ARTINALI: Dynamic Invariant Detection for Cyber-Physical
System Security

Maryam Raiyat Aliabadi
University of British Columbia
Department of Electrical and Computer Engineering
Vancouver, BC, Canada
raiyat@ece.ubc.ca

Julien Gascon-Samson
University of British Columbia
Department of Electrical and Computer Engineering
Vancouver, BC, Canada
julien.gascon-samson@ece.ubc.ca

ABSTRACT

Cyber-Physical Systems (CPSes) are being widely deployed in se-
curity-critical scenarios such as smart homes and medical devices.
Unfortunately, the connectedness of these systems and their rela-
tive lack of security measures makes them ripe targets for attacks.
Specification-based Intrusion Detection Systems (IDS) have been
shown to be effective for securing CPSs. Unfortunately, deriving in-
variants for capturing the specifications of CPS systems is a tedious
and error-prone process. Therefore, it is important to dynamically
monitor the CPS system to learn its common behaviors and formu-
late invariants for detecting security attacks. Existing techniques
for invariant mining only incorporate data and events, but not time.
However, time is central to most CPS systems, and hence incorpo-
rating time in addition to data and events, is essential for achieving
low false positives and false negatives.

This paper proposes ARTINALIL which mines dynamic system
properties by incorporating time as a first-class property of the
system. We build ARTINALI-based Intrusion Detection Systems
(IDSes) for two CPSes, namely smart meters and smart medical
devices, and measure their efficacy. We find that the ARTINALI-
based IDSes significantly reduce the ratio of false positives and false
negatives by 16 to 48% (average 30.75%) and 89 to 95% (average
93.4%) respectively over other dynamic invariant detection tools.

CCS CONCEPTS

« Security and privacy — Intrusion detection systems; Soft-
ware security engineering; Domain-specific security and privacy
architectures; « Software and its engineering — Real-time sys-
tems software;

“This work was done during a summer internship at UBC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3106282

Amita Ajith Kamath*

National Institute of Technology Karnataka
Departement of Computer Science and Engineering
Mangalore, India
amita.a.kamath@ieee.org

Karthik Pattabiraman
University of British Columbia
Department of Electrical and Computer Engineering
Vancouver, BC, Canada
karthikp@ece.ubc.ca

KEYWORDS

Multi-dimensional model, Security, Cyber Physical System, CPS,
Software Engineering

ACM Reference format:

Maryam Raiyat Aliabadi, Amita Ajith Kamath, Julien Gascon-Samson, and
Karthik Pattabiraman. 2017. ARTINALI: Dynamic Invariant Detection for
Cyber-Physical System Security. In Proceedings of 2017 11th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Paderborn, Germany,
September 4-8, 2017 (ESEC/FSE’17), 13 pages.
https://doi.org/10.1145/3106237.3106282

1 INTRODUCTION

Cyber Physical Systems (CPSes) are being increasingly used in secu-
rity-critical contexts such as smart medical devices [23, 34], smart
grids [35], smart cars [9], and Unmanned Aerial Vehicles (UAV) [18].
Unfortunately, these systems are vulnerable to cyber attacks due
to their interconnectedness and relative lack of protection. Many
attacks have been demonstrated against CPSes such as cars [21],
smart medical devices [23, 27], and smart meters [36].

Intrusion Detection Systems (IDSes) have been widely used to
monitor computer systems and detect security attacks. Typical
IDSes fall into one of three categories: Signature-based, Anomaly-
based, and Specification-based. Signature-based detection techniques
compare the runtime behavior of the system against known secu-
rity attacks, and hence cannot detect unknown attacks [30]. The
latter is especially important for CPSes as they are often difficult to
patch or upgrade in the field. In contrast, both anomaly-based and
specification-based techniques use a behavioral model of the system
to compare with suspicious behaviors, and can detect unknown
attacks. Anomaly-based techniques learn the system’s behavior by
observing its operations at runtime and formulating the model of
the system, while specification-based techniques rely upon apriori
knowledge of the systems’ behaviour to detect attacks. Unfortu-
nately, anomaly based systems incur considerable overhead to learn
the system model at runtime, and also suffer from high rates of
false-positives. These factors inhibit their use in CPSes which are
often resource constrained, and operate autonomously for long

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

periods of time. Therefore, specification-based systems have been
proposed as the best fit for CPS security [8].

Specification-based techniques build a model for a system based
on its code and the specifications defined by the developer. However,
there are often inconsistencies between what developers describe
their system does, and what the system does in practice [11, 31].
Moreover, code alone does not provide information about the run-
time behavior of the system in its operational environment. In
contrast, dynamic analysis-based techniques provide an alternative
way to understand the system by observing the run-time behavior.
There has been a significant amount of work on using dynamic
analysis to find likely invariants for program understanding and
debugging [14, 16, 19, 22, 24, 25, 28, 32, 33, 42, 44]. These systems
mine execution traces of the system for deriving invariants on the
data values of the system, the events or both. However, we find
that many of these systems incur significant false-positives and/or
false-negatives, when used in the context of an IDS, which makes
them challenging to deploy.

This paper introduces ARTINALI (A Real-Time-specific Invari-
ant iNference ALgorIthm) for mining likely invariants through
dynamic analysis in CPS systems, for specification-based IDSes.
The main innovation in ARTINALI is that it incorporates time as a
first-class notion in the mined invariants, in addition to the tradi-
tional data and event invariants. This is important for two reasons.
First, most CPSes have real-time constraints, and hence their opera-
tional correctness depends on both logical correctness, and correct
timing behavior [20, 41]. Hence, incorporating time is essential for
detecting many common security attacks in these systems. Sec-
ondly, CPSes have predictable timing behaviors to a first order of
approximation, and hence leveraging this predictability leads to
higher accuracy (i.e., lower false-positives and negatives). However,
incorporating time in dynamic invariant detection techniques in-
creases the complexity of the learning due to the much larger state
space that needs to be covered. To alleviate this issue, we break
up the problem of learning invariants along the three dimensions
into problems of learning invariants along two dimensions, namely
data-events and events-time, and then combine them into data-
events-time invariants. To the best of our knowledge, ARTINALI is
the first dynamic invariant detection system that mines invariants
along the three dimensions of data, event, and time, and uses the
mined invariants for intrusion detection. Our contributions are:

o We designed ARTINALI an algorithm that generates a
multi-dimensional model for CPSes by mining invariants
along the data, event and time dimensions (Section 3).

e We built an ARTINALI-based IDS prototype, and used it
in the context of two emerging CPS systems, namely i)
advanced metering infrastructures, and ii) smart artificial
pancreas (Section 4).

e We evaluated the efficacy of ARTINALI for 6 targeted at-
tacks on the two systems. We find that the ARTINALI-
based IDS can detect all 6 attacks, while none of the other
dynamic invariant detection systems do so (Section 5).

e We also evaluated our ARTINALI-based IDS prototype on
the two systems, and compared it with several existing
state of the art dynamic invariant detection techniques.
Overall, we find that the ARTINALI-based IDS exhibits

Maryam. R. Aliabadi et. al.

significantly lower false-negatives and false-positives for
arbitrary attacks emulated by fault injection, compared
to the other techniques (Section 6). Furthermore, it incurs
about 32% performance overhead, which is comparable to
other invariant detection techniques.

2 BACKGROUND

We first survey related work in the area of dynamic invariant de-
tection and how ARTINALI differs from them. We then present a
motivating example from smart meters to illustrate why we need
data-time-event invariants like the ones generated by ARTINALL

2.1 Related work

Dynamic analysis-based techniques that model the behavior of
software systems can be categorized into four classes, based on the
models that they generate: i) data invariants, ii) event relationships,
iii) data and event relationships, and iv) time dependencies of events.
Figure 1 shows the main dynamic analysis-based techniques, and
where they fall along the data, event and time axes.

Daikon was the first dynamic analysis-based technique to derive
(likely) invariants about data value relations [14], and falls into the
first class of techniques. Daikon can be placed on the data axis as it
produces a model for data constraints without taking into account
the events or timing of the system. DySy [10], which uses symbolic
execution to derive invariants, is another example of this class.

The second class captures the sequence of events within a pro-
gam’s execution paths by inferring finite state machines from a
set of traces. Relevant examples include Perracotta [44] and Tex-
ada [25], both of which derive temporal logic propositions, and
capture sequences of events by tracking dynamic traces. These tools
fall along the event axis since they only capture the constraints on
event relations independent of data or timing information.

The third class of techniques generate integration models that
capture the relationship between data and events. For example, the
GK-Tail algorithm merges temporal specifications and data invari-
ants into Extended Finite State Machine models [28]. It represents
sequences of method invocations that are annotated with data, and
is hence limited to classifying data invariants that arise among
method calls. Quarry finds data invariants at each program point,
and then finds temporal relationships between the invariants [24].
Neither technique considers timing information, however.

