

44851 44849

44852 44850

Results lost: i3
" 44854 44852

44855 44853
44856 44854
44857 44855
44858 44856
44859 44857
44860 44858
44861 44859
44862 44860
44863 44861

530
539
542
511

540
525
525
526
524
525
504
510
457
458
459
460
523
526
525
519

Error activated

Fault occurs

Error Masked

Program

Finished

Crash/Hang

19



SDCTune: Goals

* Protecting critical data in soft-computing
applications from EDCs

— Can we extend this to Silent Data Corruptions (SDCs)
in general-purpose applications?

* Challenge:

— Not feasible to identify SDCs based on the amount of
data affected by the fault as was the case with EDCs

— Need for comprehensive model for predicting SDCs
based on static and dynamic program features



SDCTune: Main ldea

e Start from Store and Cmp instructions and go
backward through program’s data dependencies

* Use machine learning (CART) to predict the SDC
proneness of Store and Cmp instructions
— Extract the related features by static/dynamic analysis

— Quantify the effects by classification and regression
— Estimate SDC rates of different Stores and Cmp instructions



SDCTune: Example Model

All stored values

/W

Addr NoCmp Addr Cmp Cmp NoAddr || NoCmp NoAddr
L N\ £\ £ T\
Not used in Masking | ... /hsCmp ......
operations ResCIElp NoAddr NoAddr
/ —
Global ResCmp Non-Global Accumulative Non-Accumulative
NoAddr ResCmp NoAddr UnresCmp NoAddr || UnresCmp NoAddr

> Linear Regression for SDC-proneness

22




Training programs

SDCTune: Benchmarks

Testing programs

Program Description Benc!lmark
suite
IS Integer sorting NAS
LU Linear algebra | SPLASH?2
Bzip2 Compression SPEC
Swaptions | | niceportiolio | b, popc
of swaptions
Water Molecular | - gp ASH2
dynamics
Conjugate
CG gradient NAS
method

. Benchmark
Program Description .
suite
Lbm Fluid Parboil
dynamics
Gzip Compression SPEC
Large-scale
Ocean ocean SPLASH
movements
Bfs Breadth-First Parboil
search
Mcf | Combmatorial | gppe
optimization
Libquantum Quantum SPEC

computing




SDCTune: Evaluation Method

Training phase

Evaluation
Phase




SDCTune: Model Validation

| Trainingprograms Testing programs

Rank correlation® 0.9714 0.8286
P-value** 0.00694 0.0125
> 8
Q
"é’ 6 ¢ Training
VU c programs
A o
254
© E
o B
3 b ) M Testing
% programs
=
&cc O | | | | | | |

0 1 2 3 4 5 6 7
Rank of overall SDC rates by fault injection experiment

25



: SDC Coverage

SDCTune

Training programs

Testing programs

Overhead
bounds
N 10%
®20%
B30%
;A Hot-path

W

---.~ﬂ_,~ﬂ~mawwaww-----------------------ﬂ

22022222242

SN

2202000002222

"--------m~Wﬂ%----------------------m
|

200222222222

2222222222202

mmmwmwamwwwwwwﬁmwmwwwwwﬁﬂ

ez

7777

Q2222022222222

B0200200000000022

)

%S
m..,\z\\v‘

4 %, @
% o m
“% ¥ ©

ES) V\ S
2 7 ol

S
<.

4 b0

c

&#o mm
o}

[t

%o

&wv

)

X
%.\QAV‘

S

9 A.\\«.\\z

Y

)

Yo
%

5 oe

o@.@ 0
@w, &

<, ©
72 CY.)

@]
2, S
&
S =
g £
@©
=

Overhead Coverage

Overhead Coverage

39%
63.7%
74.9%

10%
20%

44.8%
78.6%
86.8%

10%
20%

30%

30%

26



SDCTune: Full Duplication and Hot-Path
Duplication Overheads

20% -
10% -

R
X
|

T Training programs : Testing programs

2 100% |

= 90% .

