
Detecting Unknown Inconsistencies
in Web Applications

Frolin S. Ocariza, Jr. Karthik Pattabiraman Ali Mesbah
University of British Columbia, Vancouver, BC, Canada

{frolino, karthikp, amesbah}@ece.ubc.ca

Abstract—Although there has been increasing demand for
more reliable web applications, JavaScript bugs abound in web
applications. In response to this issue, researchers have proposed
automated fault detection tools, which statically analyze the web
application code to find bugs. While useful, these tools either
only target a limited set of bugs based on predefined rules, or
they do not detect bugs caused by cross-language interactions,
which occur frequently in web application code. To address this
problem, we present an anomaly-based inconsistency detection
approach, implemented in a tool called HOLOCRON. The main
novelty of our approach is that it does not look for hard-coded
inconsistency classes. Instead, it applies subtree pattern matching
to infer inconsistency classes and association rule mining to
detect inconsistencies that occur both within a single language,
and between two languages. We evaluated HOLOCRON, and it
successfully detected 51 previously unreported inconsistencies –
including 18 bugs and 33 code smells – in 12 web applications.

Index Terms—JavaScript, fault detection, cross-language inter-
actions

I. INTRODUCTION

The JavaScript programming language has rapidly grown
in popularity over the past decade, even topping the “Most
Popular Technologies” category of the two most recent Stack-
Overflow Developer Surveys [1]. Although JavaScript pro-
gramming has extended to the full web stack, its most frequent
usage remains at the client-side. Unfortunately, despite its
popularity, JavaScript is still notoriously error-prone [2], and
these errors often lead to high-impact consequences such as
data loss and security flaws [3], [4]. To mitigate this problem,
web developers rely heavily on testing, and many tools have
been developed for testing [5], [6], [7], [8], [9].

To complement testing, developers use static code analysis
tools, which find bugs by reasoning about the program,
without having to execute it. Several techniques have been
proposed to automatically detect JavaScript bugs through static
analysis. For example, JSLint [10] detects syntactic errors in
JavaScript programs; Jensen et al. [11], [12] analyze JavaScript
code to find type inconsistencies; Ocariza et al. propose
Aurebesh [13] for automatically detecting inconsistencies in
AngularJS web applications. A common issue with the above
techniques is that they detect bugs based on a predefined
list of inconsistency rules or bug patterns. As a result, the
issues they detect will be limited to those encompassed by
these hardcoded rules. This is especially problematic for web
applications which use a wide variety of frameworks (e.g.,
AngularJS, BackboneJS, Ember) and libraries, each with its
own coding rules and conventions. Moreover, web frameworks

typically evolve fast, and hence hardcoded rules may become
obsolete quickly, thereby necessitating expensive updates.

In this paper, we propose an anomaly-based inconsistency
detection approach for JavaScript-based web applications.
Anomaly-based approaches [14] learn the rules based on code
samples, and can hence find unknown inconsistencies without
hardcoded rules or patterns. Our approach differs from prior
anomaly-based approaches in that it is cross-language and can
hence find inconsistencies within and between two different
languages, namely HTML and JavaScript. Prior work has
shown that many cross-language interactions are highly error-
prone in web applications [3], and hence it is important to
consider such cross-language inconsistencies. In addition to
bugs, JavaScript is also prone to code smells [15], which are
pieces of code that are difficult to maintain, and are therefore
prone to becoming an error when the code is modified. These
code smells often also manifest as inconsistencies, particularly
when there is a deviation in the code style. Therefore, by
applying inconsistency detection, we can also detect (many)
code smells, because our approach looks for code deviations.

We focus on detecting inconsistencies in MVC applications
– that is, web applications implemented using JavaScript
Model-View-Controller (MVC) frameworks such as Angu-
larJS, BackboneJS, and Ember.js. We target these MVC frame-
works due to their rising popularity [16], and because they do
not interact directly with the DOM (Document Object Model).
This makes them more amenable to static analysis than non-
MVC applications. We make the following contributions:

(1) We demonstrate that there are many inconsistency
classes in MVC applications, and that there is no single
inconsistency class that dominates over the others. Further,
many of these inconsistencies span multiple programming
languages, thereby motivating approaches such as ours;

(2) We propose a technique for automatically detecting
inconsistencies in JavaScript MVC applications. Unlike prior
work, our approach does not look for hard-coded inconsistency
classes, but instead uses subtree pattern matching to infer these
classes. Further, it uses association rule mining to find the
cross-language links;

(3) We implement our technique in a tool called HOLOCRON
and we evaluate it on 12 JavaScript applications, from three
different MVC frameworks. We find that HOLOCRON can find
a total of 18 unknown bugs in these applications, five of which
are cross-language. Further, HOLOCRON finds 33 code smells
in these applications.

II. BACKGROUND AND MOTIVATION

We target a general class of bugs that we call inconsisten-
cies, in JavaScript MVC applications. As the name suggests,
an MVC application consists of a model, which defines the
application data; a controller, which defines the functions that
manipulate the values of the application data; and a view,
which uses the data and functions defined in the model and
controller to define a user interface. Static analysis is sufficient
for MVC applications, as they rely primarily on JavaScript
bindings instead of DOM interactions; hence, even though
the DOM still changes, the JavaScript code interacts primarily
with these static bindings instead of directly with the DOM.

A. Definitions

We define a code component to be any contiguous piece of
JavaScript or HTML code that could span a single line (e.g.,
function call, HTML text, etc.) or multiple lines (e.g., function
definition, view definition, etc.). These code components can
be represented by subtrees of the JavaScript code’s Abstract
Syntax Tree (AST) or the HTML code’s DOM representation;
we use these subtrees in our design (Section III).

Definition 1 (Inconsistency): Two code components CA and
CB are inconsistent if CA makes an erroneous assumption about
CB, where the erroneous assumption can be implicitly inferred
from the code (e.g., without having to rely on specifications).
The pair (CA, CB) is an inconsistency.

Therefore, an inconsistency is a bug that can be discovered
without the help of external specifications, and hence can be
detected through an automated analysis of the web application
code. An inconsistency is considered cross-language if CA and
CB belong to different programming languages, i.e., in our
work, HTML and JavaScript.

Ideally, we would like to be able to label a web application
as inconsistent by using a search approach that finds all
inconsistent code components as described above. However, no
such approach currently exists, nor do we aim to propose such
an approach in this paper. Our goal, rather, is to find as many
of these inconsistencies as possible by detecting anomalies
in the AST and the DOM. The approach is described in
Section III, and its differences compared to other anomaly
detection techniques are outlined in Section VII.

A recent study provides some evidence that four classes
of these inconsistencies occur in MVC applications [13].
For example, the view components in the HTML code use
variables that are erroneously assumed to be defined in the
model components in the JavaScript code. In Section V-D, we
find through a study of bug reports that these inconsistencies
abound in MVC applications, and often go much beyond the
classes found in this prior study. Thus, this prior approach will
not work for these other classes.

B. Motivating Examples

To illustrate the problem, we introduce examples of two real
bugs and one code-smell that result from inconsistencies.
AngularJS Example. In this application [17], the JavaScript
code closes a modal instance by calling the close() method:

1 $modalInstance.close('close');

However, this leads to incorrect application behaviour (i.e., a
dialog box becomes broken), as the $modalInstance service
has been replaced in the newer version of AngularJS being
used by the application by $uibModalInstance. In this
case, the function call above incorrectly assumes that the
service object being dereferenced is valid, thereby leading
to the inconsistency. This example demonstrates the potential
usefulness of a learning-based approach for finding these
inconsistencies, as the evolution of framework APIs often
modifies or introduces new coding rules.

BackboneJS Example. In this application [18], the JavaScript
code is attempting to bind an element from an HTML view
template to a layout view object by assigning the el property
with an element selector, as shown below.