The fourth class consists of a single technique, Perfume, which
is a specification mining tool designed for modelling system prop-
erties based on resource (time and storage) consumption [32]. It
generates an integration model of event relations and their time
constraints. Although Perfume considers time as a part of model, it
does not consider the relationship between data and time.

Overall, none of the current techniques consider the interplay
among time, events and data in formulating invariants, which we
believe is an essential characteristic of CPS systems.

2.2 A Motivating Example

We consider an example of a smart electric meter to illustrate why
the existing dynamic analysis-based techniques are often insuffi-
cient for capturing the key properties of a CPS system. We also use
this as a motivating example to illustrate ARTINALI later.

ARTINALI: Dynamic Invariant Detection for Cyber-Physical System Security

Data

r Dysy [ICSE'08]

() Daikon [IEEE’01]

Quarry [ICSE'15] @
Gk-tail [ICSE'08]
Time
e © Pefume [ASE'14]
a7
/ % %
Event %, 9,
. %
U K
A
JOTR 2

Figure 1: Scope of dynamic invariant detection techniques

We use an open-source smart meter called SEGMeter as one of
the testbeds for our implementation and our evaluations (see Sec-
tion 4.1). SEGMeter is composed of two main components: the meter
component and a controller. The meter component is in charge of
measuring and collecting power consumption data coming through
its serial ports, and storing them in memory. The controller acts as
the communication bridge between the meter board and the server,
and is in charge of passing server commands to the meter board,
as well as transmitting power consumption data to the server at
specific time intervals. The Serial-Talker() function in the con-
troller program of the smart meter is in charge of receiving power
consumption data (at specific time intervals) and buffering them
for billing calculation purposes (Lua code shown in Figure 2).

seg-data = get_data_timer()
if (seg-data == 'a') then

command = "(all_nodes (start_data))"
serial_client:send{(command .. ";\n")
read(message)

end

if (seg-data == 'b') then

stream, status, partial = serial_client:receive(16768)

fiwrite("node_name = ", tostring(partial), "\n")

Figure 2: A snippet of Serial-Talker code for the SEGMeter

Figure 3 shows the execution path of Serial-Talker(). The
argument seg-data can take two different values: a or b, in pre-
determined time intervals. The sequence of events that are invoked
in this function varies based on the value passed in argument
(seg-data). If a is passed (line 6 in Figure 2), then the program
emits the event send, followed by read. Alternatively, if b is passed
to the function (line 21 in Figure 2), then the program emits events
receive and write respectively.

We examined the invariants inferred by the different dynamic
analysis-based tools for this example. Daikon infers the values of
variable seg-data within Serial-Talker() during normal execu-
tion as the set {a, b}, namely seg-data:[a,b]. A typical temporal
specification miner such as Texada identifies the legal sequences
of events, e.g., G(send — XF read), which means that upon event
send happening, it is always followed by event read. The invari-
ant inferred by Perfume (send — receive, 0.1, 3.6) complement the

0 T1

| seg-data=a seg-data=b

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

T1+60

seg-data=b

o s N
Lo recy)_J_u.).‘_v e D)oot
H H ™~ - H H H N~ - H i
H H ~— H H i — H H

15t execution instance

| seg-data=a

Serial-Talker()

B >

2 execution instance

Figure 3: The state chart of Serial-Talker()

temporal invariant by adding time boundaries between events, i.e.,
send is followed by read within a time interval of 0.1 to 3.6 ms.

Assume that an adversary’s goal would be to perform energy
fraud and lower their energy bills. One possible attack would be for
the attacker to tamper with the synchronization between the send
and receive modes in the smart meter. As a result, a part of the
energy usage would not be written to the memory buffer which is
used for future energy usage calculations and billing. For instance,
should the value b be passed to the function instead of a, then it
would lead to the execution of receive and write instead of send
and read; hence the billing information would be incorrect.

None of the above techniques can detect the attack as the in-
correct occurrence of sequences are triggered by legal values of
seg-data occurring at the wrong time (e.g., seg-data (T1) = b).
More specifically, Daikon would notice a valid value for seg-data,
Texada would notice a normal sequence of receive and write
events, and Perfume would also observe valid time intervals be-
tween events receive and write within the executed path. Thus,
none of them would detect the attack. Even if all three models
are used jointly, they would still not detect the intrusion, as the
different models either capture the legal data values, or the legal
sequence of events with their time difference, but not the interplay
among them. This interplay is essential for detecting the attack.

3 APPROACH

In this section, we introduce the security model that ARTINALI uses,
and we explain its design. We first define our multi-dimensional
model and the different classes of invariants. Next, we explain how
to relate different dimensions to generate real-time data invariants.
Finally, we present the ARTINALI workflow and algorithm.

3.1 Multi-dimensional model

We model a CPS in three dimensions, as follows:

Data refers to data values assigned to the variables of a program.
It includes neither the timing of processes, nor the sequence and
concurrency of processes.

Event refers to an action that a system takes to respond to an
external stimulus.

Time refers to real-time constraints, and includes both the con-
straints on physical timing of various operations, and those where
the system must guarantee response within a specified time frame.

We model the security policy of a CPS by inferring the set of
invariants to be preserved during run time. An invariant, or inter-
changeably a property, is a logical condition that holds true at a
particular set of program points. Like in prior work [14, 25, 44], we
use the term invariants as a shortcut for likely invariants, which are

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

the properties that we observe to be true accross a set of dynamic
execution traces. Corresponding to the dimensions defined above,
we define six major classes of invariants that form the basis of the
CPS model, as follows:

o Data Invariant captures the expected range of values of se-
lected data variables during normal execution of program.

o Event Invariant captures common patterns in the system’s
events such as the order of the events’ occurrence.

o Time Invariant captures the normal time boundaries (such
as duration or frequency) of an event.

e Data per Event(D|E) Invariant captures the temporal re-
lationship between data and events. It allows the IDS to
check the validity of data invariants based upon events.

o Event per Time (E|T) Invariant captures the constraints over
event and time. It represents the boundaries of transition
time from one event to another in an event sequence.

o Data per Time (D|T) Invariant captures the relational con-
straints of time and data invariants. It represents the data
invariant as a function of time.

3.2 Data-Event-Time Interplay

In a CPS, an event is defined as an instance of an action that leads
to a change of condition [40] (e.g., message send/receive, sensor
data reading, or activating insulin injection). Events have three key
features. First, they reflect interactions between system components
and observations rather than internal state. The second feature is
the notion that events are separated in space and time [12, 13,
40], and hence, there is no concurrency among event executions.
Moreover, in the case of dependent events (i.e., one event triggers
the other), once the first event (task) is done, it triggers the execution
of the second event. Thirdly, the locations in the code where events
are triggered are usually system calls that are accessible by attackers.
From a security perspective, events are important as they play the
role of an input channel for malicious communication with the CPS.
For instance, those points in which a new measurement is read from
sensors, or actuation commands are sent to physical components,
are more vulnerable to spoofing attacks [15].

Finding a direct relationship between time and data is challeng-
ing from both the learning and detection perspectives. Since time
is a continuous phenomenon, we cannot define a sharp time for
transitions in data values or changing states of the system; instead,
a distribution of time values has to be learned. As execution time
variations might be caused by differences in input sets or different
execution flows, rather than malicious activities, the invariant in-
ference technique should learn the normal time variations of the
system. The IDS also has to distinguish legitimate time variations
from any time deviation that indicates an intrusion.

To overcome these challenges, we leverage the event-based na-
ture of a CPS, in which every event takes place in an unique time-
frame. We discretize the time by the events, and use these for learn-
ing invariants. After doing so, we first examine the relationship
between data and event dimensions to produce invariants that in-
tegrate event information with constraints on data values (D|E
invariants). Secondly, we discover the relational constraints over
time and event dimensions to calculate the physical time bound-
aries of events, either independently (time invariants), or in relation

Maryam. R. Aliabadi et. al.

to each other (E|T invariants). Finally, we combine the result of the
previous steps to infer D|T invariants.

In the following discussion, we illustrate how we infer the D|T
invariants given the conditional probability of having data D given
event E invariant (P(D|E)), and given the conditional probability of
having event E given time T invariant (P(E|T)).

Considering data D, event E and time T as random variables,
equation 1 expresses the joint probability distribution of variables
D, E and T. We rewrite it to obtain equation 2. From these two equa-
tions, we then derive equation 3, which expresses the probability
of having D and E, given T.

P(D,E,T) = P(D,E|T) - P(T) 1)
P(D,E,T) = P(D|E,T) - P(E|T) - P(T))
P(D,E|T) = P(D|E,T) - P(E|T) 3)

Using the marginal probability mass function of D shown in
equation 4, we formalize P(D|T) (the probability of having D given
T) in equation 5 as the sum of the probabilities of data D and event
Ej given time T for all events Ej, which can then be rewritten as
equation 6 (using equation 3).