L 80% :

S 70% I = Full

& 60% f duplication
S 50% P

g 40% - W Hot-path
= 30% - duolicati
s uplication
S

S

2]

e

Normalized Detection 10% 20% 30%
Efficiency overhead overhead |overhead

Training programs 2.38 2.09 1.54
Testing programs 2.87 2.34 1.84

27



EDCs and SDCTune: Summary

* Software level techniques for tunable and
selective protection from EDCs and SDCs
[DSN’13][DSN’14][CASES’14]|[TECS1][TECS2]

 Completely automated — no programmer
intervention or annotations are needed

 Significant efficiency gain over full duplication



Outline

Motivation

Techniques developed by my group [DSN’13][CASES’14]
A brief history of software techniques

Adoption in Industry

Research opportunities and roadmap

29



History of S/W techniques: Pre-2000

Long history of software techniques for high reliability
systems going back to IBM MVS, Tandem Guardian

— Relied on architectural support from the hardware
— Assumed software was written in transactional style

Algorithm Based Fault Tolerance - 1984 [Huang and
Abraham]: specialized applications in linear algebra

Many control-flow checking techniques from 1980’s
— Only protected the program’s control-flow instructions



History of S/W techniques: 2000-2005

Soft error problem [Sun Server - Baumann 2000]

ARGOS project from Stanford (McCluksey, 2001)
— EDDI - software-based instruction duplication
— CFCSS - Lightweight control-flow checking

Reliability and Security Engine (RSE) from UIUC (2004)
— Targeted checking of application properties at runtime

SWIFT from Princeton (2005)
— Low-overhead checking through compiler optimizations

First SELSE workshop launched (2005)
— Focus on entire system spanning software and hardware



SELSE Papers (2009-2017)

Papers at SELSE 2009-2017 (source: SELSE website)

100%
80%
60%
40%
20%

0%

2009 2010 2011 2012 2013 2014 2015 2016 2017

M Software M Hardware M Both

Data unavailable for years 2005 to 2008. Based on title and abstracts only.

32



History of S/W techniques: 2010-today

* Cross-Layer Resilience becomes a buzz word: Many
groups working on this problem including ours

 Multiple domains: HPC systems, Embedded Systems

» Calls from different funding agencies (DoE, NSF, etc.)
for Cross-Layer Resilience Techniques - white papers

e Conjoined twin: Approximate Computing takes off
— Papers at top PL/architecture conferences



Outline

Motivation

Techniques developed by my group [DSN’13][CASES’14]
A brief history of software techniques

Adoption in Industry

Research opportunities and roadmap

34



What about Software Researchers ?

* Papers in the top software engineering/testing/
reliability conferences about hardware faults
and errors over the last 10 years (2006 onwards)

— ICSE: 5 papers (IEEE DL)

— FSE: 6 papers (ACM DL)

— ASE: 7 papers (ACM DL)

— ISSTA: 3 papers (ACM DL)

— ICST: 2 papers (IEEE DL)

— ISSRE: 10 papers (IEEE DL)

— Total: 33 out of over 3000 papers (about 1%)



Example conversations with Software
Developers in Industry

Developer 1 (large s/w
company you’ve heard of)

Me: How do you handle
hardware faults ?

D1: Do these even occurin
the real world ?

Me: Showing him data
gathered by his own
company on h/w faults

D1: Hmmm... sounds like a
problem for QA folks. We
don’t deal with faults.

Tester 1 (large s/w-h/w
company you’ve heard of)

Me: How do you handle
hardware faults ?

T1: Our hardware folks put in
various mechanisms such as
ECC memory to mask these

H/w guy: Not really, we don’t
handle everything
T1: Oh, well - that’s not part of

our requirements doc. Maybe if
we meet our bug targets...



Software Developers

 Most software developers (and testers)
ignore hardware faults, or assume faults will
be handled by hardware (e.g., ECC memory)

* Even if they recognize the importance of the
problem, many think it’s not their problem

— QA or testing people should take care of it
— Not part of requirements/specification document



Should we care about developers ?