1 Marionette.LayoutView.extend({
2 el: '.some -view',
3 ...
4 });

In this case, the selector ’.some-view’ does not correspond
to any element in the HTML template, which causes the
binding to fail. In other words, the view incorrectly assumes
that a particular element with the class “some-view” is defined
in the HTML template. This shows the difficulty of reasoning
about consistency across languages.

Code Smell. Code smells are important because if ignored,
they are prone to turning into bugs, and can therefore lead the
program to a faulty state. These code smells often manifest
as inconsistencies in the JavaScript code, particularly when a
piece of code is ‘smelly’ because a coding style is applied to
it that deviates from the coding style adhered to in the rest
of the code. For example, consider a function func() that
takes a number as a parameter. Suppose that in most calls
to func(), the argument is passed to func() as a named
constant NUM; however, in one sole call, the argument is passed
to func() as a hardcoded number literal, with the same value
as NUM. When the developer updates the value of NUM, they
may forget that the number literal in the latter call also needs
to be updated, since it is an additional portion of the code that
needs to be kept track of; in this case, a functional regression
will be introduced. This example, which we discover to exist
in several applications as we report later in Section V-E,
demonstrates that it is not only functional bugs that manifest
as inconsistencies, but code smells as well.

C. Challenges

One of the main challenges is that we need to infer program-
mer intent in order to label code components as inconsistent.
For example, in the AngularJS example above, how do we
know that $modalInstance is an incorrect service name in
the absence of specifications? One approach is to leverage
repeated appearances of the same code pattern to infer intent.
Any deviations from this pattern are likely to be inconsis-
tencies. Further, the more the examples of the same pattern,

JavaScript

HTML

Transform
AST and
DOM into
CodeTrees

Find Code
Patterns

from
Subtrees

Infer
Consistency

Rules
Detect Rule
Violations

Intra-Pattern
Rules

Link
Rules

Inconsistencies

Fig. 1. Overview of our inconsistency detection approach

and the fewer the counterexamples, the more likely it is to be
an actual pattern. In the AngularJS example, there are many
instances of $uibModalInstance.close(...), which is a
near-match, though the service name is different, indicating
that the service name $modalInstance is incorrect.

Another challenge is that we have to deal with cross-
language inconsistencies, as this forces our design to infer
“links” between code components coming from different pro-
gramming languages. For instance, in the BackboneJS example
above, our design needs to infer that the value of the el
property needs to be a selector for an element in the HTML
template. We can decide to simply hardcode this relationship
in our detector, but the problem is that this link is specific to
the BackboneJS framework.

III. APPROACH

The block diagram in Figure 1 presents an overview of
our approach. As the diagram shows, our approach takes
the web application’s1 JavaScript and HTML code as input,
and transforms these pieces of code into their corresponding
AST and DOM representations, respectively. As explained in
Section III-A, the AST and the DOM trees are transformed
into another tree object called a CodeTree, which allows the
approach to perform standardized operations on those trees. In
addition to the trees generated from the input web application,
our technique also retrieves the AST and DOM of other
web applications that use the same framework; these web
applications are retrieved from the web (Section III-C).

Once the CodeTrees are generated for the input and sample
code, the approach analyzes the trees to find commonly
repeated patterns in the trees (Section III-B). To do so, it
looks for subtree repeats, which by definition are subtrees that
appear multiple times in the CodeTrees; these subtree repeats
represent common code patterns in the web application.

After finding the subtree repeats, the approach examines
each code pattern found in the previous module and formulates
consistency rules based on them. There are two levels of
consistency rules, (1) intra-pattern consistency rules, which
are defined by the individual code patterns themselves, and
(2) inter-pattern consistency rules (i.e., link rules), which are
inferred based on pairs of code patterns. These link rules allow

1From here on, when we say web application, we mean MVC applications.

our approach to find consistency rules that span code written
in different languages (Section III-D), unlike prior work.

Finally, our approach finds inconsistencies, based on a
comparison between the CodeTree objects and the inferred
consistency rules (Section III-E). These represent both code
smells and bugs. Later, in Section V, we demonstrate the
usefulness of our approach in detecting bugs and code smells.

A. Transforming Code into Trees

The first module of our approach transforms the JavaScript
and the HTML code of the input web application into their cor-
responding AST and DOM representations. More specifically,
an AST is constructed for each JavaScript file (or JavaScript
code within the same script tag), and a DOM representation
is created for each HTML file. These transformations are done
to simplify analysis, as trees are a well-studied data structure
for which many search and comparison algorithms have been
proposed. It also makes our approach easier to extend to other
languages, as it does not need complicated parsing algorithms
that rely on knowledge of the syntax of specific languages.

In order to standardize the way that our approach operates
on the ASTs and the DOMs, we transform them both into a
data structure called the CodeTree. A CodeTree is defined as
a tree T (V,E), where V is the set of nodes in the tree, and E
is the set of edges. For every node v ∈V , we define:

v.type: Set to “ast” (”dom”) if v is an AST (DOM) node;
v.label: Set to the node label. If v is an AST node, the

label is set to either the node type (e.g., ExpressionStatement,
Identifier, etc.), or the corresponding identifier or literal value.
If v is a DOM node, the label is set to a tag name (Element
node), attribute name (Attribute node), or text (Text node,
or an attribute value);

In addition to the above properties, for each CodeTree node,
we also keep track of its parent and childNodes, as well as
the lineNumber, columnNumber, and sourceFile.

B. Finding Common Patterns

The goal of our next module is to find patterns of repeating
subtrees in the CodeTrees. These patterns will form the basis
of the consistency rules. We first define the following:

Definition 2 (Subtree Repeats): Let T1,T2, ...,TN be
CodeTrees, and let R(Vr,Er) and S(Vs,Es) be two different
subtrees of any of these CodeTrees. Then, R and S are
defined to be subtree repeats of each other if R and S are
isomorphic, where two nodes are considered equal iff they
have the same type and label. Hence, each node vr ∈ Vr has
a corresponding node vs ∈ Vs such that vr.type = vs.type and
vr.label = vs.label.

Definition 3 (Code Pattern): A code pattern C is defined as
a set of subtrees, such that for every pair of subtrees R,S ∈C,
R and S are subtree repeats.

Hence, the goal of this module is to find all the code patterns
in the CodeTrees generated earlier in the previous module.
Our technique for finding these code patterns is similar to
the approach used by Baxter et al. [19] to detect clones in the
source code of a program using the AST. More specifically, our

design looks for all full subtrees in each CodeTree, and assigns
a hash value to each of these subtrees; note that a full subtree
pertains to a subtree that contains all the descendant nodes
from the subtree’s root. All subtrees that hash to the same
value are placed in their own hash bin. The subtrees in each
hash bin are then compared to detect any collisions; if there
are collisions, the hash bin is split to resolve the collisions.
These hash bins represent the code patterns.

The difference with Baxter et al.’s technique is that when
comparing subtrees, our design abstracts out the labels of
nodes pertaining to variable and function identifiers, as well
as attribute values. Our design also abstracts out any labels
that identify the data type of a literal node (e.g., StringLiteral,
NumberLiteral, etc.). Doing so enables our design to find intra-
pattern consistency rules (see Section III-D).

C. Using Code Examples from the Web

In addition to the target application, our design also looks
for patterns that are found in example web applications down-
loaded from web. The purpose of using these example ap-
plications is to allow code patterns to appear more frequently,
thereby giving our design greater confidence about the validity
of the pattern found. Further, using these examples will also
allow “non-patterns” to appear less frequently, percentage-
wise, thereby decreasing the rate of false positives.

The example web applications retrieved – chosen based on a
GitHub search result of the corresponding framework’s name
– must use the same framework and framework version as
the target web application, determined via the script tag of
the target web application. In addition, each application must
include at least one file with both a .html extension and a
.js extension, not including library code included in the lib
folder. In our experiments, we choose a total of five sample
applications, as we find that this number allows our technique
to find enough inconsistencies while keeping the runtime low
(see Section V-G).

