Resilience and Security in Cyber-Physical Systems: Self-Driving Cars and Smart Devices

Karthik Pattabiraman

Guanpeng (Justin) Li, Maryam Raiyat, Amita Kamath, Mohammad Rafiuzzaman, Kumseok Jung, Julien Gascon-Samson

with

Siva Hari, Michael Sullivan, Tim Tsai, Joel Emer, Steve Keckler

My Research

- Building error resilient and secure software systems
- Three main areas:
 - Software resilience techniques [SC'17][DSN'17][SC'16]
 [DSN'16][DSN'15][DSN'14][DSN'13][DSN'12]
 - Web applications' reliability [ASE'17][ICSE'16][ICSE'15]
 [ICSE'14A][ICSE'14B][ASE'14][ASE'15]
 - CPS Security [FSE'17][ACSAC'16][EDCC'15][HASE'14]
- This talk
 - CPS Security and Resilience

Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS)

HACKERS REMOTELY KILL A JEEP ON THE HIGHWAY-WITH ME IN IT

Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses

Daniel Halperin ¹	Thomas S. Heydt-Benjamin ¹	Benjamin Ransford [†]
University of Washington	University of Massachustri Ambre	University of Massachusette Amb
State S. Clark	Berena Defend	Will Morgan
Newsetty of Massixheatts Ambare	University of Massichastis Ambere	University of Maxachinattis Andr
Kern Di, PhD ⁺	Tadayoshi Kohne, PhD'	William H. Maisel, MD, MPH
hivenity of Monichmets Anhare	University of Washington	BDMC and Bayard Medical Sch

b) a bit of the start of the	In this CAT can adapt on earing white a regret borner. Here, the set of the	
tantity users a personance, appearance concentre depresen- tiones (REI), essentinatives, and radio essentinative depresen- tion and must patients' with automatic thraphics. For instance, an XCD that summa a regult handback can addressing an defi- tional whick to motion a normal hour drythm, thus have repor- tial whick to motion a normal hour drythm, thus have repor-	implazable definediate patients and was pair charpersen of the FDAs Creatingy Spectra Medical Doton Advices Found. Our settration correlations would unatization gard importing the security, privacy and other of these dotons include: analysis: webwase ratio-based reather/sheapier, and huma-perceptible and zon-gover phases/solid networks.	
-Concepting this shares of the sectors from the formation of the sectors for the sectors of t	Overfere of contributions We sum it to scattry and pro- try properties of a scanne RD and prove andex in proxy, suppry, and availability. We show that the RD dedoes scatterin transmiss in the door concernyold, we demonstrate a suppressioning attack that changes the operation of (call the information constand in) the RD. and "Dimonish subscription for the transmission of a provi- sible additional transmission and down the summaries the additional transmission are additional the summaries that addition the and an and Dimonstrate transmission for the summaries that addition the and an and Dimonstrate transmission and the summaries that addition the sum on 200.	

Pacemake

Courtesy of

0 (

Smart meters can be hacked to cut power bills

< Share

By Mark Ward nology correspondent. BBC News () 16 October 2014 Technology

Smart meters widely used in Spain can be hacked to under-report energy use, security researchers have found

The Nest Learning Thermostat is dead to me, literally. Last week, my once-beloved "smart" thermostat suffered from a mysterious software bug that drained its battery and sent our home into a chill in the middle of the night. Although I had set the thermostat

Leads

4

CPS Challenges

Real-time constraints

Hard to Upgrade

Resource constraints

No human-in-the-loop

This Talk

- Motivation
- Resilience of Deep Neural Networks in Self-Driving Cars from Soft Errors [SC'17 – to appear]
- Intrusion Detection Systems for Smart Embedded Devices using Dynamic Invariants [FSE'17]
- Ongoing work and conclusion

DNNs in Self-Driving Cars

DNN applications are widely deployed in safety critical applications autonomous-driving cars – specialized accelerators for real-time processing

Silent Data Corruptions (SDCs)

Results in wrong prediction of DNN application

Safety standard requires SoC FIT<10 overall (ISO 26262)

