
One	Bit	is	(Not)	Enough:	An	
Empirical	Study	of	the	Impact	of	

Single	and	Mul?ple	Bit-Flip	
Errors	

Behrooz	Sangchoolie,	Chalmers		
Karthik	PaEabiraman,	UBC		
Johan	Karlsson,	Chalmers	

	
h5p://blogs.ubc.ca/karthik/	

2

So>	Error	Problem	

• So>	errors	are	increasing	in	computer	systems	

Source: Shekar Borkar (Intel) - Stanford talk in 2005

3

Error	Resilience	

• Ability	of	a	program	to	NOT	produce	an	SDC	
(Silent	Data	CorrupHon)	upon	a	hardware	fault	

• SDC:	DeviaHon	of	output	from	golden	output	

	
Soft error Hardware

Faults SDCs
?

4

Our	Groups’	Research:	ApplicaHon-
level	SelecHve	Fault-Tolerance	

• Add	error	detectors	to	applicaHons	to	detect	SDCs	
• Much	more	efficient	than	“all-or-nothing”	techniques	

Crash/Hang

SDC

Detector

Benign

Application Execution

5

So>ware	Fault	InjecHon	

-  Inject	faults	to	iteraHvely	improve	coverage	
- Find	which	errors	result	in	SDCs	
- Find	errors	that	are	missed	by	detectors	

Is obtained
coverage

sufficient ?

Inject faults
into application
protected with

detectors

Insert detectors in
the application’s

source code

YES

NO

6

Hardware	Vs.	So>ware	Injectors	
A

cc
ur

ac
y

Ease of Analysis and Configurability

Software
Injectors

Hardware
Injectors

Gap

7

Main	Problem	

• So>ware	Fault	Injectors	use	the	single	bit-flip	
fault	model	to	abstract	the	effect	of	so>	errors	

• But	a	single	so>	error	is	likely	to	manifest	as	
mul?ple-bit	errors	at	the	applica?on	level	

	DAC 2013

8

Fault	Model	

• Faults	in	the	processor		
• Register	file	
• ComputaHonal	elements	

• Faults	in	memory	
• Assume	memory	is	ECC	protected	

• Faults	in	control	logic		
• Assumed	to	be	protected	by	other	means	

9

MulHple	Bit	Flip	Errors	

• Single	So>	error	à	MulHple	bit-flips	in	so>ware	
• Error	propagaHon	in	the	micro-architectural	level	

21bc: mr r2, r1
21c0: or r3, r2, r1
21c4: neg r5, r4
21c8: and r7, r5, r6
21cc: and r8, r3, r7

Source: Chen-Yong Chen, IBM Research

10

This	Paper:	Main	QuesHon	

• Does	the	mul$ple	bit-flip	model	result	in		
significantly	different	error	resilience	results	
compared	with	the	single	bit-flip	model?	

	
• For	different	kinds	of		injecHon	techniques	
	
• For	different	kinds	of	fault	distribuHons	

11

Challenge	
• Mul?ple-bit	injec?on	space	is	extremely	large		

• MulHple	bit-flips	in	a	single	register	
• MulHple	bit-flips	in	mulHple	registers		
• Any	combinaHon	of	the	above	

	

12

Main	Insight	
• Effect	of	mulHple-bit	faults	are	confined	within	a	
(small)	dynamic	instrucHon	window	from	fault	

• Sufficient	to	consider	mulHple-bit	faults	within	
the	window	for	injecHng	faults	into	applicaHon	

Dynamic Instructions Executed

soft error

Window for Multiple-bit flips

Multiple
Bit Flip
Faults

Possible
?

13

Why	does	this	hold	in	pracHce	?	
• So>	errors	manifest	as	mulHple	bit-flips	in	the	
program	through	propagaHon	in	the	hardware	

• Hardware	error	propagaHon	is	confined	to	the	
instrucHon	window	in	superscalar	processors	

		

By Amit6, original version (File:Superscalarpipeline.png) by User:Poil (Own work) [CC
BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Dynamic Instructions Executed

soft error

Window for Multiple-bit flips

Multiple
Bit Flip
Faults

Possible
?

14

Outline	

• MoHvaHon	and	Goal	

• Experimental	Setup	

• Results	

• Conclusion	

15

Experimental	Setup:	LLFI	tool	
Works	at	LLVM	compiler’s	intermediate	(IR)	[Wei14]	

LLFI

16

Experimental	Setup:	FI	techniques	

•  Inject	on	Read:	Inject	
fault	before	reading	a	
source	register	

• Models	faults	that	occur	
in		the	register	file	

•  Inject	on	Write:	Inject	
fault	aSer	wriHng	to	a	
des?na?on	register	

• Models	faults	that	occur	
during	the	computa?on	

21bc: mr r2, r1
21c0: or r3, r2, r1
21c4: neg r5, r4
21c8: and r7, r5, r6
21cc: and r8, r3, r7

21bc: mr r2, r1
21c0: or r3, r2, r1
21c4: neg r5, r4
21c8: and r7, r5, r6
21cc: and r8, r3, r7

17

Experimental	Setup:	Parameters	

• window_size:	max	distance	between	faults	
• Varies	from	1	to	1000	(random	and	fixed	values)	

• number_of_bits:	max	number	of	faults/run		
• Varies	from	1	to	30	(1-10	and	30	as	an	extreme)	

Dynamic Instructions Executed

Fault
injection

window_size

Multiple
Bit Flip
Faults

Possible
?