D. Establishing Rules from Patterns

After finding the patterns, our design then analyzes these
patterns to infer consistency rules. In this case, the design
looks for both intra-pattern and inter-pattern consistency rules.

1) Intra-Pattern Consistency Rules: As mentioned earlier,
intra-pattern consistency rules are defined by individual code
patterns. Algorithm 1 shows the pseudocode for finding these
rules, and reporting violations. The main idea is to concretize
the nodes that were abstracted out in the previous module.

The algorithm first stores each code pattern in a queue
(line 2). For each code pattern C in the queue, the design
determines the earliest node – in depth-first, pre-order – that
is still abstracted out among the subtrees in C. It achieves this
by calling the getNextNodeToConretize() function, which
returns the pre-order number of the earliest node (line 5).
Once the pre-order number of the earliest node is determined,
the actual nodes in the subtrees in C that correspond to this
pre-order number are compared and marked as concretized
(lines 11-12), and the subtrees are partitioned according to the

Algorithm 1: FindIntraPatternInconsistencies
Input: Cset : The set of code patterns
Input: t: The threshold for dominant subpatterns
Output: PI: Set of intra-pattern inconsistencies

1 PI ← /0, remaining ← /0;
2 codePatternQueue ←{C |C ∈Cset};
3 while codePatternQueue is not empty do
4 C ← codePatternQueue.dequeue();
5 preorderNum ← getNextNodeToConcretize(C);
6 if preorderNum < 1 then
7 remaining ← remaining∪{C}; continue;
8 end
9 subPatterns ← /0;

10 foreach subtree S ∈C do
11 node ← getPreOrderNode(S, preorderNum);
12 markAsConcretized(node);
13 if subPatterns.hasKey(node.label) then
14 subPatterns[node.label].add(S);
15 end
16 else
17 subPatterns[node.label] = {S};
18 end
19 end
20 D ← getDominantPattern(subPatterns);
21 if 100 |D||C| >= t then
22 expected ← getPreOrderNode(D[0], preorderNum);
23 foreach code pattern CP ∈ subPatterns do
24 if CP 6= D then
25 foreach subtree S ∈CP do
26 inc ← getPreOrderNode(S, preorderNum);
27 PI ← PI∪{(inc,expected)};
28 end
29 end
30 end
31 codePatternQueue.enqueue(D);
32 end
33 else
34 codePatternQueue ← codePatternQueue∪ subPatterns;
35 end
36 end
37 Cset ← mergeRemaining(remaining);

label of the concretized node (lines 13-18). The partitions are
included in an associative array called subPatterns (line 9).

Once the partitions are found, the algorithm looks for
the dominant pattern, which represents the largest partition
(line 20). If the number of subtrees in the dominant pattern
constitutes greater than t% of all the subtrees in the original
code pattern C, where t is a user-set threshold, all the subtrees
belonging to the non-dominant patterns are considered intra-
pattern inconsistencies (lines 22-32) and are discarded; here,
an intra-pattern inconsistency is represented by a tuple of the
inconsistent node – i.e., the node that was just concretized in
the inconsistent subtree – and the expected node – i.e., the
node that was just concretized in any subtree belonging to the
dominant pattern (line 27). This process is repeated until there
are no further nodes to concretize, after which all remaining
partitions belonging to the same original code pattern at the
start of the algorithm are merged (line 37).

As an example, consider the subtrees in Figure 2, which
form a code pattern; this code pattern is found in the AngularJS
example introduced in Section II-B. Here, the current node
being concretized is the left-most leaf node of each subtree,
which, in this case, represents the name of the service being
dereferenced. The subtrees are then partitioned according to
the label of this concretized node. In this case, there are two
partitions – one containing the left-most subtree, with the

CallExpression

MemberExpression StringLiteral

Identifier Identifier "close"

$modalInstance close

CallExpression

MemberExpression StringLiteral

Identifier Identifier "close"

$uibModalInstance close

...

CallExpression

MemberExpression StringLiteral

Identifier Identifier "close"

$uibModalInstance close

CallExpression

MemberExpression StringLiteral

Identifier Identifier "close"

$uibModalInstance close

Fig. 2. Example of an intra-pattern consistency rule violation

Algorithm 2: FindLinkRules
Input: (C f rom,Cto): Pair of code patterns
Output: L: Set of link rules

1 L ← /0;
2 foreach (S f rom,Sto) ∈C f rom×Cto do
3 i← 1;
4 node f rom← getPreOrderNode(S f rom, i);
5 while node f rom 6= null do
6 j← 1;
7 nodeto← getPreOrderNode(Sto, j);
8 while nodeto 6= null do
9 if node f rom 6= nodeto and node f rom.label = nodeto.label then

10 lr ← (i,S f rom, j,Sto);
11 L ← L∪{lr}
12 end
13 nodeto← getPreOrderNode(Sto, ++ j);
14 end
15 node f rom← getPreOrderNode(S f rom, ++i);
16 end
17 end

concretized node coloured red, and another containing the rest
of the subtrees, with the concretized node coloured blue. The
latter partition is deemed to be dominant, so the subtree in the
other partition is labeled as inconsistent.

2) Inter-Pattern Consistency Rules (i.e., Link Rules): In
addition to finding the intra-pattern consistency rules, our
design also looks for consistency rules that describe the
relationship between code patterns - we call these link rules.
This process allows our design to find relationships between
pieces of code in the same programming language and across
languages, i.e., cross-language relationships. All link rules are
of the following form: The ith pre-order node in Subtree S1
is equal to the jth pre-order node in Subtree S2. Our design
finds the link rules for each pair of code patterns (C f rom,Cto),
as shown in Algorithm 2. In this case, the algorithm iterates
through every pair of subtrees between the two code patterns
(line 2). For each of these pairs of subtrees, the algorithm goes
through every pair of nodes between the two subtrees (lines 3-
16), and compares the two nodes to see if they have the same
label. If they have the same label, a new link rule is added to
the list, uniquely identified by the subtree pair S f rom and Sto,
and their respective pre-order indices i and j.

E. Detecting Violations

Violations to the intra-pattern consistency rules are detected
in conjunction with finding those rules, as described in Sec-
tion III-D1. For the link rules, we make a distinction between
unconditional and conditional link rule violations.

1) Unconditional Link Rule Violations: A link rule viola-
tion is unconditional if the link rule is violated by a code
component regardless of where the component is located
in the code. The BackboneJS example (Section II-B) is an

unconditional link rule violation. To determine whether a link
rule lr is violated, our design examines each pair of code
patterns C f rom and Cto, as before. It then determines which
pairs of subtrees between C f rom and Cto satisfy lr. There are
two ways in which a subtree can be an inconsistency.

First, if a subtree S f rom ∈ C f rom does not satisfy the link
rule lr when paired with any subtree Sto ∈ Cto, and a large
percentage pv% (a parameter chosen by the user) of the other
subtrees in C f rom satisfy lr at least once, then S f rom will
be considered an inconsistency. For instance, the left box in
Figure 3 shows the code pattern to which the inconsistent
code in the BackboneJS example (Section II-B) belongs. As
indicated by the arrows in this figure, almost each subtree in
this code pattern corresponds to a class attribute definition in
the HTML code (right box in Figure 3); the only exception is
the subtree with the node highlighted in red (‘‘some-view’’).
This subtree is labeled an inconsistency, assuming pv≤ 75%.

el

Property

"some-view"

el

Property

"some-region"

el

Property

"layout"

el

Property

"main"

Attribute

class"some-region"

Attribute

class"layout"

Attribute

class"main"

Code Pattern from the
HTML Code

Code Pattern from the
JavaScript Code

Fig. 3. Example of an unconditional link rule violation. The subtrees are
slightly altered for simplicity.