P(D) = ZP(D,E,-),VE,- 4)
P(DIT) = ZP(D,Ele),VEj (5)
P(DIT) = ZP(D|E]-,T) - P(EjIT), VE; (6)

For example, assuming that at time T, event E; occurs; and that
upon E; occurring, then variable D gets assigned a specific value.
This implies that T is the cause of E;, and that D is the effect of
Ej. Thus, variable D is conditionally independent of time variable
T given event E;. Consequently, D and T are conditionally inde-
pendent, and P(D|E;, T) = P(D|Ej). Hence, we can simplify the
formulation of P(D|T) as follows :

P(DIT) = ZP(D|E]-) - P(EjIT), VE; @)

According to the event-based semantics of CPS, any given event
takes place in a unique time frame. This implies that two or more
events cannot take place at the same time T; i.e., P(E;|T) > 0 =
P(E;IT) = 0,VE; # Ej. Given this assumption, we first rewrite
equation 7 to obtain equation 8. Then, we simplify it to obtain
equation 9, which captures the relationship between data D and
time T by exploiting the relational constraints of both data and time
over the same event Ej which takes place at time T.

P(DIT) = P(DIE = E;) - P(E = Ej|T)+ ®)
ZP(DlEi) - P(E{|T),VE; # E;
P(DIT) = P(DIE = E;) - P(E = E;|T))

In other words, for a given event Ej, a D|T invariant holds true (i.e.,
happens with a high probability) if and only if both the corresponding

DIE invariant and E|T invariant hold true.

3.3 ARTINALI Workflow

ARTINALI is a dynamic analysis-based technique that generates
models of dynamic system behavior, and proposes a multi-dimensional

ARTINALI: Dynamic Invariant Detection for Cyber-Physical System Security

model based on the design concepts introduced in the previous sec-
tion. Figure 4 shows the key blocks of ARTINALI’s workflow.

Program Under II
Test (PUT,

-
DE Iugsl. TE logs l,

1. ARTINALI D|E MINER 2.ARTINALI E|T MINER

D|E EIT
invariants invariants

[3.ARTINALID|T MINER]

invariants

Real-time data l
v

[4.1DS PROTOTYPE]

Figure 4: Work flow of ARTINALI

In order to generate logs for mining invariants, we manually
instrument events and their associated data variables'. We assume
that CPS source code is available, and that it can be modified to
instrument events - this is reasonable as we envision our technique
to be used by CPS developers (if not, one can use a binary instru-
mentation engine). In our technique, events are system calls. Hence,
we capture all system calls as events. However, the user can op-
tionally prune the space of events by specifying only the important
system calls based on the system’s requirements. We instrument the
events’ program locations by inserting calls to the ARTINALI API
functions that we developed for collecting logs, before and after the
event. During the attack-free runtime executions, these functions
collect data and time information associated with the instrumented
events in separate log files (namely DE logs and TE logs). The logged
information is used as the basis for mining invariants.

Block 1. ARTINALI D|E Miner The ARTINALI D|E Miner
learns invariants about the variable values, and how these values
relate to a particular event in the system using a three-step process.
First, the D|E Miner takes the logged information, and groups them
within each trace into distinct classes labeled with the events. It
then merges classes across DE logs. Second, within each class, using
the Frequent Item Set mining algorithm [17], it merges the data
variables while calculating the level of the confidence and support
for every variable. As in prior work [14], support is the fraction of
traces in which the variable x within class E; is seen, and confidence
is the fraction of supported classes, where variable x is assigned to
the same value(s).

Finally, the D|E Miner infers the data invariants associated with
each class (event). D|E invariants are multi-propositional data in-
variants as they all hold true within the same observed event
(at the same time). The DIE invariants are stated in the form of
(E;i : d1 = [],d2 = [],...dn = []), where E; denotes the name
of (i)th event, and d; — d,, denote the range of concrete values
of n data variables mapping to the event E;. For the example in
Section 2.2, the invariant receive: seg-data=false, command=nil, sta-
tus=[nil, time-out], len.partial>0 represents the data invariants that
are valid during the event receive, and is hence a D|E invariant.

IThis is similar to what almost all other invariant detection techniques do, with the
exception of DAIKON, which has an automated instrumentation engine.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 1: E|T and D|T Invariant Types

E|T Invariant Type

Type I E;(t) = Ei(t + %eq,)
Typell Ej = E;:Atjjmax, Atj;min
Type Il E; : At;max, At;min
D|T Invariant Type
Typel dm(Ti <t <Tj) =]
Typell dp =[] = dn =[]: Atjjmax, Atj;min

Block 2. ARTINALI E|T Miner ARTINALI’s E|T Miner infers
the E|T invariants in four steps. First, it creates all consecutive
event pairs within one trace annotated with their time differences.
Second, it groups the pair of events that are labeled with the same
pair name. Third, ARTINALI’s E|T Miner looks for the pair-wise
events that are observed in the same order within TE logs, and
calculates their support. Finally, it merges the time variables within
each class to calculate the time boundaries of the paired events,
as well as the frequency and the average duration of every event
execution. The E|T invariants are classified into three types, as
shown in Table 1. Type I indicates that event E; is repeated every
#eqi seconds. Type Il indicates that the pair of events E; and E; are
repeated in all traces in the same order, and their time difference
is bounded within Atj;max and Atj;min. Type III indicates the
maximum and minimum duration of event E;. For the example in
Section 2.2, send(t) = send(t + 60) showing the frequency of send
occurrences in the system, and the invariant send = receive :
14.3, 1.5 representing the time boundary (between 1.5 and 14.3) and
the logical ordering of the events (i.e., send before receive), are both
examples of E|T invariants.

Block 3. ARTINALI D|T Miner According to the formulation
described for D|T invariants, ARTINALI combines the outputs of
DI|E and E|T miners to generate the real-time data invariants (D|T
invariants). We define two types of data invariants (Table 1), and
we explain each type using the example in Section 2.2.

Type I represents the distribution of valid data values of variable
dm within time slot T; < t < Tj. For example, seg-data(T; <t <
T5) = a means that the only valid value of variable seg-datais a
during the time interval T; < t < T,. Note that we differ here from
Daikon data invariants (e.g. seg-data=a,b), as they only express
the valid values of data invariants without considering the time.

Type II captures the relationship of data invariants between two
consecutive events. As explained in previous section, every two
consecutive events have a bounded time difference (T; + Atj;min <
Tj < T; + Atjjmax). As a result, the data invariants associated with
those events have the same time difference. In other words, data in-
variant d;j = [] holds true until data invariant d; = [] becomes true,
while Atj;max and Atj;min specifies the time difference boundaries
between those data invariants. In the previous example (Figure 3),
ARTINALI D|T Miner generates one invariant of this type, as fol-
lows: seg-data = a = seg-data = b : 14.3,1.5; i.e,, seg-data = a
holds true until seg-data is assigned value b, in a time interval
ranging between 1.5 and 14.3 seconds.

Block 4. IDS Prototype As explained in the previous sections,
the ARTINALI Miners derive three classes of invariants that com-
prise the final CPS model. The CPS model is used as an input to our

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

IDS prototype for monitoring attacks. Our IDS prototype consists
of two components: the Tracing module and the Intrusion detector.
The tracing module is in charge of collecting the required infor-
mation from the program’s execution and logging it. This module
is the same as the ARTINALI Logger that instruments the code
and collects logs, but with the difference that it is deployed on the
production system. The collected information is fed to the intru-
sion detector, which periodically processes the log file and checks
it against the invariants derived from the CPS model.

4 EXPERIMENTAL SETUP

This section first presents the details of two CPSes, and then the
experimental procedure for evaluating the IDS on the two plat-
forms. Finally, it presents the attack models that we considered for
evaluation, followed by the evaluation metrics.

4.1 CPS platforms

We chose two CPS platforms as case studies to evaluate the efficacy
of the invariants generated by ARTINALI and the other tools. Note
that unlike generic applications, there are few publicly available
open-source CPS platforms that are also security-critical. Further-
more, there is a significant amount of effort involved in setting up
a CPS platform and generating execution traces from it. So we limit
ourselves to 2 CPS platforms in the paper.