18

Experimental	Setup:	Benchmarks		

• 11	MiBench	programs	–	embedded	systems	
• 4	Parboil	programs	–	parallel	compuHng	

Automotive Network Telecom

Security Office HPC

19

Experimental	Setup:	Approach	

We	perform	over	27	Million	fault	injec?on	
experiments	for	each	combinaHon	of	the	
benchmark,	parameters,	and	FI	technique	!		

15 benchmarks * 91 parameter values
* 2 techniques * 10,000 fault

injections/combination
= 27,300,0000

20

Experimental	Setup:	Outcome	
ClassificaHon	

Input Output
?

Hardware Software

Computer system

Hang

No output

Detected by hardware exceptions

Benign Incorrect Output
a.k.a.

Silent data corruption (SDC)

21

Outline	

• MoHvaHon	and	Goal	

• Experimental	Setup	

• Results	

• Conclusion	

22

Research	QuesHons	(RQs)	
•  RQ1:	How	many	mulH-bit	errors	are	acHvated	in	a	program?	
•  RQ2:	Does	the	single	bit-flip	error	model	result	in	pessimisHc	
percentage	of	SDCs	compared	with	mulHple	bit-flip	error	
model?	

•  RQ3:		Is	there	an	upper	bound	to	the	maximum	number	of	
mulHple	bit-flips	needed	to	cause	pessimisHc	percentage	of	
SDCs?	

•  RQ4:	Is	there	a	maximum	dynamic	window	size	that	causes	
pessimisHc	percentage	of	SDCs?	

•  RQ5:	Can	we	use	single	bit-flip	results	to	prune	the	mulHple	
bit	flip	fault	injecHon	space?		

23

RQ1:	AcHvaHon	of	MulHple	Bit	Flips	

Most programs have fewer than 10
activated multiple bit-flips

24

0%	

10%	

20%	

30%	

40%	

50%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 30	

SD
C	
Pe

rc
en

ta
ge
	

	

Number	of	bit-flip	errors	

basicmath	 qsort	 susan_corner	 susan_edge	
susan_smoothing	 FFT	 IFFT	 CRC32	
dijkstra	 sha	 stringsearch	 bfs	

RQ2:	Single	Bit-flip	Vs.	MulHple	Bit	Flips	

Single Bit-Flip Model provides pessimistic SDC
results or results close to multiple bit-flip model

25

RQ3:	Upper	bound	on	mulHple	bit	flips	

At most 3 bit flips are sufficient to get pessimistic
SDC results in most applications (in the few

cases where single bit-flip model is not sufficient)

26

RQ4:	Effect	of	window_size	

0%	

10%	

20%	

30%	

40%	

50%	

Si
ng
le
	 2	 4	 6	 8	 10
	 3	 5	 7	 9	 30
	 2	 4	 6	 8	 10
	 3	 5	 7	 9	 30
	 2	 4	 6	 8	 10
	 3	 5	 7	 9	 30
	 2	 4	 6	 8	 10
	 3	 5	 7	 9	 30
	

SD
C	
pe

rc
en

ta
ge
	

Number	of	bit-flip	errors	
basicmath	 qsort	 susan_corner	 susan_edge	
susan_smoothing	 FFT	 IFFT	 CRC32	
dijkstra	 sha	 stringsearch	 bfs	
histo	 sad	 spmv	

win-size	=	1	 win-size	=		4	
win-size	=	
RND(2-10)	 win-size	=		10	

win-size	=	
RND(11-100)	 win-size	=		100	

win-size	=	
RND(101-1000)	 win-size	=		1000	Window sizes do not have a significant effect on

SDC rates. However, smaller window sizes (<5)
result in higer percentages of SDCs

27

RQ5:	MulHple	bit-flip	(MB)	Error	Space	
Pruning	from	Single	Bit-Flip	(SB)	

Crash
(SB)

SDCs
(MB)

Benign
(SB)

Likely Unlikely

Sufficient to inject multiple bit-flips into locations
where single bit-flips result in benign outcomes to

get pessimistic SDC results

28

Takeaways	

• In	most	cases,	single	bit	flip	fault	model	yields	
comparable	resilience	to	mulHple	bit	fault	model	

• To	get	pessimisHc	esHmates	of	resilience,	we	need	
atmost	3	mulHple	bit	flips	across	applicaHons	

• Smaller	window	sizes	result	in	(slightly)	higher	
percentages	of	SDCs	for	a	given	no.	of	bit	flips	

• Sufficient	to	inject	mulHple-bit	errors	into	locaHons	
where	single	bit-flips	result	in	Benign	outcomes	

29

Outline	

• MoHvaHon	and	Goal	

• Experimental	Setup	

• Results	

• Conclusion	

30

Conclusion	
Does	the	mul$ple	bit-flip	model	result	in		

significantly	different	error	resilience	results	
compared	with	the	single	bit-flip	model?	

• No,	in	most	cases	
• Yes,	in	a	few	cases	

Based	on	a	total	of	27	million	fault	injecHon	experiments	
	

	BoEom	line:	One	bit	is	OSen	Enough	!	
LLFI: http://github.com/DependableSystemsLab/llfi

