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My	Research	

•  Building	error	resilient	and	secure	soAware	systems	

•  Three	main	areas:	
–  SoDware	resilience	techniques	[SC’17][DSN’17][SC’16]
[DSN’16][DSN’15][DSN’14][DSN’13][DSN’12]	

– Web	applica,ons’	reliability	[ASE’17][ICSE’16][ICSE’15]
[ICSE’14A][ICSE’14B][ASE’14][ASE’15]	

–  CPS	Security	[FSE’17][ACSAC’16][EDCC’15][HASE’14]	
	

•  This	talk	
–  CPS	Security	and	Resilience	
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Cyber-Physical	Systems	(CPS)	
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Cyber-Physical	Systems	(CPS)	
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CPS	Challenges	
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1.5	sec	 1.5	sec	

Real-,me	constraints	 Resource	constraints	

Hard	to	Upgrade		 No	human-in-the-loop	



This	Talk	

•  Mo,va,on	

•  Resilience	of	Deep	Neural	Networks	in	Self-
Driving	Cars	from	SoD	Errors	[SC’17	–	to	appear]	

•  Intrusion	Detec,on	Systems	for	Smart	Embedded	
Devices	using	Dynamic	Invariants	[FSE’17]	

•  Ongoing	work	and	conclusion	
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DNNs in Self-Driving Cars  
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●  DNN applications are widely deployed in safety critical applications  

○  autonomous-driving cars – specialized accelerators for real-time processing 

●  Silent Data Corruptions (SDCs) 

○  Results in wrong prediction of DNN application 

○  Safety standard requires SoC FIT<10 overall (ISO 26262) 



SoA	Errors 
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SoA	Error	Problem	

•  SoD	errors	are	increasing	in	computer	systems	

9	Source:	Shekar	Borkar	(Intel)		-		Stanford	talk	



Current Solutions 
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●  Traditional Solutions 

○  DMR for all latches in execution units 

○  ECC/Parity on all storage elements 

 

●  Recent Work 

○  Generic micro-architectural solutions 

○  DNN-algorithm agnostic 

Incurs high overhead 

Nonoptimal for DNN 
systems 



Deep learning Neural Network 
(DNN) 
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DNN Accelerator Architecture 
(e.g., Eyeriss – MIT) 
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Goal 
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●  Understand error propagation in DNN accelerators through fault 

injection 

○  Quantification 

○  Characterization 

●  Based on the insights, mitigate failures: 

○  Efficient way to detect errors 

○  Hardware: Selective duplication 

○  Software: Symptom-based detection 



Fault Injection: Parameters 
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●  DNNs 

●  Data Types 

○  Fixed Point (FxP): 16-bit and 32-bit 

○  Float Point (FP): Full- and half-precision 



Fault Injection Study: Setup 
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●  Fault Injection 

○  3,000 random faults per each latch in each layer 

●  Simulator 

○  DNN simulation in Tiny-CNN in C 

○  Fault injections at C line code 

●  Fault Model 

○  Transient single bit-flip 

○  Execution Units: Latches 

○  Storage: buffer SRAM, scratch pad, REG 



Silent Data Corruption 
(SDC) Consequences 
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Sign bit Fractional bits 

Binary Point 

A	single	bit-flip	error	à	misclassificaOon	of	image	by	the	DNN	



Research	QuesOons	(RQs)	

•  RQ1:	What are SDC rates in different DNNs using 
different data types? 

•  RQ2:	Which bits are sensitive to SDCs in different 
data types? 

•  RQ3:	How do errors affect values that result in 
SDCs?  

•  RQ4:	How does an error propagate layer by layer?	
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SDC Types 
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SDC1:  
Mismatch between winners from faulty and fault-free execution. 
 
SDC5:  
Winner is not in top 5 predictions in the faulty execution. 
 
SDC10%:  
The confidence of the winner drops more than 10%. 
 
SDC20%:  
The confidence of the winner drops more than 20%. 
 