Second, if a subtree S f rom ∈C f rom does not satisfy the link
rule lr when paired with a specific subtree Sto ∈ Cto, and a
large percentage of the other subtrees in C f rom satisfy the link
rule lr with Sto, then S f rom will also be an inconsistency.

2) Conditional Link Rule Violations: A link rule violation
is conditional if the link rule is violated given that the code
component is located in a specific area in the code. For
example, suppose a view V in the HTML code is associated
with a model M in the JavaScript code. Further, suppose
that the following link rule has been found: The identifier
<x> in the subtree with pattern ng-model=‘<x>’ is equal
to the identifier <y> in the subtree with pattern $scope.<y>.
In this case, if there exists no subtrees in the model M with
pattern $scope.<y> that matches a certain subtree in the view
V with pattern ng-model=‘<x>’, then this latter subtree is

considered a violation of the link rule (i.e., V is using an
identifier that is undefined in the corresponding model M).
Because this link rule violation only occurs given that the
subtrees being compared are located in M and V , this is a
conditional link rule violation.

To find the conditional link rule violations, we use a well-
known data mining technique called association rule learn-
ing [20]. This technique takes a set of transactions as input,
where each transaction contains a set of items that apply to
that transaction. Based on an analysis of these transactions,
the technique looks for rules of the form {a1,a2, ...,an} ⇒
{b1,b2, ...,bm}, where both the left and right side of the
implication are subsets of all the items. In addition, the
technique only reports rules that exceed a particular confidence
value, i.e., the percentage of transactions that follow the rule.

Hence, when finding the conditional link rule violations
between pairs of code patterns C f rom and Cto, we create
a transaction for each subtree pair (S f rom, Sto). The items
included in each transaction include all the link rules satisfied
by the subtree pair, as well as the ancestor nodes of the
root of each subtree; these ancestor nodes dictate which
areas in the source code the subtrees are located. We use
the apriori algorithm [21] to infer association rules with a
confidence value greater than a user-set parameter cv%; we are
particularly interested in association rules of the form {an f rom,
anto} ⇒ {lr}, where an f rom and anto are ancestor nodes of the
subtrees S f rom and Sto, respectively, and lr is a link rule. These
rules are compared against each subtree pair; non-satisfying
subtree pairs are reported as inconsistencies.

IV. IMPLEMENTATION

We implement our technique in an open-source tool called
HOLOCRON2 HOLOCRON is implemented in JavaScript as a
plugin for Brackets, which is an Integrated Development Envi-
ronment (IDE) for web development developed by Adobe [22].
To use HOLOCRON, the user only needs to specify the top
folder of the target web application. The output of the tool
is a list of the inconsistencies found; each inconsistency is
shown to the user as a message identifying the inconsistent
line of code, and an example of what is expected based on the
consistency rule. The JavaScript code is parsed into an AST
using Esprima [23], and the HTML code is parsed into its
DOM representation using XMLDOM [24]. For finding the
association rules, we adopt an existing implementation of the
apriori algorithm [25].

V. EVALUATION

A. Research Questions (RQs)

RQ1 (Prevalence of Inconsistencies): Do inconsistencies
occur in MVC applications and if so, what are the
characteristics of these inconsistencies?

RQ2 (Real Bugs and Code Smells): Can HOLOCRON be
used by developers to detect bugs and code smells in
real-world MVC applications?

2http://ece.ubc.ca/∼frolino/projects/holocron/

RQ3 (Thresholds): How generalizable are the user-defined
thresholds across applications?

RQ4 (Performance): How quickly can HOLOCRON detect
inconsistencies?

B. Subject Systems

For our experiments which answer RQ2 to RQ4, we con-
sider four open-source applications from each of the three
main MVC frameworks (AngularJS, BackboneJS, and Em-
ber.js), for a total of 12 applications. These three frameworks
are the most widely used JavaScript MVC frameworks, ex-
periencing a 538% growth in popularity from January 2013
to April 2016 [26]. The applications are listed in Table I,
with the sizes ranging from 6 to 43 KB (185-1659 LOC).
These sizes are representative of popular MVC applications;
for example, a sample of 10 GitHub projects with at least 50
stars that use AngularJS (retrieved from the top 10 GitHub
’issue’ search results) has an average of 1689 lines of code,
and a median of 1104 LOC. In addition, half of these projects
have fewer than 1000 LOC, not including libraries. These
applications were taken from various lists of MVC applications
available on GitHub [27], [28], [29]. In particular, we chose
the first four applications from each framework found from
these lists, filtering out the applications that did not have a
GitHub repository and a working demo, as this simplified the
task of reproducing the functional bugs found by our tool.

C. Experimental Methodology

Prevalence of Inconsistencies (RQ1). To answer RQ1, we
manually analyze bug reports that have been filed for MVC
applications on GitHub. More specifically, we examine 30 bug
reports for applications implemented in each of the three main
MVC frameworks – AngularJS, BackboneJS, and Ember.js –
for a total of 90 bug reports. We only consider fixed or closed
bugs to prevent spurious reports. To find the bug reports, we
use GitHub’s advanced search feature, searching in particular
for GitHub issues that are given the label “bug”, and whose
status is “closed”. We perform the same search for each of
the three MVC frameworks, using the keywords “angularjs”,
“backbone”, and “emberjs”, respectively. We discard any
search results that correspond to applications not written in
any of these three frameworks, as well as results that do not
pertain to the web application’s client-side code. We then take
the first 30 bug reports that satisfy the conditions described
from each of the three search results, and use those bug reports
for our analysis. Note that we did not confine ourselves to
the 12 subject systems listed in Section V-B. Further, note
that even though HOLOCRON could be applied to the web
applications we encountered in RQ1, we opted not to use these
web applications as the subjects for RQ2-RQ4. This is because
the bugs are dispersed across many different web applications,
and it would be infeasible for us to perform tests on each one.

For each of the bug reports, we first determine whether the
bug corresponds to an inconsistency, as defined in Section II.
If so, we determine the bug’s inconsistency category, which is
defined in Section II-A; some categories may possibly contain

http://ece.ubc.ca/~frolino/projects/holocron/

only one inconsistency. We also determine whether the bug is
a cross-language one.
Real Bugs and Code Smells (RQ2). For RQ2, we run
HOLOCRON on the subject systems described in Section V-B
and record all the inconsistencies reported by the tool. We
examine each of these reported inconsistencies to determine
if it corresponds to a real bug (i.e., it represents an error
that leads the application to a failure state) or code smell. To
determine if a reported inconsistency represents a code smell,
we compare the reported inconsistency with the examples of
‘correct lines’ provided by HOLOCRON (Section IV), and we
qualitatively assess whether this deviation has any negative
impact on maintenance.

We set the intra-pattern violation threshold t to 90%, the
unconditional link rule violation thresholds pv to 95%, and
the conditional link rule violation threshold cv to 85%; in
Section V-F, we investigate the thresholds’ generalizability.

Finally, using the criteria outlined in Section III-C, we
use example code from five open-source web applications
to train the analysis with more samples. These five applica-
tions include the other three subject systems using the same
framework (e.g., if the target web application is angula-
r-puzzle, we include the three other subject systems that
also use AngularJS, namely projector, cryptography, and
twittersearch as example code), as well as two additional
applications – using the same MVC framework – found on
GitHub [27], [28], [29]. We report the number of bugs and
code smells found by HOLOCRON, as well as its precision
(i.e., number of bugs and code smells per inconsistency).
Thresholds (RQ3). To answer RQ3, we perform a 4-fold
cross-validation to test if the applications tested in RQ2 have
similar accuracy at the given thresholds (i.e., t = 90%, pv =
95%, and cv = 85%). If they have similar accuracy, it would
demonstrate the generalizability of the chosen thresholds,
which would strongly indicate they can safely be used when
running HOLOCRON for other applications. When perform-
ing the cross-validation, the applications are partitioned into
four groups, with each group containing three applications
(one from each framework). At each iteration of the cross-
validation, we use one partition as the training set, and we
calculate the aggregated precision value for the applications
in that partition; we then calculate the mean-squared error
(MSE) of the remaining applications’ precision values, with
respect to the aggregated value of the training set. Note
that we only consider the reported violations corresponding
to each parameter; for example, when varying the intra-
pattern violation threshold t, we only consider the intra-pattern
violations when calculating precision.
Performance (RQ4). We measure the time taken by
HOLOCRON to run on each subject application. We run our
experiments on a Mac OS/X 10.6.6 machine (2.66 GHz Intel
Core 2 Duo, with 4 GB RAM).