Advanced Metering Infrastructure (AMI) : Advanced Me-
tering Infrastructure (AMI) systems are deployed on smart electric
power grids. Smart meters are key components of AMI that provide
a two-way communication with the utility provider[35]. The large
scale deployment of smart meters and the discovery of many vul-
nerabilities in these systems [38, 43], make them good candidates
to evaluate our work. A generic smart meter is composed of two
main components, namely the meter and the controller. The me-
ter component receives power consumption data through analog
front end sensors, and stores them in the memory. The controller
component is the communication bridge between the meter and
the utility provider’s server, passing server commands to the me-
ter, and sending consumption data back to the server at specific
time intervals (more details in [38]). We use SEGMeter [1], an open
source smart meter to evaluate our IDS prototype. SEGMeter is
implemented using the Lua language, and consists of 2500 lines of
code (excluding libraries).

Smart Artificial Pancreas (SAP) : Diabetic patients are migrat-
ing from the traditional glucose meter and manual insulin injection
systems to continuous glucose monitoring and autonomous insulin
delivery devices [27], which are referred to as Smart Artificial Pan-
creas (SAP). Since attacks to a SAP can threaten the patient’s life,
these systems are highly security-critical [34]. Hence, we selected
SAP as our second case study to evaluate ARTINALL The main
building blocks of a generic SAP are a Continuous Glucose Monitor
(CGM), an insulin pump, and a controller. The CGM samples the
patient’s blood glucose (BG) levels on a regular basis and sends it
to the controller. The insulin pump is a wearable medical device
that is used for automatic injection of insulin through subcuta-
neous infusion. The controller controls the closed loop in the SAP.
It receives the measured BG from CGM, and issues the suitable
actuation command for correcting the sugar level. We used Open

Maryam. R. Aliabadi et. al.

Artificial Pancreas System (OpenAPS) [26], an open source SAP,
as a second use case to evaluate our IDS prototype. OpenAPS im-
plements the controller component of an SAP in JavaScript, and
consists of 2000 lines of code (excluding libraries). We simulated a
simple CGM and an insulin pump to close the loop, as we did not
have access to a patient with a real insulin pump and glucose meter.
OpenAPS provides a set of test cases that take different BG values as
input and process them for calculating basal rate of insulin, which
we use as a baseline for our experiments.

4.2 Experimental Procedure

Figure 5 shows the overall procedure that we follow. In addition
to generating the CPS model using ARTINALI we generate three
other models (invariants sets) using Daikon, Texada, and Perfume
for comparison purposes. We have made ARTINALI publicly avail-
able [4]. We downloaded the latest versions of these tools from
their respective websites [2, 3, 5]. We do not run the instrumenta-
tion front-end of Daikon (i.e., Kvasir), as our goal was to generate
data invariants based on the event traces we logged. We choose
these three tools to represent the first, second and fourth classes of
invariants as described in Section 2. We do not choose the tools in
the third category, namely GK-tail and Quarry, as we use Daikon to
find data invariants for the events that we identified in the system.
Therefore, the invariants generated by Daikon cover the third class
of invariants in our experiments (i.e., D|E invariants).

There are 22 system calls in SEGMeter’s code, and 4 system calls
in the OpenAPS code. We consider all of them as events. Tables 2
and 3 present the types of invariants and the number of invariants
generated by the three tools and ARTINALI for the SEGMeter
and OpenAPS platforms respectively. As can be seen, ARTINALI
generates invariants in the Time, D|E, E|T, and D|T categories,
while DAIKON, Texada and Perfume only generate invariants in
the D|E, Event and E|T categories respectively.

Because the format of the invariants generated by these other
tools may be different from that expected by our IDS, we wrote
scripts to convert the invariants to be in the format expected by
the IDS interface. ARTINALI directly generated invariants in the
proper format. In case a tool did not generate a certain kind of in-
variant (e.g., D|E), we leave that invariant file blank. The generated
invariant sets are all fed into the IDS as inputs, and their efficacy is
evaluated on different platforms.

We divide the experiment into a training phase and a testing
phase for each system. We first obtain execution traces from the two
platforms under normal operation, and randomly divide them into a
set of training traces (train) and testing traces (test). We then choose
different training set sizes for each invariant detection system to
optimize the false positive (FP) and false negative (FN) ratios for
that system. Finally, we evaluate the FP ratios of the invariants
using the test traces, and the FN ratios using the attack models
described in the next section.

The IDS is implemented in Python, and consists of about 1000
lines of code. Since the IDS is run on the CPS platform, which is
often resource constrained, it is important to minimize its overheads.
We measure the IDS’s time and space overhead for the SEGMeter
platform in Section 6. Because we run the OpenAPS platform in

ARTINALI: Dynamic Invariant Detection for Cyber-Physical System Security

Test traces FPs

CPS under
test

Intrusion
Detector

Tracing
module

FNs

Training
traces

IDS prototype

Interface

[Daikon] Texada [Perfume]\ ARTINALI]

I f

Figure 5: Overall experimental process of running the IDS

Table 2: Types and number of inferred invariants for SEG-
Meter across tools

| Event [Time [DIE [EIT [DIT

Daikon - - 24 - -
Texada 158 - - - -
Perfume - - - 158 -
ARTINALI - 12 24 37 24

Table 3: Type and number of inferred invariants for Ope-
nAPS across tools

[Event [Time [DIE [EIT [DIT

Daikon - - 22 - -
Texada 57 - - - -
Perfume - - - 57 -
ARTINALI - 4 22 18 7

a simulator, as we did not have access to its hardware, we do not
measure the IDS overheads on OpenAPS.

4.3 Attack Models

Traditionally, security techniques are evaluated using a small num-
ber of targeted (hand-crafted) attacks. Unfortunately, this is not
sufficient for CPS systems for three reasons. First, CPSes are new
systems for which there are few real attacks - hence they need
protection from zero-day or unknown attacks. This is especially
the case for security-critical CPSes such as smart medical devices.
Secondly, unlike general computer systems, CPSes can be difficult
to upgrade and patch frequently. Thirdly, there is no standard set
of attacks on CPSes unlike general-purpose computer systems, so
we would have to hand-craft individual attacks on these systems,
which would potentially introduce bias in the evaluation.

Targeted Attacks To evaluate our IDSs against known attacks,
we use three attacks for each system that we discovered based on
manual analysis of the CPS (Section 5).

Arbitrary Attacks We use fault injection (i.e., mutation testing)
to emulate arbitrary attacks. Fault injection has been used to study
the effects of attacks in previous work [38]. Note that these are not
complete attacks, but rather form the building blocks of attacks.
We deploy different types of mutation in the program’s code, as
follows.

e Data mutations, which change the runtime values of data
variables in the code;

e Branch flipping, which change the normal execution flow
of the program by flipping branch conditions;

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 4: The number of mutations in each attack category
for SEGMeter and OpenAPS.

CPS Attack category

Data mutation Branch flip Artificial delay
SEGMeter 35 76 45
OpenAPS 100 10 15

o Artificial delay insertion, which modify the normal timing
behavior of the program.

Each of the above categories emulate different security issues. By
performing data mutations, an attacker can change critical data in
the program to their advantage. Such attacks can be accomplished
by exploiting memory corruption vulnerabilities or race conditions
in the program. Likewise, branch flipping can lead to illegitimate
control flow paths being taken in the program, to accomplish the
attacker’s ends. Such attacks can occur due to code injection or
sematic vulnerabilities. Finally, artificial delays can allow attackers
to change the timing of the system’s actions, and delay essential
functions, or cause other functionality to be suppressed, again to
their advantage. Through these mutations, we can emulate a wide
variety of attacks, without a predefined target, thus avoiding bias
and allowing modelling of hitherto unknown attacks.

Table 4 presents the number of mutations performed in each
category for SEGMeter and OpenAPS. We manually seeded each
of these mutations in the source code of the respective systems,
by randomly sampling the corresponding program points in the
program’s code. While this could have been automated by a fault
injection tool (e.g., LLFI [6]), the languages in which the two systems
were implemented, JavaScript and Lua, were not supported by
existing tools. Therefore, we had to perform mutations manually.
However, we attempted to choose the program points randomly
before performing the experiment to avoid biasing our evaluation.

After mutating the code, we can observe one of four outcomes.

e Crash, in which the program is aborted (exception);

e Hang, in which the program goes into an infinite loop or
deadlocks;

e SDC (Silent Data Corruption), in which the outcome of the
program is different from a fault-free execution;

o No corruption, in which the outcome of the program does
not show any observable impact with respect to fault mask-
ing or non-triggering faults. Internal states might however
be corrupted.

Note that in the context of this paper, we are interested only in
SDC and No corruption outcomes, as the Crash and Hang outcomes
can easily be detected without an IDS. Therefore, we only present
the results for the fault-injection experiments that resulted in the
SDC and No corruption outcomes, and which need an IDS (these
comprise about 75% of the outcomes on average).

4.4 Evaluation Metrics

Accuracy: We use three metrics to measure the effectiveness of
our IDS from the accuracy point of view.

e False Negative ratio (FN), which is the ratio of attacks that
were undetected by the IDS to the total number of attacks;

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

e False Positive ratio (FP), which is the ratio of execution
traces that were (incorrectly) reported as attacks to the
total number of normal traces;

e F-Score(f), which is a computation of the harmonic mean
of the true positive ratio (TP), FP and FN.