Soft Errors

Soft Error Problem

• Soft errors are increasing in computer systems

Source: Shekar Borkar (Intel) - Stanford talk

Current Solutions

Traditional Solutions

DMR for all latches in execution units ECC/Parity on all storage elements

Recent Work

Generic micro-architectural solutions DNN-algorithm agnostic Incurs high overhead

Nonoptimal for DNN systems

Deep learning Neural Network (DNN)

DNN Accelerator Architecture (e.g., Eyeriss – MIT)

12

Goal

Understand error propagation in DNN accelerators through fault injection

Quantification

Characterization

Based on the insights, mitigate failures:

Efficient way to detect errors Hardware: Selective duplication Software: Symptom-based detection

Fault Injection: Parameters

DNNs

Network	Dataset	No. of Output Candi-	Topology
		dates	
ConvNet	CIFAR-10	10	3 CONV + 2 FC
AlexNet	ImageNet	1,000	5 CONV(with LRN) + 3 FC
CaffeNet	ImageNet	1,000	5 CONV(with LRN) + 3 FC
NiN	ImageNet	1,000	12 CONV

Data Types

Fixed Point (FxP): 16-bit and 32-bit

Float Point (FP): Full- and half-precision

Fault Injection Study: Setup

Fault Injection

3,000 random faults per each latch in each layer

Simulator

DNN simulation in Tiny-CNN in C

Fault injections at C line code

Fault Model

Transient single bit-flip

Execution Units: Latches

Storage: buffer SRAM, scratch pad, REG

Silent Data Corruption (SDC) Consequences

A single bit-flip error \rightarrow misclassification of image by the DNN

Research Questions (RQs)

- RQ1: What are SDC rates in different DNNs using different data types?
- RQ2: Which bits are sensitive to SDCs in different data types?
- RQ3: How do errors affect values that result in SDCs?
- RQ4: How does an error propagate layer by layer?

SDC Types

SDC1:

Mismatch between winners from faulty and fault-free execution.

SDC5:

Winner is not in top 5 predictions in the faulty execution.

SDC10%:

The confidence of the winner drops more than 10%.

SDC20%:

The confidence of the winner drops more than 20%.

RQ1: SDC in DNNs

1.All SDCs defined have similar SDC probabilities

2.SDC probabilities are different in different DNNs

3.SDC probabilities vary a lot using different data types

RQ2: Bit Sensitivity

RQ3: Value Changes

AlexNet, PE Errors, Float16

RQ4: SDC in Different Layers

1.Layers 1&2 have lower SDC probabilities in AlexNet and CaffeNet2.SDC probability increases as layer numbers increase

RQ4: Euclidean Distance of Values

- 1. Euclidean distance decreases by layers
- 2. Local Response Normalization (LRN) in Layer 1&2 re-normalizes values back towards normal range in AlexNet and CaffeNet

Mitgation: Data Type Choice

Eyeriss SDC FIT in Different FxP

*Scaling factor = 2 by each tech. generation All raw FIT rates are projected based on the FIT at 28nm [Neale, IEEE TNS] 24

Mitigation: Symptom-Based Error Detector (Software)

AlexNet, PE Faults, Float16

Mitigation: Selective Latch Hardening (Hardware)

Latch hardening design choices:

Latch Type	Area Overhead	FIT Rate Reduction
Baseline	1x	1x
Strike Suppression (RCC)	1.15x	6.3x
Redundant Node (SEUT)	2x	37x
Triplicated (TMR)	3.5x	1,000,000x

~20% overhead provides 100x reduction in FIT

Summary of DNNs

 Characterized error propagation in DNN accelerators based on data types, layers, value types and DNN topologies

- 2. Mitigation Methods:
 - restraining value range of data type
 - value range checker
 - selective latch hardening

This Talk

- Motivation
- Resilience of Deep Neural Networks in Self-Driving Cars from Soft Errors [SC'17 – to appear]
- Intrusion Detection Systems for Smart Embedded Devices using Dynamic Invariants [FSE'17]
- Ongoing work and conclusion

Motivation

• Goal: Provide low-cost security for CPS

- Satisfying resource and real-time constraints
- No human intervention needed
- Is able to detect zero day attacks

Insight: Leverage properties of CPS for intrusion detection

- Simplicity and timing predictability
- Learn invariants based on dynamic execution
- Monitor invariants at runtime for violations

Intrusion Detection Systems (IDS)