D. Prevalence of Inconsistencies (RQ1)
Of the 90 bug reports we studied, we found that 70% of

these bug reports correspond to an inconsistency. These did

AngularJS BackboneJS Ember.js All

Not Inconsistency
Inconsistency

MVC Framework

%
 o

f B
ug

 R
ep

or
ts

0
20

40
60

80
10
0

Fig. 4. Percentage of bug reports classified as an inconsistency for each MVC
framework

1 2 3 4 5 6 7

Frequency

N
um

be
r o

f C
at

eg
or

ie
s

0
5

10
15

20
25

30

Fig. 5. Number of inconsistency categories with a particular frequency. Most
inconsistency categories have just 1-2 inconsistencies in them. This shows
why we need an automated approach to infer the inconsistency categories.

not need the application’s specifications to detect, pointing to
the promise of a tool such as ours which finds inconsistencies.
For example, one of the Ember.js applications passed a modal
object to the buildUrl() method, even though this method,
which is part of the Ember.js API, expects a string as its
first parameter. This inconsistency could be inferred based on
other usages of the method which were correct. The remaining
30% of the bugs, however, required prior knowledge of the
application’s specifications. For example, one of the bugs was
caused by the fact that the programmer did not update the
display style of an element to “block”. Prior specification
was needed to establish that the programmer intended to
modify the style to “block”, and hence this bug would not
be detected by our approach.

The per-framework results are summarized in Figure 4. As
this figure shows, 73% of bug reports correspond to inconsis-
tencies for the AngularJS and Ember.js applications, and 63%
of bug reports correspond to inconsistencies for BackboneJS
applications. These results suggest that inconsistencies are
prevalent in web applications created using JavaScript MVC
frameworks. We further found that 35% of the inconsistencies
are cross-language. For example, one of the bugs resulted from
the programmer erroneously using the data-src attribute
instead of the src attribute in the HTML code, which led
to incorrect bindings with the JavaScript code. Therefore,
existing tools that are based on a single language will not be
able to detect a significant percentage of these inconsistencies.

Figure 5 shows the distribution of inconsistency categories
we found; again, an inconsistency category is uniquely iden-

TABLE I
NUMBER OF REAL BUGS FOUND PER APPLICATION, WITH

CORRESPONDING ISSUE NUMBERS IN PARENTHESES (SOME ISSUES ARE
AGGREGATED INTO ONE BUG REPORT). THE SIZE IS SHOWN IN KB, WITH

LINES OF CODE (LOC) IN PARENTHESES.

Framework Application Size (loc) # of Code Total
Bugs Smells

AngularJS angular-puzzle 20 (608) 3 (4,5) 3 8
projector 19 (569) 3 (1) 0 7
cryptography 20 (582) 1 (2) 0 2
twittersearch 10 (357) 1 (1) 0 1

BackboneJS cocktail-search 10 (396) 2 (13) 6 13
contact-manager 19 (701) 2 (1,2) 2 9
webaudiosequencer 43 (1659) 1 (1) 7 15
backbone-mobile 9 (240) 1 (3) 0 2

Ember.js todomvc 8 (299) 0 2 3
emberpress 21 (610) 2 (5,6) 11 22
giddyup 12 (386) 1 (189) 2 9
bloggr 6 (185) 1 (17) 0 4

OVERALL 18 33 95

tified by the two components that are inconsistent, as well as
the incorrect assumption made by one of the components. As
this figure illustrates, most inconsistency categories – which is
defined in Section V-C – appear only once in the bug reports
we studied; for example, 30 categories had only a single
inconsistency each. Further, we found a total of 41 different
inconsistency categories in our experiment. The large number
of categories suggests that there are many different rules that
are used by programmers in writing JavaScript MVC based
applications, and hence motivates an approach that discovers
the rules automatically (such as ours).

E. Real Bugs and Code Smells (RQ2)

Table I shows the result of running HOLOCRON on the
subject systems. In total, HOLOCRON was able to detect 18
unreported bugs from 12 MVC applications. We have reported
these bugs to the developers, with two of the bugs’ descriptions
acknowledged (i.e., those from cocktail-search), and the
rest still pending3; further, we were able to manually reproduce
the bugs and confirm them ourselves. As seen in this table,
HOLOCRON was able to find a bug in all of the applications
tested, except for one (todomvc). Further, HOLOCRON found
12 unconditional link rule violations, 4 conditional link rule
violations and 2 intra-pattern consistency rule violations. Thus,
HOLOCRON can be used by web developers to find bugs
representing various types of consistency rule violations.2

Further, out of 18 real bugs found, 5 were cross-language
inconsistencies. The bug in cryptography, for instance, re-
sults from an assignment in the JavaScript code incorrectly
assuming that an element in the HTML code has a numerical
value, even though it is a string. In addition, the bug in
twittersearch resulted from a controller in the JavaScript
code assuming that an input element in the HTML code has
its type attribute defined, which is not the case. Detection
of these cross-language inconsistencies is made possible by
HOLOCRON looking for link rules in the applications.

3Some of these applications are maintained sporadically, which could
explain the delay in response from the developers

In all, HOLOCRON was able to find bugs spanning fifteen
inconsistency categories. For example, the bug in giddyu-
p is caused by a property assignment erroneously assuming
that it has a corresponding route assignment in the Ember.js
router. In contrast, Aurebesh [13], which also targets MVC
applications, will not be able to detect this bug because (1)
it only considers four pre-determined inconsistency categories,
to which this inconsistency found in giddyup does not belong,
and (2) it only works for AngularJS applications, whereas g-
iddyup is developed with Ember.js. In total, Aurebesh only
detected two of the inconsistencies that HOLOCRON identified,
both from angular-puzzle, across all applications.

Finally, many of the bugs found have potentially severe
consequences on the application. For example, the bugs in
projector – which are caused by an incorrect assumption
about the type of value being assigned to an object property
– all cause the application to hang. Further, the bug in
webaudiosequencer, an audio player, makes an audio clip un-
playable after a sequence of input events. Thus, HOLOCRON
finds bugs that potentially have high impact on the application.

Code Smells. We also found that 33 of the reported incon-
sistencies correspond to code smells, the detection of which
could help the developer improve the quality of the code. The
code smells found in our evaluation belong to three categories:

An inconsistency is labeled as a “Hardcoded Constants”
(HC) code smell if (1) the inconsistent code uses a hardcoded
literal value in calculations and method calls; (2) other similar
pieces of code use a non-hardcoded value (e.g., variables,
named constants, etc.); and (3) the hardcoded literal value
could safely be replaced with a non-hardcoded value to make it
more maintainable. We found 15 instances of HC code smells.

Further, an inconsistency is labeled as an “Unsafe Value
Usage” (UVU) code smell if an object is dereferenced without
accounting for the possibility of it being null, even though a
null check is applied to similar objects in other parts of the
code, or a “safer” object is used to call the same method in
other parts of the code. For instance, in emberpress, one of
the inconsistencies occurs as a result of the get() method
being called directly through a model object repeatedly; this
is potentially unsafe if the object is null, and it is good
practice to call the method via the Ember object instead
(i.e., Ember.get()), as is done in other lines of code. We
found 14 instances of UVU code smells.