Ultimately, developers are the ones who drive adoption
and assimilation within the broader software ecosystem

38



Barriers to Adoption: Possible Reasons

 Reason 1: Software developers don’t care about
anything to do with hardware

* Reason 2: Too much time and effort - many
other priorities in software development

* Reason 3: Lack of high-level abstractions

* Reason 4: No easy-to-use tools that integrate
with the software development workflow



Barriers to Adoption: Reason 1

e Software engineers don’t care about
anything to do with hardware

* Not true. Many counter-examples:
— Parallelism, both coarse and fine-grained
— Cache conscious data-structures and algorithms
— Energy efficiency and energy-aware programming
— Determinism, memory models, etc.



Barriers to Adoption: Reason 2

 Too much time and effort consuming: many
other priorities in software development

e Partially true, but not always

— Many other time-consuming activities are used
e.g., continuous testing, static analysis

— Techniques for tolerating hardware faults don’t
need to be time consuming or effort-intensive



Barriers to Adoption: Reason 3

* Lack of high-level abstractions

* My experience: Mostly True

— Developers want to reason with quantities they’re
familiar with (e.g., runtime, defect rates etc.), not
necessarily things like FIT rates, or even coverage

— Need to be able to reason about cost-benefit
tradeoffs of different techniques at the abstract
level without going into details



Barriers to Adoption: Reason 4

* No easy-to-use tools that integrate with the
software development workflow

* My experience: One of the main reasons

— Need to understand software developers’
workflow and integrate with it — no deviation

— Must be able to handle legacy code, weird setups,
and multiple languages and libraries

— S/W maintenance accounts for 60% of costs



What we got right (in my opinion)

 Automated workflow, so little to no effort on
the part of the programmer was needed

* Abstraction in terms that ordinary programmers
can understand (e.g., performance, coverage)
— Can do better on this front though

e Use of popular open-source tool (LLVM) ,which
is easy to integrate with workflow (in theory)



What we got wrong (in my opinion)

* Our abstraction was still too low level - many
programmers didn’t understand coverage

* Legacy code: LLVM can’t compile old code,
inline assembly, customized build systems

* Did not have an easy path to QA testing or
software maintenance in our long term plan



Outline

Motivation

Techniques developed by my group [DSN’13][CASES’14]
A brief history of software techniques

Adoption in Industry

Research opportunities and roadmap

46



Open Challenges

* Need to build software-based techniques
that ordinary programmers can reason about

* Need software techniques that can integrate
seamlessly with overall software workflow

— Should not impede QA and testing process
— Software maintenance should be considered

— Legacy code and build systems (if relevant)



The Opportunity: Everett Roger’s
Model for Disruptive Innovation

I
I

Early | Early
Adopters | Majority
I

Late

Innovators Majority

Laggards

"The Chasm"

]

We are still in the innovator/early adopter stage -
need to cross chasm and move to “early majority”

48

Technology Adoption Lifecycle



Potential Research Roadmap

Understand the issues facing software developers and testers in
adopting software techniques for tolerating hardware faults

Build techniques to address these issues in a common research
framework for the community to avoid effort duplications

Have developers use the framework in actual practice and identify
the issues that come up during the use of the framework

49



Conclusions

* Software techniques for tolerating hardware
faults in commodity systems have mushroomed

— Can be tuned based on the needs of the application
— Can offer significant efficiency over full duplication

* Unfortunately, the techniques have seen limited
adoption in industry & by software community

— We, in the SELSE community, all need to address this

— Emphasis should be on complete software life-cycle
— Take our message to the software engineering venues



Acknowledgements

My graduate students (7 current, 10 graduated): Anna Thomas, Qining Lu,
Layali Rashid, Majid Dadashi, Bo Fang, Jiesheng Wei, Frolin Ocariza, Kartik
Bajaj, Shabnam Mirshokraie, Xin Chen, Farid Tabrizi, Saba Alimadadi,

Sheldon Sequira, Nithya Murthy, Abraham Chan, Maryam Raiyat, Justin Li

Collaborators and funding agencies (selected ones below)
® NSERC IBM Microsoft: te
crsne Research Research ( .

AMD1 % NI

LOCKHEED CISCO

MARTIN

‘h‘ .

<
C e Canada

MVIDIA- NOKIA =~ freescale 77
semiconductor 2

http://blogs.ubc.ca/karthik/

51