The variations of the argument f in F-Score(f) allow us to weigh
the above metrics differently [37], and obtain different trade-off
between FP and FN ratios based on the system requirements. A
value of f > 1 weighs FNs higher, while a value of f < 1 weighs FPs
higher. A value of § = 1 weighs them both equally. We hypothesize
that FPs are more important in smart meters, as a false-alarm leads
to added cost to the utility provider who needs to deploy service
personnel to investigate the false alarm. An occasional FN may be
acceptable in smart meters as the consequence is only a loss of
revenue. In the OpenAPS, on the other hand, even a single FN can
be fatal to the patient, while a FP may be acceptable if there are
other checks in place to filter out FPs (e.g., patient intervention).
Hence, for SEGMeter, we select F-Score(0.5), and for OpenAPS, we
choose F-score(2) as our reference metric.

Overheads: In addition to the accuracy, we also measure the
memory and performance overheads of the IDS.

Memory overhead is defined as the actual memory usage of the
IDS. It depends on the size of IDS, the number of invariants that
account for the CPS model, and the complexity of invariants (e.g.,
the invariant E; = E; : Atjmax, Atj;min carries more information
than the invariant E; = E;, and is hence more complex).

Performance overhead is the increase in execution time as a result
of running the CPS on the target platform. This metric reflects the
overhead of both the tracing module and the intrusion detector. Since
CPSes run continuously for long periods of time, we measure the
performance overhead per cycle, where a cycle refers to one full
execution of the main loop of the CPS (both the SEGmeter and
OpenAPS consist of a single main loop that runs continuously).

5 TARGETED ATTACKS

In this section, we discuss the potential targeted attacks and how we
derive them for both platforms. We then evaluate the IDS seeded
by ARTINALI and other tools against the attacks. Note that we
used attack trees based on prior attacks against similar systems to
generate the attacks to minimize bias and model realistic attacks.
We found that ARTINALI was able to detect all the attacks, while
none of the other tools do. This is because all the attacks involved
violations of the interplay among data, events, and time.

5.1 AMI Attacks

Energy fraud is a major class of AMI attacks, and can result in
Power Consumption Data (PCD) loss and improper billing [29]. We
came up with an attack tree for energy fraud in AMI (shown in Fig-
ure 6), based on attacks introduced in previous work [29, 35, 39, 43].
There are three major branches in this tree, namely i) Measure-
ment tampering, ii) Storage tampering, and iii) Network tampering.
Corresponding to each branch, we developed the concrete attack
actions as the leaves of the tree as follows.

Synchronization tampering (Blocks A1 — A4) occurs due to
modification of the time of send and receive modes in AMI. We
found that the communication between the AMI and the server

Maryam. R. Aliabadi et. al.

Tamper Power Consumption Data (PCD)

I S m—
AlTamper C1.Tamper BL.Tamper
storage measurement network
: { J)
r — 1 N
AZ.Intercept C2. Meter Physical B2.PCD
regular log bypassing modification injecting
storage

A3.Interfering Disconnect
send/receive

modes

I —C [——
and__ | S —
C5. Control traffic
toBlock or pass
through

Gateway
ports spoofing

B3.Meter
spoofing

C3. Remove
logged usage

B4.Usingfake
IDin frequent
time intervals

B5.5ending PCDof|
n/m channels
Withfake ID

Ad. C4. Put a laptop
between meter

and gateway

Synchronization
tampering

Figure 6: Attack tree for AMI

Table 5: ARTINALI invariants to detect the example attacks
in AML

Attack [Detecting Invariant

Synchronization (1) send (T0+K - 60) = send (T0+(K+1) - 60),
tampering V k>0

Message dropping | (2) recv (T1) = recv (T1+1)

Meter spoofing (3) node-name(T0+N - 60) = Node B, Y N>0

is synchronized by a vulnerable function (get-data-timer()) in the
controller unit. The controller frequently checks the time with the
sever to decide when to request for data measured by the meter. If
a malicious user modifies the time on the server, the controller will
not receive data in the expected time, which leads to data loss, and
improper calculation of final PCD.

Meter spoofing (Blocks B1 — B5): In a smart grid, AMIs com-
municate with the server using a unique name or ID. The controller
unit is able to be connected to more than one meter, collects the
PCDs, and send them along with the meter’s ID to the server. As
the controller cannot differentiate between normal and abnormal
messages, it can be tricked by falsified inputs sent by an attacker
instead of the meter. This attack is called meter spoofing attack. We
found that spoofing the meter only requires the meter’s ID that is
printed on the meter’s nameplate.

Message dropping (Blocks C1 — C5): An attacker may be able
to drop the messages (i.e., a part of energy usage) after bypassing
the meter and removing the logged PCD history. A simple way to
mount this attack is to intercept the communication between the
meter and the controller, and control what traffic to block and what
to pass through (e.g., through a firewall). Hence, the blocked traffic
would not be included in PCD calculations.

5.2 Detection of AMI attacks

We ran the ARTINALI-based IDS on the example attacks, and found
that it detected all of them. Table 5 indicates the important in-
variants that are derived by ARTINALI which detect the attacks
presented in the previous section.

Synchronization tampering As synchronization tampering
attack modifies the timing of send and receive operations of SEGMe-
ter, we picked events send and receive as relevant events to explain
this attack. We can see in row 1 of Table 5 that the ARTINALI
invariant captures the sequence of these events during normal op-
eration, i.e., send operation happens every 60 seconds, and receive

ARTINALI: Dynamic Invariant Detection for Cyber-Physical System Security

Tamper Diabetic Therapy
g 1 |
I S — 1
AlTamper

B1Tamper
actuation
commands
E2 Access to

Controller controller
spoofing

Tamper
configuration
setting

Glucose
measurement

A2.Data Physical
injection modification

o

Replay A3.CGM
sensor data SrET

code
[

Set high insulin dosage
for low glucose, and
vice versa

B3Tamper Tamper
basal bolus
— e [p——

" BS. Stop insulin A e e
Ad.Sending false BG { > B4.Generate control

Replay bolus

tothe Controller by injection, or resume s
packets using a injection

RFmodule injection when it
should stop software radio board

Figure 7: Attack tree for SAP

is repeated every 1 second. Thus, this invariant detects the attack
as the timing of the events is violated by the attack.

Message dropping If we assume the attacker drops one or more
messages from meter, the dropped messages will not be received at
the expected time slots by the controller. As a result, the frequency
of receiving messages in controller will change. This attack breaks
the invariant number (2) in Table 5, which represents the time
frequency of receive function which is 1003 milliseconds (= 1sec)
within one full execution path. Thus this attack is also detected.

Meter spoofing To detect meter spoofing attack, we selected
two receive events (recvA and recvB) from two different meters
(node A and node B) that are connected to the same controller, and
analyzed the respective invariants. For example, nodeName(T0+N*60)
= Node B, ¥ N >0 specifies that the valid value of nodeName at
T0 + N = 60 is Node B. If the identity of node A is stolen by node B,
it sends its messages every 60 seconds under the name nodeA. As a
result, variable nodeName attached to event recvB, becomes nodeA.
Thus, the invariant number (3) in Table 5 is violated.

5.3 SAP Attacks

Diabetic therapy tampering is one of the highest severity threats
for patients, as it can result in death or severe health complications.
We developed an attack tree for diabetic therapy tampering based
on publicly available reports of attacks on SAPs [27, 34], in Figure 7.
We consider three classes of attacks based on the tree.

CGM spoofing attack (Blocks Al — A4) injects false into the
communication channel between CGM and controller making the
controller think that the glucose level is either higher or lower
than it actually is. There are two ways that CGM spoofing can be
accomplished. First, if the sensor data format is unknown, then a
replay attack can be used. In this case, a sensor value read in the
past can be re-sent (e.g., by a RF module [27]) to the controller. This
would cause the controller unit to indicate an outdated glucose
level rather than the actual one. Second, if the format of sensor
data is known to hacker, she can send the false data at random time
intervals to mislead the controller.

Basal tampering (Blocks B1 — B5) The basal tampering at-
tack may be accomplished in two different scenarios. The attacker
may issue a command for i) stopping the basal injection (e.g.,
basal.rate = 0) when it is required for patient, or ii) resume the
basal injection (basal.rate > 0) when it has to be stopped. These
attacks may be mounted using a software radio board that fully

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 6: ARTINALI invariants to detect example attacks in
OpenAPS.