RQ1: SDC in DNNs 
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1. All SDCs defined have similar SDC probabilities 

2. SDC probabilities are different in different DNNs 

3. SDC probabilities vary a lot using different data types 



RQ2: Bit Sensitivity 
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FP data types: 

FxP data types: 
1.  High-order bits are vulnerable 
2.  Larger dynamic value range allows more vulnerable bits 

Only certain exponent bits are vulnerable to SDCs 



RQ3: Value Changes 
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SDC 
 
 

Benign 
 
 

AlexNet, PE Errors, Float16 
 
 

If a neuron value is changed to be a large value 
under a fault, it likely causes SDC 



RQ4: SDC in Different Layers 
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1. Layers 1&2 have lower SDC probabilities in AlexNet and CaffeNet 

2. SDC probability increases as layer numbers increase  



RQ4: Euclidean Distance of 
Values 
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1.  Euclidean distance decreases by layers 
2.  Local Response Normalization (LRN) in Layer 1&2 re-normalizes values 

back towards normal range in AlexNet and CaffeNet 



Mitgation: Data Type Choice 
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Restraining dynamic value 
range reduces FIT in fixed 

point data types 

*Scaling factor = 2 by each tech. generation 
All raw FIT rates are projected based on the FIT at 28nm [Neale, IEEE TNS] 



Mitigation: Symptom-Based Error 
Detector (Software) 
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SDC 
 
 

Benign 
 
 

AlexNet, PE Faults, Float16 
 
 

Check range 

Recall: 92.5% 
Precision: 90.21% 

On selected data types 



Mitigation: Selective Latch 
Hardening (Hardware)  
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Latch hardening design choices: 

~20% overhead provides 
100x reduction in FIT 



Summary of DNNs 

27	

1. 1. Characterized error propagation in DNN 

accelerators based on data types, layers, value 

types and DNN topologies 

2. 2. Mitigation Methods: 

1. - restraining value range of data type  

2. - value range checker 

3. - selective latch hardening 



This	Talk	

•  Mo,va,on	

•  Resilience	of	Deep	Neural	Networks	in	Self-
Driving	Cars	from	SoD	Errors	[SC’17	–	to	appear]	

•  Intrusion	Detec,on	Systems	for	Smart	Embedded	
Devices	using	Dynamic	Invariants	[FSE’17]	

•  Ongoing	work	and	conclusion	
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MoOvaOon	

•  Goal:	Provide	low-cost	security	for	CPS	
–  Sa,sfying	resource	and	real-,me	constraints	
– No	human	interven,on	needed	
–  Is	able	to	detect	zero	day	aeacks	
	
Insight:	Leverage	proper,es	of	CPS	for	intrusion	detec,on		

	-	Simplicity	and	,ming	predictability	
	-	Learn	invariants	based	on	dynamic	execu,on	
	-	Monitor	invariants	at	run,me	for	viola,ons 		
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Threat	Model	
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Cyber	Process	
(Control	Algorithm)	

Physical	Process	

Communica,on	network	

Measurements	

Commands	

A	

C	

B	

D	

Stuxnet[2010]	

[HealthCom2013]	

CVE-2016-1516[2016]	

[USENIX’2015]	

A	 C	 D	



	
	Signature-based		IDSs	[CSUR2014]	

	Anomaly-based	IDSs	[Computers&Security2009]	

Specifica,on-based	IDSs	[SmartGridCom2010]	

•  Sta,c	analysis	
	
•  Dynamic	analysis	
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Intrusion	DetecOon	Systems	(IDS)	



Dynamic	Analysis	Techniques	

•  Invariant	Examples	
–  Energy	usage	>=0		
–  Current	–	Past	<=	Threshold	
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Data	

Event	

Time	

Daikon	
	[ICSE’01]	

Gk-tail	
[ICSE’08]	

Perfume	property	miner	
	[ASE’14]	

Texada		
[ASE’15]	



T1	

E2	 E4	E3	

D2	

E1	

T2	 T3	

D5	D4	D3	D1	

D|E	 E|T	

D,	E,	T	

Main	Idea	
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D:	Data	
E:	Event	
T:	Time	



•  ARTINALI:	A	Real	Time-specific	Invariant	iNference	
ALgorIthm	

–  3	dimensions	and	6	classes	of	invariants		
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Data	

Event	

Time	

Data	per	event	
P(D|E)	

Time	per	event	
P(E|T)	

Data	per	Ome	
P(D|T)	

Methodology	
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ARTINALI	ImplementaOon	



•  Advanced	metering	
infrastructure	(AMI)	
– SEGMeter	

•  hep://smartenergygroups.com	

•  Smart	Ar,ficial	Pancreas	
(SAP)	
– OpenAPS		

•  heps://openaps.org/	
36	

CPS	Pla]orms	for	EvaluaOon	
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Traces	 Intrusion	
Detector	

ARTINALI	

CPS	

IDS	prototype	

Perfume	Texada	Daikon	

Invariant	Interface	 CPS	model	
(invariant	set)			

To	test	
A=ack	
detected!	