Finally, an inconsistency is labeled as a “Multi-Purpose
Identifiers” (MPI) code smell if the same identifier is being
used for multiple unrelated objects. This code smell manifests
as an inconsistency when the identifier is used in a specific
way in some parts of the code, but used in a different way in
another part of the code. For example, in angular-puzzle,
the identifier “src” is used both as a class name for a div
element in the HTML code and as a name for a puzzle object
in the JavaScript code. We found 4 instances of such smells.

Precision. Like most static analysis tools, HOLOCRON incurs
false positives (i.e., inconsistencies that are neither bugs nor
code smells). False positives occurred in all but one of the

applications (twittersearch). In total, HOLOCRON reported
95 inconsistencies, 51 of which were either real bugs or code
smells. Hence, approximately half the reports are potentially
useful in improving the web applications’ quality.

The remaining 44 reports are false positives. While the
false positive rate may seem high to users of static analysis
tools [30], [31], we believe that they will not deter significantly
the usability of HOLOCRON, based on our own analysis of the
false positives that appeared in our experiment. In particular,
we found that these false positives fall under two very specific
categories. First, we found that 22 of these 44 (i.e., half) false
positives occur because of frequent usage of certain kinds of
literals, contrasted with infrequent usage of another kind of
literal. For example, in projector, most of the object method
calls take string literals as parameters, but there are three such
calls that take number literals as parameters, which though
correct, are reported as inconsistencies. In our experiments, it
took us only an average of 1–2 minutes to discard each false
positive of this kind, without prior knowledge of the code base.

Additionally, the other 22 false positives occur because of
frequent usage of a certain identifier contrasted with infrequent
usage of another identifier. For instance, in angular-puzzle,
there are two main arrays, both of which are accessed through
the this identifier – words and grid. While grid is used
almost 20 times in the code, words is used only twice, leading
to the false positive. We found these false positives to be
trickier to discard – again, given our limited knowledge of
the code base – since it was not immediately clear to us
what certain identifiers are being used for; on average, it
took us about 5 minutes before deciding to discard false
positives of this kind. We strongly suspect, however, that those
familiar with the code base would also be able to discard
many of these false positives very quickly. For instance, in the
angular-puzzle example, it was evident that words should
not be replaced by grid, since words is being used in a
function whose purpose is to iterate through previously found
words in the puzzle (represented by words). Further, for each
inconsistency, HOLOCRON includes examples of the correct
lines of code that the reported inconsistency deviates from,
which would help the developers gain more context about why
the inconsistency is reported and determine if it is valid.

F. Thresholds (RQ3)

As mentioned earlier, we used 4-fold cross validation to
investigate the generality of the user-defined thresholds and
measured the MSE. The MSE can range between 0 and 1,
with lower values indicating lower error, and are hence better.
When setting the intra-pattern violation threshold to the one
used in RQ2 experiment (i.e., 90%), the average MSE = 0.198.

An MSE of 0.198 is non-negligible, as it indicates that
the precision can vary by as much as 40%. However, closer
investigation reveals that the aggregated precision for all the
applications when considering only intra-pattern violations is
50%, and only one application out of 12 fell below this average
(contact-manager). Similarly, when setting the unconditional
link rule violation threshold to 95%, the average MSE value is

0.126; the aggregated precision for all the applications when
considering only unconditional link rule violations is 67.35%,
and only three of the 12 applications (cocktail-search,
giddyup, and bloggr-client) fell below this precision value.
These results indicate that the error represented by the MSE
values primarily represent how much the aggregated precision
values are exceeded by the applications; for example, for the
intra-pattern inconsistencies, two of the applications (todom-
vc and giddyup) had perfect precision, and the remainder of
the applications had precisions within the range 50% to 60%.
Hence, the precision values reported earlier are conservative
ones, and the thresholds chosen work well across the appli-
cations, showing their generality. Note that the MSE value
is 0 when setting the conditional link rule violation threshold
to the chosen percentage (i.e., 85%), as the applications in
our experiment had perfect precision when only considering
conditional link rule violations.

G. Performance (RQ4)

We find that on average, HOLOCRON ran for 1.14 minutes
for each of the 12 applications. Because HOLOCRON will typ-
ically be run prior to deployment of the application, this is an
acceptable overhead. The worst-case overhead occurred with
webaudiosequencer – which is also the largest application
– where HOLOCRON ran for almost 8 minutes; however, note
that many popular MVC applications are smaller in size than
this on average (Section V-B). In this case, most of the time
was spent on finding the link rule violations, as all pairs of
subtree classes are compared with each other, as well as all
subtrees within these classes.

H. Threats to Validity

An external threat to validity is that we used a limited
number of applications in our evaluation. To mitigate this
threat, we chose applications coming from three popular MVC
frameworks, sizes, and various application types, as seen in
Table I. Further, for our study of bug reports in RQ1, we
categorize the inconsistencies based on a qualitative analysis
of the reports, some of which may be misleading. To mitigate
this, we also look at other aspects of the bug, including patches
and commits associated with the bug. Finally, the bugs that
we studied for RQ1 are limited to fixed bugs with the label
“bug” and with the status “closed”; however, many GitHub
developers do not label bug reports, and hence we may have
missed certain bugs in our analysis. Nonetheless, we choose
bug reports this way to minimize spurious or invalid bugs.

VI. DISCUSSION

The main assumption behind our approach is that there are
sufficient examples of a consistency rule that appear for it to
both successfully learn the consistency rule and detect any
violations to that rule. While this is the case for large web
applications, small web applications have very few samples to
learn from, and hence may incur large numbers of false posi-
tives and false negatives. To mitigate this problem, we augment
our code patterns with subtrees found in code examples from

other web applications, as discussed in Section III-B. Doing
so allows our design to be more confident about the validity
of the consistency rules, as well as “debunk” any consistency
rules that may lead to false positives. In fact, we found that
without the example code, our false positive rates more than
doubled. Using more and better examples can likewise bring
down the false positive rate. This is a subject of future work.

Furthermore, our main focus in this paper is in using
HOLOCRON to detect inconsistencies in MVC applications.
Nonetheless, our design can be run on web applications using
non-MVC JavaScript frameworks, such as jQuery. This may
lead to a large number of inaccuracies, as the JavaScript
code in these frameworks interacts directly with the DOM,
which undergoes many changes throughout the execution of
the web application. However, HOLOCRON may be able to
detect inconsistencies within the JavaScript code, as well as
inconsistencies between the JavaScript code and any com-
ponent of the DOM that does not get modified. To detect
the remaining inconsistencies, we may need to use dynamic
analysis - this is also a subject for future work.

VII. RELATED WORK

Bug and Code Smell Detection. Considerable work has been
done on software fault detection [32], [33], [34], [35], [36],
[37], [38], [39], [40] and code smell detection [15], [41],
[42], [43] by identifying code patterns. An alternate approach
for finding bugs is anomaly detection. This technique was
proposed by Engler et. al. [14] and commercialized as the
Coverity [44] tool, which also supports JavaScript to some
extent. Instead of hardcoding rules as the above techniques
do, this approach looks for deviant behaviours in the input
application’s code, with these deviations providing an indi-
cation of potential bugs in the program. Reiss [45] has also
proposed a similar tool that finds “unusual code” in programs.
This approach has the advantage that it can learn rules from
common patterns of behaviour, and hence the rules do not
need to be updated for each framework.