Attack [Detecting invariant

CGM spoofing | (1) read (t) = read (t+5)

Stop (2) (120 < BG< 485) =

basal injection | (0.9 < basal.rate < 3.5):1.99, 0.464
Resume (3) BG < 75 = basal.rate=0

basal injection | :1.99, 0.464

controls the SAP [27, 34], and transmits the malicious commands
to the pump. To accomplish the attack, the attacker needs to spoof
the PIN number of the controller, and the format of transmission
packets - both of these can be done by an eavesdropping attack.

5.4 Detection of example attacks in SAP

We mounted the attack examples on the SAP system we considered
(i.e., OpenAPS), and found that the ARTINALI-based IDS is able
to detect all of them. There are four events in the SAP, namely 1)
send(BG) or sending blood glucose by CGM, 2) read(BG) or reading
BG by the controller , 3) send(basal.rate) or sending basal rate to
pump by the controller, and 4) recv(basal.rate) or receiving basal
rate by pump. We used these events as the basis for mining 51
invariants for OpenAPS’s IDS model. Due to space constraints, we
do not present all inferred invariants, but only those that detect the
example attacks (Table 6).

CGM spoofing attack We selected read(BG) in controller as
the relevant event, and analyzed the inferred invariants for this
event to analyze CGM spoofing attack. Under normal conditions,
the transmission of measured Blood Glucose (BG) to CGM occurs at
deterministic, periodic times (e.g., every five minutes). This property
is represented in our model as time frequency of event read(BG),
that is read(t) = read(t +5). Using the above property, it would be
possible to detect malicious sensor reading from any external source
that performs replay attack or transmits wrong data at random
time intervals to the controller as the frequency of reading data by
controller would change.

Basal tampering attack As previously explained, the basal
tampering attack may be accomplished in two different scenarios:
i) stop basal injection (basal.rate = 0) when it is required, and ii)
resume basal injection (basal.rate > 0) when it is not required.
These attacks break the invariants shown in Table 6. The invariant
number (2) indicates that if BG is higher than the normal range,
the patient needs insulin (i.e., basal.rate > 0). However, the stop
insulin injection attack makes the basal.rate value to be 0, which
breaks invariant number (2). Similarly, the invariant number (3) in
Table 6 shows that for low BG ranges (e.g., BG = 45), the patient
does not need insulin (i.e, basal.rate must be 0), but resume basal
injection attack sends a command (basal.rate > 0) to the SAP to
inject insulin. As a result, invariant number (3) is violated.

6 EVALUATION

In this section, we present the results of the fault injection experi-
ments to emulate arbitrary attacks, and the overhead measurements.
We first present the research questions (RQs) we ask. We then ad-
dress each of the RQs in a separate sub-section.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

6.1 Research Questions (RQs)

RQ1. How do we choose the training set size to obtain the
best F-Score(f) for each tool?

RQ2. What is the FN ratio incurred by the IDS using the
invariants derived by ARTINALI and the other tools ?
RQ3. What is the FP ratio incurred by the IDS using the
invariants derived by ARTINALI and the other tools?
RQ4. What is the memory overhead of the IDS when using

the invariants derived by ARTINALI and the other tools?
RQ5. What is the IDS performance overhead when using the
invariants derived by ARTINALI and the other tools?

6.2 RQ1. F-Score

As mentioned in Section 4, we obtain two sets of traces from each
system, namely train and test. In this RQ, we ask what should be the
optimal training set size for each system in order to maximize the
corresponding F-Score values. To answer this question, we obtain
a total of 40 training traces, and 50 test traces for each system. We
then vary the training set size from 5 to 40, in increments of 5. We
then run each of the invariant detection tools including ARTINALI
on the same training set to derive invariants. We then measure the
FP, FN, and F-Score values (0.5, 1, 2) for each invariant detection
tool and system, as a function of the training set size.

Figures 8 and 9 show the distribution of the amount of false
positives (FP), false negatives (FN) and the F-Score computed with
B = 0.5, 1, 2 inrelation to the amount of training traces, respectively
for SEGMeter and OpenAPS, corresponding to each of the four
invariant detection tools, including ARTINALI As expected, as the
amount of training traces increases, the FP ratio decreases, since
a broader set of invariants are extracted; thus a lower amount of
legitimate actions are flagged as potential attacks. A consequence is
that more attacks are undetected (FN increases), as a more restricted
set of invariants can lead to some attacks being undetected. Overall,
an increase in the amount of training traces lead to an increase
of the F-Score at first, then it stabilizes, at which point an optimal
amount of training traces have been found (for a given values of f5).

Tables 7 and 8 show the optimal amount of training traces (opti-
mal F-Score) for each invariant detection tool, for SEGMeter and
OpenAPS respectively. Recall that we choose F-Score(0.5) for SEG-
Meter and F-Score(2) for OpenAPS, and hence these are the F-score
values we choose for the optimal number of traces. For example, in
SEGMeter, a training set size of 20 results in the maximum value
of the F-Score(0.5) value of ARTINALIL whereas for OpenAPS, a
training set size of 15 results in the maximum value of F-Score(0.5).
Likewise, we compute the optimal training set sizes for the three
other tools on both platforms. These are the values of the training
set sizes we use for deriving the invariants for each tool in the
rest of this section. In other words, we find the best configuration
of each tool on each platform, and generate invariants using this
configuration for comparing the corresponding IDSes .

6.3 RQ2. False Negatives

In this section, we compare the variation in the FN ratio incurred
by the IDS, using invariants extracted by ARTINALI and the other
tools. Tables 7 and 8 also show the FN ratios for each tool for
the SEGMeter and OpenAPS systems respectively. We observe that

Maryam. R. Aliabadi et. al.

Table 7: Optimal training set size for maximum F-Score(0.5)
for SEGMeter across tools, and the FP and FN ratios.

Daikon Texada Perfume ARTINALI

F-Score(0.5) 0.721 0.78 0.813 0.898
Num of traces 30 30 35 20
FP (%) 23 15 15 12
FN (%) 57 60 38 2.3

Table 8: Optimal training set size for maximum F-Score(2)
for OpenAPS across tools, and the FP and FN ratios.

Daikon Texada Perfume ARTINALI

F-Score(2) 0.604 0.62 0.686 0.952
Num of traces 30 20 15 15
FP (%) 21 16 22 135
FN (%) 61 61 39 2

overall, ARTINALI was able to detect around 97.5% of attacks, which
means it has an average FN ratio of 2.5%. In contrast, in Perfume,
Texada and Daikon the FN ratio was respectively 38.5%, 60.5% and
59% on average, across the two platforms. Thus, the ARTINALI-based
IDS reduces the ratio of false negatives by 89 to 95% (average 93.4%)
over other dynamic invariant detection tools.

Figure 10 and Figure 11 illustrate the FN ratio of the IDS for the
three category of attacks (code mutations), as well as the aggregated
FN ratio, for each tool, in both SEGMeter and OpenAPS.

Data mutations: ARTINALI exhibits the lowest FN rate for data
mutations (2 to 3%). This is followed by Daikon, which provides a
much lower FN ratio in data mutation attacks (15% in SEGMEeter
and 17% in OpenAPS) than Perfume (53% in SEGMEeter and 78% in
OpenAPS) and Texada (52% in SEGMEeter and 87% in OpenAPS).
This is because DAIKON focuses on data invariants, while Texada
and Perfume do not include data invariants in their model. How-
ever, the Daikon data model does not include other properties like
ARTINALI does, resulting in much higher FNs than ARTINALL

Branch flipping: Among the other three tools, ARTINALI has
the lowest FN rate for branch flipping attacks (1%). Perfume, Tex-
ada and ARTINALI exhibit a lower FN ratio compared to Daikon
for branch flipping attacks. As these attacks impact the order and
sequence of the events in an execution instance, and Daikon does
not have event invariants, it shows less sensitivity.

Artificial delay: Again, ARTINALI has a much lower FN ratio
(2-3%) than all three tools for artificial delay attacks, followed by
Perfume. This is because they both include time in their model.
Nevertheless, Daikon and Texada are still able to detect attacks that
impact data variables or alter the execution flow of the program.

Overall, the results support our hypothesis that a more comprehen-
sive invariant model, such as ARTINALI, which can find invariants
and their constraints along three dimensions, can detect a significantly
larger amount of attacks (and hence has fewer FN).

6.4 RQ3. False Positives

In this section, we compare the FP ratio incurred by our IDS when
using the invariants derived by ARTINALI against the invariants
generated by the other tools (Daikon, Perfume and Texada). The
results are shown in Table 7 and 8 for the SEGMeter and OpenAPS

ARTINALI: Dynamic Invariant Detection for Cyber-Physical System Security =~ ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

80

70

60

7

8

——FP (%)
—=—FN(%)

50 T

40

“—F-score(2)
30

20 i F-score{0.5)

'
;
1
i

b . i Fescore(l)
i
1

DI
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 s 10 15 20 25 30 35 40
#Training traces {b #Training traces (0 #7Training traces (d) #Training traces

10

(a)

Figure 8: FN, FP and F-Score variations based on number of training traces for SEGMeter across tools; (a) Daikon, (b) Texada,
(c) Perfume and (d) ARTINALI X-axis is the training set size.