Experimental	Setup	



Targeted	A=acks	
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CPS	Pla]orm	 Targeted	a=ack	 A=ack	entry	point	

AMI	
(SEGMeter)	

Meter	spoofing	[ACSAC2010]	 Decep,on	on	A	

Sync.	Tampering	[ACSAC2010]	 Decep,on	on	D	

Message	dropping	[CCNC2011]	 DoS	on	A	

SAP	
(OpenAPS)	

CGM	spoofing		[Healthcom2011]	 Decep,on	on	A	

Stop	basal	injec,on	[BHC2011]	 Decep,on	and	DoS	on	C	

Resume	basal	injec,on	[BHC2011]	 Decep,on	and	DoS	on	C	

Take	away	:	
ARTINALI	detected	all	the	targeted	aeacks	



39	

Data	mutaOons	

Branch	flipping	
	

ArOficial	delay	inserOon	
	

Smart	facial	recogni:on	system	
	(CVE-2016-1516)	

CGM	spoofing	in	SAP,	[BHC2011]	

Synchroniza:on	tampering	in	
smart	meter,	[ACSAC2010]	

Arbitrary	A=acks	



Accuracy	Metrics	
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•  False	Nega,ve	Rate	(FNR)		

•  False	Posi,ve	Rate	(FPR)	

•  F-Score(β)	

β>1	

β<1	

β=1	
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-		SEGMeter	

• 			ARTINALI-based	IDS	reduces	the	ra,o	of	FN	by	89	to	95%	
compared	with	the	other	tools		across	both	plasorms.	
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-		SEGMeter	

• 			ARTINALI-based	IDS	reduces	the	ra,o	of	FP	by	20	to	48%	
compared	with	the	other	tools	across	both	plasorms.	
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Performance	and	Memory	
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Performance	
Overhead	(%)	

DetecOon	
Ome	(sec)	

Memory	
usage	

Daikon	 27.3	 16.63	 1.24	MB	

Texada	 23.7	 14.45	 3.21	MB	

Pefume	 32.08	 19.57	 3.94	MB	

ARTINALI	 31.6	 19.25	 2.96	MB	

SEGMeter	

Time	
T0	 T0+60	 T0+120	

CPS	1st	execuOon	 CPS	2nd		execuOon	 CPS	3rd		execuOon	



•  ARTINALI:	A	Mul,-Dimensional	model	for	CPS	
–  Captures	data-event-:me	interplay	
–  Introduces	Real-:me	data	invariants	
–  Increases	the	coverage	of	IDS		
– Decreases	the	rate	of	false	posi:ves		
–  Imposes	comparable	overheads	

•  Examine	generalizability	of	ARTINALI		
– Unmanned	Aerial	Vehicle	(UAV)	

•  heps://github.com/karthikp-ubc/Ar,nali	
45	

Summary	of	ARTINALI	



This	Talk	

•  Mo,va,on	

•  Resilience	of	Deep	Neural	Networks	in	Self-
Driving	Cars	from	SoD	Errors	[SC’17	–	to	appear]	

•  Intrusion	Detec,on	Systems	for	Smart	Embedded	
Devices	using	Dynamic	Invariants	[FSE’17]	

•  Ongoing	work	and	conclusion	
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Ongoing	Work:	Formal	Analysis	

•  Formally	model	the	states	of	the	CPS	
•  Combine	with	formal	aeacker	models	
•  Model-check	the	system	for	security	invariants	

–  Iden,fy	unsafe	states	and	paths	to	unsafe	states	
– Automa,cally	mount	the	aeacks	on	the	system	
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Ongoing	Work:	SmartJS	

•  SmartJS:	Smart	JavaScript-based	RunOme	
System	for	programming	IoT	systems	
– Security	and	Performance	constraints	
– Dynamic	code	migra,on	to	sa,sfy	constraints	
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Ongoing	Work:	Resilient	ML	
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Deriving	ML	algorithms	resilient	to	perturba,ons	
	-	Small	changes	à	Similar	outputs	
	-	Convergence	proper,es	

	



Conclusion	
CPS	systems	resilience	and	security	are	important	challenges	

Two	systems	for	resilience	and	security		
				1.	Deep	Neural	Network	Accelerators	for	Self-Driving	Cars	
				2.	Invariant	monitoring	for	embedded	system	security	

Future	work	
	1.	Formal	analysis	for	CPS	
	2.	Smart	run,mes	for	IoT	
	3.	Resilient	Machine	Learning	
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QuesOons?	karthikp@ece.ubc.ca	


