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My Research

* Building error resilient and secure software systems

e Three main areas:

— Software resilience techniques [SC'17][DSN’17][SC'16]
[DSN’16][DSN’15][DSN’14][DSN’13][DSN’12]

— Web applications’ reliability [ASE’17][ICSE’16][ICSE’15]
[ICSE’14A][ICSE’14B][ASE’14][ASE’15]

— CPS Security [FSE’17][ACSAC’16][EDCC'15][HASE’14]

* This talk
— CPS Security and Resilience
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Cyber-Physical Systems (CPS)

Pacemakers and Implantable Cardiac Defibrillators:
HAGHERS REMOTE“ HILL 1\ .]EEP ON THE Software Radio Attacks and Zero-Power Defenses
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Smart meters can be hacked to cut power Nest Thermostat Glitch Leaves Users in the Cold
bills
Disruptions

?Zc':m:f:immm J— By NICKBILTON JAN. 13, 2016 o (
O 16 October 2014 | Tochnology « Share

The Nest Learning Thermostat is

‘ dead to me, literally. Last week, my
\ once-beloved “smart” thermostat
“ y suffered from a mysterious

software bug that drained its

battery and sent our home into a

chill in the middle of the night.

Although I had set the thermostat

t0 70 degrees overnight, my wife

and I were woken by a crying baby

at 4 a.m. The thermometer in his

room read 64 degrees, and the Nest

‘Smart meterscouid hlp people do a bete job of managing power use

‘Smart meters widely used n Spain can be hacked to under-report energy 4

use, securlty researchers have found.



CPS Challenges

Real-time constraints

Resource constraints

ﬂl.s sec H 1.5 sec H 1.5 sec H

Hard to Upgrade

Restart your computer to finish installing
important updates

Windows can't update important files and services while the

system is using them. Make sure to save your files before
restarting.

Remind me in: [10 minutes vl

[ Restart now ]E Postpone |




This Talk

Motivation

Resilience of Deep Neural Networks in Self-
Driving Cars from Soft Errors [SC'17 - to appear]

Intrusion Detection Systems for Smart Embedded
Devices using Dynamic Invariants [FSE'17]

Ongoing work and conclusion



DNNs in Self-Driving Cars

DNN applications are widely deployed in safety critical applications
autonomous-driving cars — specialized accelerators for real-time processing

Silent Data Corruptions (SDCs)

Results in wrong prediction of DNN application
Safety standard requires SoC FIT<10 overall (ISO 26262)




Soft Errors
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Soft Error Problem

* Soft errors are increasing in computer systems
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Source: Shekar Borkar (Intel) - Stanford talk 5



Current Solutions

Traditional Solutions
DMR for all latches in execution units Incurs high overhead

ECC/Parity on all storage elements

Recent Work

Generic micro-architectural solutions Nonoptimal for DNN

systems

DNN-algorithm agnostic

10



Deep learning Neural Network
(DNN)

Inputimage 32 feature maps 64 feature maps 128 featuremaps | 256 feature maps| 1024 nodes | 121 nodes
48x48 46x46 21x21 8x8 2x2
----- )
> ¢ S
1%t convolution layer ‘ 2nd convolution ‘ 3 convolution ‘ 4% convolution ‘ Fully ‘ Softmax
+ maxpool subsampling + subsampling + subsampling +subsampling  connected  output
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DNN Accelerator Architecture
(e.g., Eyeriss — MIT)
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Goal

Understand error propagation in DNN accelerators through fault
injection
Quantification

Characterization

Based on the insights, mitigate failures:
Efficient way to detect errors
Hardware: Selective duplication

Software: Symptom-based detection



Fault Injection: Parameters

DNNs
Network Dataset No. of Output Candi- | Topology
dates
ConvNet CIFAR-10 10 3 CONV + 2 FC
AlexNet ImageNet 1,000 5 CONV(with LRN) + 3 FC
CaffeNet ImageNet 1,000 5 CONV(with LRN) + 3 FC
NiN ImageNet 1,000 12 CONV
Data Types

Fixed Point (FxP): 16-bit and 32-bit

Float Point (FP): Full- and half-precision

Sign bit Integer bits

Binary Point

Fractional bits

14



Fault Injection Study:

Fault Injection

3,000 random faults per each latch in each layer

Simulator

DNN simulation in Tiny-CNN in C

Fault injections at C line code

Fault Model
Transient single bit-flip

Execution Units: Latches

Storage: buffer SRAM, scratch pad, REG
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Silent Data Corruption
(SDC) Consequences

R ." 3 F sil
\ _(l?bject Itzgntlf!l_ed. ¥ e S h
ransporting Truc : o Object Identified: e
—— Bird G -
- e f - -

A single bit-flip error = misclassification of image by the DNN
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Research Questions (RQs)

RQ1: What are SDC rates in different DNNs using
different data types?