20 90 90 120

80 | 80 T — 80 |]
i ! : e 100
. \ 4- i /-__‘T—_r__r_ 3 . A - —— %—?—1
” W - %#% o W 80 [i —e—rp ()
o w Ed 4 ==

50

a0 F-score(2)

7X
/) SN

! T
1 | /
T /A t T4,
// ___"_‘___: 30 / \ 1 30 +—f /\i‘ 40 i Fos0rE(1)
—#—F-score(0.5,
20 T 20 20 / \ (0]
/ 4 / M / | ——————e 20 T
10 10 10 +
of t
d . y 1 ‘ _b-ﬁ_._._.
Q T T T T T 0 T T T T T T T | 0 T T T T T T T 1 a = T T T T T T 1
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Training traces #Training traces #Training traces #Training traces
(a) (b {c) (d)

Figure 9: FN, FP and F-Score variations based on number of training traces for OpenAPS across tools; (a) Daikon, (b) Texada,
(c) Perfume and (d) ARTINALI X-axis is the training set size.

100 systems respectively. We can observe that in both CPSes, the use of
ZZ] i the ARTINALI-generated invariants lead to significantly less false
70 positives compared to the invariants generated by the other tools.
50 I 8 Data mutation More precisely, ARTINALI provides a 20% to 48% improvement of
: :2’?:"_"“:”‘“ the FP ratio for SEGMeter, a 16% to 39% improvement of the FP
50 ‘A;g‘:;te: :j ratio for OpenAPS, and averagely 30.75% improvement of the FP
20 ratio for both platforms over the other tools.

12 e These results can be explained by the fact that ARTINALI lever-
Dlkon Tewsda Perfume ARTINAL ages the correlations among data, event and time dimensions during

correct system behavior to generate more stable invariants. ARTI-
NALI infers event invariants that precisely describe the ordering of
events in a sequence within an execution flow, and then associates
data and time constraints to the events within every path (D|E and
E|T). Therefore, during normal operation, the system is unlikely to
follow the same path with different associated data and time val-
ues in a given execution, which in turn, reduces the probability of
8 0ata mutation false positives. Although the IDS uses the same traces for all tools,
sranchflipging none of these tools other than ARTINALI look at the relational
Hmenideay constraints of both data and time along the events’ paths, resulting
in a higher ratio of false positives.

While the FP ratio for the ARTINALI-based IDS is lower than

Figure 10: FN(%) of IDS for SEGMeter for different attack
types across the tools. Error bars are shown for the 95% con-
fidence interval.

| Aggregated FN

P — ﬁ the other tools, it is still high for both platforms. To reduce the FP

ratio, one can deploy multiple variants of the code and switch to a

Figure 11: FN(%) of IDS for OpenAPS for different attack different variant when an attack is detected. If the invariant is not
types across the tools. Error bars are shown for the 95% con- violated in the second version, it may be a false positive. Another
fidence interval. solution is to remove invariants that exhibit high FP ratios [7], but

this may also increase the FN ratio.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 9: Memory and performance overhead of IDS, seeded
by ARTINALI and the other tools, running on SEGMeter.

Daikon Texada Perfume ARTINALI

Memory usage (MB) 1.24 3.21 3.94 2.96
Tracing overhead(%) 22.6 13.4 18.8 233
Detector overhead(%) 4.7 10.3 13.3 8.3

Overall overhead(%) 27.3 23.7 32.08 31.6
Full cycle execution(s) 60.94 60.94 60.94 60.94
IDS execution time(s) 16.63 14.45 19.57 19.25

6.5 RQ4. Memory Overhead

We measured the memory consumption of our IDS running on the
SEGMeter platform, using the invariants generated by different
tools. We also calculated the number of invariants that ARTINALI
and the other tools inferred for both platforms. Our results are
shown in Table 9 (“Memory usage” row). Generally, invariants
that involve two or more dimensions (e.g., E|T invariants) carry
more information than the invariants of one dimension (e.g., event
invariants), and hence are more complex. We observe that the
memory usage grows as the number and complexity of invariants
increases. For example, the IDS consumes the maximum memory
usage (3.94 MB) when it uses the Perfume-generated invariants,
which straddle two dimensions, and have the maximum number
of invariants (158 - Table 2). Overall, we find that the memory
consumption of the IDS with ARTINALI-generated invariants is
lower than those with Perfume or Texada-generated invariants,
but higher than those with Daikon-generated invariants. However,
the memory usage for all tools is much lower than the available
memory in SEGMeter (16 MB).

6.6 ROQ5. Performance Overhead

In this section, we discuss the performance overhead of our IDS
running on the SEGMeter platform. Recall that the IDS consists of
two components, namely tracing module and intrusion detector
module. Table 9 (middle part) shows the overheads of the two
modules separately for each tool. Each of these measurements is
an average of the overhead of 10 execution traces for each tool,
where an execution trace is defined as one complete execution
of the meter’s main loop. We find that ARTINALI and Perfume
have the highest aggregate overhead, followed by Daikon, and then
Texada. The difference in the overhead is due to the difference in
the tracing module, which needs to collect both event and data/time
information for ARTINALI and Perfume, compared with Texada
(events only), and Daikon (data only).

In addition to the performance overheads, the IDS execution
time should be lower than the execution time of the system’s cycle,
or else it will be unable to keep up with the system. We measure
the raw execution times of a full cycle in Table 9 (last part). As can
be seen from the table, the entire cycle takes about 60 seconds (1
minute). However, the execution of the IDS for each tool takes less
than 20 seconds even in the worst case (for Perfume), which is only
a third of execution time of the full cycle. Therefore, the IDS is not
a bottleneck in any of the four systems, and is easily able to keep
up with the system.

Maryam. R. Aliabadi et. al.

Note that the invariant mining process takes place offline, and
hence does not contribute to the performance overhead of the
IDS running on the CPS platform. Nonetheless, we measured the
time to mine invariants using ARTINALL on a standard desktop
system (Intel core i7 processor with 32 GB RAM). We found that
the time ranges from 8 to 96 seconds in SEGMeter, and from 6 to
36 seconds in OpenAPS. Though this overhead may be higher for
larger systems, this process needs to be done only on a code update.

7 DISCUSSION

In this section, we first examine the threats to the validity of our ex-
periments, followed by reflections on ARTINALI’s generalizability.

Threats to Validity: An external threat to the validity is the
limited number of CPS platforms considered (two). However, as we
have mentioned, finding CPS platforms that are publicly available
and security critical is a challenge. We have attempted to mitigate
this threat by choosing two fairly diverse platforms, with different
tradeoffs in terms of FP and FN ratios. We acknowledge that these
platforms exhibit somewhat simple behaviors - however, many
CPSes fall into this category [12]. An internal threat to validity is in
our evaluation of the efficacy of the invariants for attack detection
through fault injection experiments. While not necessarily repre-
sentative of all security attacks, fault injection allows us to emulate
the behavior of potential attackers without biasing the evaluation
towards known vulnerabilities (at the time of the evaluation). We
have attempted to mitigate this threat by using mutation operators
that were used for emulating attacks in prior work [38]. Finally, a
construct threat to validity is the evaluation metrics used for mea-
suring efficacy. FP and FN ratios have however been used in a lot
of prior work on intrusion detection, as have F-scores, and hence
we do not believe this is a significant threat. Another potential
construct threat is the choice of tools we use for comparing with
ARTINALL but we mitigated this to an extent by first systematically
classifying the space of invariant detection techniques, and then
choosing the tools in each category.

Generalizability of ARTINALIL: ARTINALI relies upon two
features, namely event-based semantics, and conditional indepen-
dence of time and data (Section 3.2). Events are operations that
involve interaction with the outside world. Event-based semantics
implies that every event takes place in a unique time frame, and
hence, there is no concurrency among event executions. Secondly,
ARTINALI assumes an event occurs at a specific time interval, and
subsequently, data variables are assigned to specific values. Thus,
the time and data corresponding to a particular event, are condi-
tionally independent regardless of the dependency among events.
These two features are a common paradigm for CPSes, and hence
ARTINALI can be generalized to other CPS platforms.

However, ARTINALI is not applicable to non-CPS platforms
for two reasons. First, the non-concurrency of events does not
hold in non-CPS platforms such as mobile phones. Secondly, CPS
events have limited functionality, and hence inferring invariants
for each event is straightforward. Unlike CPSes, in general real-
time systems, tasks can be of unbounded complexity. Furthermore,
general purpose computers with full preemptive (i.e., non-real-
time) operating systems have a large space of behaviors. Therefore,
learning invariants for such systems is challenging.