The main difference with our work is that these prior
techniques do not use subtree patterns as the basis for
the consistency rules, and they also cannot detect cross-
language inconsistencies, as they implicitly assume a single-
language model. Further, static analysis techniques such as
FindBugs [46] detect faults based on hardcoded rules or bug
templates. Additionally, dynamic analysis techniques such as
DLint [47] check consistency rules based on “bad coding
practices”. As shown in our evaluation (RQ1), this can lead
to many missed bugs, especially for JavaScript MVC applica-
tions, as there are no specific inconsistency categories that
dominate the others. Further, the frameworks used in web
applications evolve fast.

Tools such as Flow [48] and TypeDevil [49] are capable
of finding type-related faults. These tools analyze the static
or dynamic data flow of the program to find these faults,
and hence this approach will not be able to detect faults that
do not stem directly from this data flow. While TypeDevil
also leverages the structure of dynamically observed data to

find inconsistent types, it does not consider the link rules;
hence, unlike HOLOCRON, it will not be able to detect cases
where a variable defined in the model is assigned a type
inconsistent with how it is used in the HTML template
representing the view (e.g., a variable assigned a string being
used as the value for the “count” attribute in AngularJS, which
expects a number). In addition, Nguyen et al. [50] propose a
technique that can detect dangling (i.e., undefined) references
in JavaScript code that is generated from PHP code; however,
unlike our tool, this technique is only capable of finding these
inconsistencies if the references are embedded in the PHP
strings that generated them. In most of the applications we
studied, PHP is not used (nor any other server-side scripting
language), and hence this approach would not work.

Lastly, HOLOCRON shares some similarities with AU-
REBESH [13] in terms of its goal, namely detecting inconsis-
tencies in JavaScript MVC applications. However, HOLOCRON
conceptually differs from AUREBESH in three ways. First, AU-
REBESH only supports AngularJS, while HOLOCRON supports
two of the most commonly used MVC frameworks in addition
to AngularJS. Secondly, HOLOCRON is also able to detect
more types of inconsistencies, as it infers the consistency
rules automatically instead of hardcoding them into the design;
indeed, as we pointed out in Section V-E, AUREBESH only
detected 2 of the 18 bugs that HOLOCRON identified. Finally,
HOLOCRON is able to also infer cross-language relations
between JavaScript and HTML, while AUREBESH is not.

Cross-Language Computing. Much of the work done on
cross-language computing has focused on detecting the depen-
dencies between multiple programming languages [51], [52].
Only a few techniques perform analysis in a cross-language-
aware manner, including XLL [53] and X-Develop [54], both
of which perform code refactoring. In recent work, Nguyen
et al. [55] proposed a tool to perform cross-language program
slicing for web applications, with particular focus on PHP code
and its interaction with client-side code. Unlike HOLOCRON
however, none of these above techniques deal with the incon-
sistencies in cross-language interactions.

VIII. CONCLUSIONS

We presented an automatic fault detection technique that
finds inconsistencies in JavaScript MVC applications. Our
technique analyzes the AST and DOM representations of the
web application code, and it finds both intra-pattern consis-
tency rules and link rules; violations to these rules are thereby
reported to the user. We implemented this approach in an open-
source tool called HOLOCRON, and in our evaluation of 12
open-source MVC applications, HOLOCRON was able to find
18 previously unreported bugs, and a significant number (33)
of code smells. Further, it took just over a minute on average.

ACKNOWLEDGMENT

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC), and a
research gift from Intel Corporation. We thank the ASE 2017
reviewers for their insightful comments.

REFERENCES

[1] StackOverflow, “StackOverflow Developer Survey 2015,” 2015,
http://stackoverflow.com/research/developer-survey-2015#tech
(Accessed: May 16, 2015).

[2] F. Ocariza, K. Pattabiraman, and B. Zorn, “JavaScript errors in the wild:
an empirical study,” in Proceedings of the International Symposium on
Software Reliability Engineering (ISSRE). IEEE Computer Society,
2011, pp. 100–109.

[3] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “A study of causes
and consequences of client-side JavaScript bugs,” IEEE Transactions on
Software Engineering (TSE), p. 17 pages, 2017.

[4] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The eval that men do:
A large-scale study of the use of eval in JavaScript applications,” in Pro-
ceedings of the European Conference on Object-Oriented Programming
(ECOOP). Springer, 2011, pp. 52–78.

[5] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of Ajax
web applications,” in Proceedings of the International Conference on
Software Testing, Verification and Validation (ICST). IEEE Computer
Society, 2008, pp. 121–130.

[6] A. Mesbah and A. van Deursen, “Invariant-based automatic testing of
Ajax user interfaces,” in Proceedings of the International Conference
on Software Engineering (ICSE). IEEE Computer Society, 2009, pp.
210–220.

[7] K. Pattabiraman and B. Zorn, “DoDOM: leveraging DOM invariants
for web 2.0 application robustness testing,” in Proceedings of the
International Symposium on Software Reliability Engineering (ISSRE).
IEEE Computer Society, 2010, pp. 191–200.

[8] S. Artzi, J. Dolby, S. Jensen, A. Møller, and F. Tip, “A framework for
automated testing of JavaScript web applications,” in Proceedings of
the International Conference on Software Engineering (ICSE). ACM,
2011, pp. 571–580.

[9] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Guided mutation
testing for JavaScript web applications,” Transactions on Software
Engineering (TSE), vol. 41, no. 5, pp. 429–444, 2015.

[10] Douglas Crockford, “JSLint,” 2012, http://www.jslint.com (Accessed:
April 18, 2012).

[11] S. Jensen, A. Møller, and P. Thiemann, “Type analysis for JavaScript,”
Proceedings of the International Static Analysis Symposium (SAS), pp.
238–255, 2009.

[12] S. H. Jensen, M. Madsen, and A. Møller, “Modeling the HTML DOM
and browser API in static analysis of JavaScript web applications,” in
Proceedings of the Joint Meeting of the European Software Engineering
Conference and the Symposium on the Foundations of Software Engi-
neering (ESEC/FSE). ACM, 2011, pp. 59–69.

[13] F. Ocariza, K. Pattabiraman, and A. Mesbah, “Detecting inconsistencies
in JavaScript MVC applications,” in Proceedings of the International
Conference on Software Engineering (ICSE). IEEE Computer Society,
2015.

[14] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: A general approach to inferring errors in systems
code,” in Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP). ACM, 2001, pp. 57–72.

[15] A. Milani Fard and A. Mesbah, “JSNose: Detecting JavaScript code
smells,” in Proceedings of the International Working Conference on
Source Code Analysis and Manipulation (SCAM). IEEE Computer
Society, 2013, pp. 116–125.

[16] D. Synodinos, “Top JavaScript MVC frameworks,” 2013, http://www.
infoq.com/research/top-javascript-mvc-frameworks (Accessed: May 16,
2015).

[17] Two Sigma, “Beaker,” 2016, https://github.com/twosigma/
beaker-notebook (Accessed: April 29, 2016).

[18] MarionetteJS, “Backbone Marionette,” 2016, https://github.com/
marionettejs/backbone.marionette (Accessed: April 29, 2016).

[19] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings of the International
Conference on Software Maintenance (ICSM). IEEE Computer Society,
1998, pp. 368–377.

[20] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proceedings of the Inter-
national Conference on Management of Data (SIGMOD). ACM, 1993,
pp. 207–216.

[21] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proceedings of the International Conference on

Very Large Databases (VLDB). Morgan Kaufmann Publishers Inc.,
1994, pp. 487–499.

[22] Adobe Systems, “Brackets,” 2015, http://www.brackets.io (Accessed:
May 16, 2015).

[23] A. Hidayat, “Esprima,” 2015, http://www.esprima.org/ (Accessed: May
16, 2015).

[24] jindw, “XMLDOM,” 2016, https://www.github.com/jindw/xmldom (Ac-
cessed: April 29, 2016).

[25] K. Sera, “apriori.js,” 2016, https://github.com/seratch/apriori.js (Ac-
cessed: April 29, 2016).