Signature-based IDSs [CSUR2014]

Anomaly-based IDSs [Computers&Security2009]

Specification-based IDSs [SmartGridCom2010]

Static analysis

• Dynamic analysis

Dynamic Analysis Techniques

Methodology

- ARTINALI: A Real Time-specific Invariant iNference ALgorIthm
 - 3 dimensions and 6 classes of invariants

ARTINALI Implementation

CPS Platforms for Evaluation

- Advanced metering infrastructure (AMI)
 - SEGMeter
 - <u>http://smartenergygroups.com</u>

- Smart Artificial Pancreas (SAP)
 - OpenAPS
 - <u>https://openaps.org/</u>

Experimental Setup

Targeted Attacks

CPS Platform	Targeted attack	Attack entry point
AMI (SECMator)	Meter spoofing [ACSAC2010]	Deception on A
(SEGMeter)	Sync. Tampering [ACSAC2010]	Deception on D
	Message dropping [CCNC2011]	DoS on A
SAP	CGM spoofing [Healthcom2011]	Deception on A
(OpenAPS)	Stop basal injection [BHC2011]	Deception and DoS on C
	Resume basal injection [BHC2011]	Deception and DoS on C

Take away :ARTINALI detected all the targeted attacks

Arbitrary Attacks

Data mutations

CGM spoofing in SAP, [BHC2011]

Accuracy Metrics

• False Negative Rate (FNR)

 $\frac{\textit{Number of detected attacks}}{\textit{Total number of injected attacks}} \times 100$

• False Positive Rate (FPR)

 $\frac{\textit{Number of raised alarms}}{\textit{Total number of attack-free tests}} \times 100$

• F-Score(β) $\frac{(1+\beta^2) \times TP}{(1+\beta^2) \times TP + \beta^2 \times FN + FP}$

β<1

Parameter Tuning

(a) Daikon (b) Texada (c) Perfume (d) ARTINALI

False Negative (FN) Rate

- ARTINALI-based IDS reduces the ratio of FN by 89 to 95% compared with the other tools across both platforms.
 - SEGMeter

FNR (%)- 95% confidence interval

False Positive (FP) Rate

- ARTINALI-based IDS reduces the ratio of FP by 20 to 48% compared with the other tools across both platforms.
- SEGMeter

Performance and Memory

SEGMeter

	Performance Overhead (%)	Detection time (sec)	Memory usage
Daikon	27.3	16.63	1.24 MB
Texada	23.7	14.45	3.21 MB
Pefume	32.08	19.57	3.94 MB
ARTINALI	31.6	19.25	2.96 MB

Summary of ARTINALI

- ARTINALI: A Multi-Dimensional model for CPS
 - Captures *data-event-time* interplay
 - Introduces *Real-time data invariants*
 - Increases the *coverage* of IDS
 - Decreases the rate of *false positives*
 - Imposes comparable overheads
- Examine generalizability of ARTINALI
 - Unmanned Aerial Vehicle (UAV)
- https://github.com/karthikp-ubc/Artinali

This Talk

- Motivation
- Resilience of Deep Neural Networks in Self-Driving Cars from Soft Errors [SC'17 – to appear]
- Intrusion Detection Systems for Smart Embedded Devices using Dynamic Invariants [FSE'17]
- Ongoing work and conclusion

Ongoing Work: Formal Analysis

- Formally model the states of the CPS
- Combine with formal attacker models
- Model-check the system for security invariants
 - Identify unsafe states and paths to unsafe states
 - Automatically mount the attacks on the system

Ongoing Work: SmartJS

- SmartJS: Smart JavaScript-based Runtime System for programming IoT systems
 - Security and Performance constraints
 - Dynamic code migration to satisfy constraints

Ongoing Work: Resilient ML

Deriving ML algorithms resilient to perturbations

- Small changes \rightarrow Similar outputs
- Convergence properties

Conclusion

CPS systems resilience and security are important challenges

Two systems for resilience and security

- 1. Deep Neural Network Accelerators for Self-Driving Cars
- 2. Invariant monitoring for embedded system security

Future work

- 1. Formal analysis for CPS
- 2. Smart runtimes for IoT
- 3. Resilient Machine Learning

Questions? karthikp@ece.ubc.ca