ARTINALI: Dynamic Invariant Detection for Cyber-Physical System Security

8

CONCLUSION

Cyber-physical systems (CPSes) are becoming increasingly subject
to security attacks due to their interconnectedness and relative lack
of protection. In this paper, we attempt to use dynamic invariant
detection techniques to build intrusion detection systems for CPSes.
Our key insight is that time is a first class constraint in CPS systems,
and hence we incorporate time into the invariants, in addition
to data and events. We devise an efficient algorithm for learning
invariants over the three dimensions of data, events and time, and
implement it in a tool called ARTINALL We demonstrate the use of
ARTINALI on two CPS platforms for intrusion detection. We find
that ARTINALI has significantly lower false negatives and false
positives than other dynamic invariant detection tools.

ACKNOWLEDGEMENT

This work was supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), and the MITACS.

REFERENCES

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

2011. Smart energy groups home page. http://smartenergygroups.com.. (2011).
2014. Perfume User Manual. http://people.cs.umass.edu/~ohmann/perfume/.
(2014).

2016. Texada User Manual. https://bitbucket.org/bestchai/texada/. (2016).

2017. ARTINALI Invariant Detector. (2017). https://github.com/karthikp-ubc/
Artinali

2017. The Daikon Invariant Detector User Manual. https://plse.cs.washington.
edu/daikon/download/doc/daikon.html. (2017).

Maryam Raiyat Aliabadi and Karthik Pattabiraman. 2016. FIDL: A Fault Injection
Description Language for Compiler-Based SFI Tools. In International Conference
on Computer Safety, Reliability, and Security. Springer, 12-23.

Leonardo Aniello, Claudio Ciccotelli, Marcello Cinque, Flavio Frattini, Leonardo
Querzoni, and Stefano Russo. 2016. Automatic Invariant Selection for Online
Anomaly Detection. In International Conference on Computer Safety, Reliability,
and Security. Springer, 172-183.

Robin Berthier, William H Sanders, and Himanshu Khurana. 2010. Intrusion
detection for advanced metering infrastructures: Requirements and architectural
directions. In Smart Grid Communications (SmartGridComm), 2010 First IEEE
International Conference on. IEEE, 350-355.

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-
dayoshi Kohno, and others. 2011. Comprehensive Experimental Analyses of
Automotive Attack Surfaces.. In USENIX Security Symposium. San Francisco.
Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy:
Dynamic symbolic execution for invariant inference. In Proceedings of the 30th
international conference on Software engineering. ACM, 281-290.

Barthélémy Dagenais and Martin P Robillard. 2010. Creating and evolving
developer documentation: understanding the decisions of open source contribu-
tors. In Proceedings of the eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering. ACM, 127-136.

Patricia Derler, Edward A Lee, and Alberto Sangiovanni Vincentelli. 2012. Mod-
eling cyber—physical systems. Proc. IEEE 100, 1 (2012), 13-28.

John Eidson, Edward A Lee, Slobodan Matic, Sanjit A Seshia, and Jia Zou. 2010. A
time-centric model for cyber-physical applications. In Workshop on Model Based
Architecting and Construction of Embedded Systems (ACES-MB). 21-35.

Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. 2001.
Dynamically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering 27, 2 (2001), 99-123.

Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 636-654.

Mark Gabel and Zhendong Su. 2008. Symbolic mining of temporal specifications.
In Proceedings of the 30th international conference on Software engineering. ACM,
51-60.

Gosta Grahne and Jianfei Zhu. 2005. Fast algorithms for frequent itemset mining
using fp-trees. IEEE transactions on knowledge and data engineering 17, 10 (2005),
1347-1362.

Ahmad Y Javaid, Weiqing Sun, Vijay K Devabhaktuni, and Mansoor Alam. 2012.
Cyber security threat analysis and modeling of an unmanned aerial vehicle
system. In Homeland Security (HST), 2012 IEEE Conference on Technologies for.
IEEE, 585-590.

[19

[20]

[21

[22]

(23]

[24

[29

[30

(31]

[40

[41

[42

[43

[44

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Hengle Jiang, Sebastian Elbaum, and Carrick Detweiler. 2013. Reducing failure
rates of robotic systems though inferred invariants monitoring. In Intelligent
Robots and Systems (IROS), 2013 IEEE/RSY International Conference on. IEEE, 1899
1906.

Hermann Kopetz and Giinther Bauer. 2003. The time-triggered architecture. Proc.
IEEE 91, 1 (2003), 112-126.

Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, and others. 2010. Experimental security analysis of a modern automo-
bile. In 2010 IEEE Symposium on Security and Privacy. IEEE, 447-462.

Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson Engler.
2006. From uncertainty to belief: Inferring the specification within. In Proceedings
of the 7th symposium on Operating systems design and implementation. USENIX
Association, 161-176.

Neal Leavitt. 2010. Researchers fight to keep implanted medical devices safe
from hackers. Computer 43, 8 (2010), 11-14.

Caroline Lemieux. 2015. Mining temporal properties of data invariants. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2.
IEEE, 751-753.

Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. 2015. General LTL
Specification Mining (T). In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on. IEEE, 81-92.

Dana Lewis. 2015. Introducing the# OpenAPS project. (2015).

Chunxiao Li, Anand Raghunathan, and Niraj K Jha. 2011. Hijacking an insulin
pump: Security attacks and defenses for a diabetes therapy system. In e-Health
Networking Applications and Services (Healthcom), 2011 13th IEEE International
Conference on. IEEE, 150-156.

Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzé. 2008. Automatic gen-
eration of software behavioral models. In Proceedings of the 30th international
conference on Software engineering. ACM, 501-510.

Stephen McLaughlin, Dmitry Podkuiko, Sergei Miadzvezhanka, Adam Delozier,
and Patrick McDaniel. 2010. Multi-vendor penetration testing in the advanced
metering infrastructure. In Proceedings of the 26th Annual Computer Security
Applications Conference. ACM, 107-116.

Robert Mitchell and Ing-Ray Chen. 2014. A survey of intrusion detection tech-
niques for cyber-physical systems. ACM Computing Surveys (CSUR) 46, 4 (2014),
55.

Gail C Murphy, David Notkin, and Kevin Sullivan. 1995. Software reflexion
models: Bridging the gap between source and high-level models. ACM SIGSOFT
Software Engineering Notes 20, 4 (1995), 18-28.

Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc Palyart,
Ivan Beschastnikh, and Yuriy Brun. 2014. Behavioral resource-aware model infer-
ence. In Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering. ACM, 19-30.

Antonio Pecchia, Stefano Russo, and Santonu Sarkar. 2017. Assessing Invariant
Mining Techniques for Cloud-based Utility Computing Systems. IEEE Transac-
tions on Services Computing (2017).

Jerome Radcliffe. 2011. Hacking medical devices for fun and insulin: Breaking
the human SCADA system. In Black Hat Conference presentation slides, Vol. 2011.
Florian Skopik, Zhendong Ma, Thomas Bleier, and Helmut Griineis. 2012. A sur-
vey on threats and vulnerabilities in smart metering infrastructures. International
Journal of Smart Grid and Clean Energy 1, 1 (2012), 22-28.

Sean W Smith. 2009. Security and privacy challenges in the smart grid. (2009).
Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. 2006. Beyond
accuracy, F-score and ROC: a family of discriminant measures for performance
evaluation. In Australasian Joint Conference on Artificial Intelligence. Springer,
1015-1021.

Farid Molazem Tabrizi and Karthik Pattabiraman. 2015. Flexible intrusion detec-
tion systems for memory-constrained embedded systems. In Dependable Com-
puting Conference (EDCC), 2015 Eleventh European. IEEE, 1-12.

Farid Molazem Tabrizi and Karthik Pattabiraman. 2016. Formal security analysis
of smart embedded systems. In Proceedings of the 32nd Annual Conference on
Computer Security Applications. ACM, 1-15.

Carolyn Talcott. 2008. Cyber-physical systems and events. In Software-Intensive
Systems and New Computing Paradigms. Springer, 101-115.

Joachim Wegener and Matthias Grochtmann. 1998. Verifying timing constraints
of real-time systems by means of evolutionary testing. Real-Time Systems 15, 3
(1998), 275-298.

Westley Weimer and George C Necula. 2005. Mining temporal specifications
for error detection. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 461-476.

Ye Yan, Yi Qian, Hamid Sharif, and David Tipper. 2012. A survey on cyber security
for smart grid communications. IEEE Communications Surveys & Tutorials 14, 4
(2012), 998-1010.

Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das.
2006. Perracotta: mining temporal API rules from imperfect traces. In Proceedings
of the 28th international conference on Software engineering. ACM, 282-291.