[26] U. Shaked, “AngularJS vs. BackboneJS vs. EmberJS,” 2014, http:
//www.airpair.com/js/javascript-framework-comparison (Accessed: May
16, 2015).

[27] Google, “Built with AngularJS,” 2015, https://github.com/angular/
builtwith.angularjs.org/blob/master/projects/projects.json (Accessed:
May 16, 2015).

[28] J. Ashkenas, “BackboneJS: Tutorials, blog posts and example
sites,” 2016, https://github.com/jashkenas/backbone/wiki/Tutorials,
-blog-posts-and-example-sites (Accessed: April 29, 2016).

[29] EmberSherpa, “Open source Ember apps,” 2016, https://github.com/
EmberSherpa/open-source-ember-apps (Accessed: April 29, 2016).

[30] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-
ings of the International Conference on Software Engineering (ICSE).
IEEE Computer Society, 2013, pp. 672–681.

[31] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production software,” in
Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE). ACM, 2007,
pp. 1–8.

[32] S. Hangal and M. S. Lam, “Tracking down software bugs using
automatic anomaly detection,” in Proceedings of the International Con-
ference on Software Engineering (ICSE). ACM, 2002, pp. 291–301.

[33] Z. Li and Y. Zhou, “PR-Miner: automatically extracting implicit pro-
gramming rules and detecting violations in large software code,” in
Proceedings of the International Symposium on Foundations of Software
Engineering (FSE). ACM, 2005, pp. 306–315.

[34] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-paste
and related bugs in large-scale software code,” Transactions on Software
Engineering (TSE), vol. 32, no. 3, pp. 176–192, 2006.

[35] W. Weimer and G. C. Necula, “Mining temporal specifications for error
detection,” in Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, 2005, pp. 461–476.

[36] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage
anomalies,” in Proceedings of the Joint Meeting of the European Soft-
ware Engineering Conference and the Symposium on the Foundations
of Software Engineering (ESEC/FSE). ACM, 2007, pp. 35–44.

[37] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related
bugs,” in Proceedings of the Joint Meeting of the European Software
Engineering Conference and the Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 2007, pp. 55–64.

[38] C.-H. Hsiao, M. Cafarella, and S. Narayanasamy, “Using web corpus
statistics for program analysis,” in Proceedings of the International
Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA). ACM, 2014, pp. 49–65.

[39] S. Thummalapenta and T. Xie, “Alattin: Mining alternative patterns
for detecting neglected conditions,” in Proceedings of the International
Conference on Automated Software Engineering (ASE). IEEE Computer
Society, 2009, pp. 283–294.

[40] N. Gruska, A. Wasylkowski, and A. Zeller, “Learning from 6,000
projects: lightweight cross-project anomaly detection,” in Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA).
ACM, 2010, pp. 119–130.

[41] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and T. N.
Nguyen, “Detection of embedded code smells in dynamic web appli-
cations,” in Proceedings of the International Conference on Automated
Software Engineering (ASE). IEEE Computer Society, 2012, pp. 282–
285.

[42] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant: Identi-
fication and removal of type-checking bad smells,” in Proceedings of
the European Conference on Software Maintenance and Reengineering
(CSMR). IEEE Computer Society, 2008, pp. 329–331.

http://stackoverflow.com/research/developer-survey-2015#tech
http://www.jslint.com
http://www.infoq.com/research/top-javascript-mvc-frameworks
http://www.infoq.com/research/top-javascript-mvc-frameworks
https://github.com/twosigma/beaker-notebook
https://github.com/twosigma/beaker-notebook
https://github.com/marionettejs/backbone.marionette
https://github.com/marionettejs/backbone.marionette
http://www.brackets.io
http://www.esprima.org/
https://www.github.com/jindw/xmldom
https://github.com/seratch/apriori.js
http://www.airpair.com/js/javascript-framework-comparison
http://www.airpair.com/js/javascript-framework-comparison
https://github.com/angular/builtwith.angularjs.org/blob/master/projects/projects.json
https://github.com/angular/builtwith.angularjs.org/blob/master/projects/projects.json
https://github.com/jashkenas/backbone/wiki/Tutorials,-blog-posts-and-example-sites
https://github.com/jashkenas/backbone/wiki/Tutorials,-blog-posts-and-example-sites
https://github.com/EmberSherpa/open-source-ember-apps
https://github.com/EmberSherpa/open-source-ember-apps

[43] E. Van Emden and L. Moonen, “Java quality assurance by detecting
code smells,” in Proceedings of the Working Conference on Reverse
Engineering (WCRE). IEEE Computer Society, 2002, pp. 97–106.

[44] Synopsys, “Coverity,” 2016, http://www.coverity.com/ (Accessed: April
29, 2016).

[45] S. P. Reiss, “Finding unusual code,” in Proceedings of the International
Conference on Software Maintenance. IEEE Computer Society, 2007,
pp. 34–43.

[46] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in Companion
Proceedings of the International Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA). ACM,
2004, pp. 132–136.

[47] L. Gong, M. Pradel, M. Sridharan, and K. Sen, “DLint: Dynamically
checking bad coding practices in JavaScript,” in Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA).
ACM, 2015.

[48] Facebook, “Flow: a static type checker for JavaScript,” 2016, http://
flowtype.org/ (Accessed: April 29, 2016).

[49] M. Pradel, P. Schuh, and K. Sen, “TypeDevil: Dynamic type incon-
sistency analysis for JavaScript,” in Proceedings of the International
Conference on Software Engineering (ICSE). IEEE Computer Society,
2015, pp. 314–324.

[50] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and T. N.
Nguyen, “Dangling references in multi-configuration and dynamic PHP-

based web applications,” in Proceedings of the International Conference
on Automated Software Engineering (ASE). IEEE Computer Soci-
ety/ACM, 2013, pp. 399–409.

[51] T. Polychniatis, J. Hage, S. Jansen, E. Bouwers, and J. Visser, “Detecting
cross-language dependencies generically,” in Proceedings of the Euro-
pean Conference on Software Maintenance and Reengineering (CSMR).
IEEE, 2013, pp. 349–352.

[52] R.-H. Pfeiffer and A. Wasowski, “Taming the confusion of languages,”
in Proceedings of the European Conference on Modelling Foundations
and Applications (ECMFA). Springer, 2011, pp. 312–328.

[53] P. Mayer and A. Schroeder, “Cross-language code analysis and refactor-
ing,” in Proceedings of the International Working Conference on Source
Code Analysis and Manipulation (SCAM). IEEE Computer Society,
2012, pp. 94–103.

[54] D. Strein, H. Kratz, and W. Löwe, “Cross-language program analysis and
refactoring,” in Proceedings of the International Workshop on Source
Code Analysis and Manipulation (SCAM). IEEE Computer Society,
2006, pp. 207–216.

[55] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Cross-language program
slicing for dynamic web applications,” in Proceedings of the Joint
Meeting of the European Software Engineering Conference and the
Symposium on the Foundations of Software Engineering (ESEC/FSE).

ACM, 2015, pp. 369–380.

http://www.coverity.com/
http://flowtype.org/
http://flowtype.org/

	Introduction
	Background and Motivation
	Definitions
	Motivating Examples
	Challenges

	Approach
	Transforming Code into Trees
	Finding Common Patterns
	Using Code Examples from the Web
	Establishing Rules from Patterns
	Intra-Pattern Consistency Rules
	Inter-Pattern Consistency Rules (i.e., Link Rules)

	Detecting Violations
	Unconditional Link Rule Violations
	Conditional Link Rule Violations

	Implementation
	Evaluation
	Research Questions (RQs)
	Subject Systems
	Experimental Methodology
	Prevalence of Inconsistencies (RQ1)
	Real Bugs and Code Smells (RQ2)
	Thresholds (RQ3)
	Performance (RQ4)
	Threats to Validity

	Discussion
	Related Work
	Conclusions
	References