RQ2: Which bits are sensitive to SDCs in different
data types?

RQ3: How do errors affect values that result in
SDCs?

RQ4: How does an error propagate layer by layer?



SDC Types

SDCA1.:
Mismatch between winners from faulty and fault-free execution.

SDC5:
Winner is not in top 5 predictions in the faulty execution.

SDC10%:
The confidence of the winner drops more than 10%.

SDC20%:
The confidence of the winner drops more than 20%.



DNNs
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1.All SDCs defined have similar SDC probabilities

2.SDC probabilities are different in different DNNs

J

3.SDC probabilities vary a lot using different data types

(U




FP data types: Ve >
™ Only certain exponent bits are vulnerable to SDCs
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RQ2: Bit Sensitivity

1. High-order bits are vulnerable
2. Larger dynamic value range allows more vulnerable bits

\
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Probablity (%)

99.9

RQ3: Value Changes

AlexNet, PE Errors, Float16

Neuron Value of Injection
AlexNet PE Faults (FLOAT16)
Total number of data points = 128

-10000

Neuron Value of Injection
AlexNet PE Faults (FLOAT16)
Total number of data points = 39,812
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If a neuron value is changed to be a large value
under a fault, it likely causes SDC 21




RQ4: SDC in Different Layers

- 8% > 40%
= 6% ] .
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1 2 3 4

[

1.Layers 1&2 have lower SDC probabilities in AlexNet and CaffeNet

2.SDC probability increases as layer numbers increase

(U
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RQ4: Euclidean Distance of
Values

2
=

1.00E+07

1.00E-03
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Euclidean Distance

=8=AlexNet =t=(CaffeNet NiN =s=ConvNet

-

(U

1.
2. Local Response Normalization (LRN) in Layer 1&2 re-normalizes values

Euclidean distance decreases by layers

back towards normal range in AlexNet and CaffeNet
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Mitgation: Data Type Choice

Eyeriss SDC FIT in Different FxP

70

58.42

60

46.73

50

~

40

FIT

Restraining dynamic value
range reduces FIT in fixed
point data types

30

20

10

65nm 16nm

32b rb10 W32b_rb26

*Scaling factor = 2 by each tech. generation
All raw FIT rates are projected based on the FIT at 28nm [Neale, IEEE TNS] y



Probablity (%)
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Mitigation: Symptom-Based Error
Detector (Software)

AlexNet, PE Faults, Float16

Neuron Value of Injection
AlexNet PE Faults (FLOAT16)
Total number of data points = 128

20 |
10 |

Neuron Value of Injection
AlexNet PE Faults (FLOAT16)
Total number of data points = 39,812
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Mitigation: Selective Latch

Latch hardening design choices:

Hardening (Hardware)

~20% overhead provides
100x reduction in FIT

Latch Type Area Overhead FIT Rate Reduction
Baseline 1x 1x
Strike Suppression (RCC) 1.15x 6.3x
Redundant Node (SEUT) 2x 37x
Triplicated (TMR) 3.5x 1,000,000
30 30
L 2 , 85
; / J/ o
® ’ / // [
a /,’ // m p /
6 15 // 6 15 /’
Q / 8- / e
0 / / y
T 10 ’ L—II_' 10 / R4
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1x 6.3 37X 100x 1x 6.3x 37X

Target Flip-Flop FIT Reduction

Target Flip-Flop FIT Reduction

s 1
o 08
/’ Y
04
E 0.6 - Double (64b)
8 - FxP (16b_b10)
EI 0.4 - Float (32b)
2 0y Half (16b)
L = Uniform
100x 0. 0.2 0.4 0.6 0.8 1

Fraction of Protected Latches
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Summary of DNNs

1. Characterized error propagation in DNN
accelerators based on data types, layers, value
types and DNN topologies
2. Mitigation Methods:

- restraining value range of data type

- value range checker

- selective latch hardening



This Talk

Motivation

Resilience of Deep Neural Networks in Self-
Driving Cars from Soft Errors [SC'17 - to appear]

Intrusion Detection Systems for Smart Embedded
Devices using Dynamic Invariants [FSE’17]

Ongoing work and conclusion
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Motivation

e Goal: Provide low-cost security for CPS
— Satisfying resource and real-time constraints
— No human intervention needed
— |s able to detect zero day attacks

Insight: Leverage properties of CPS for intrusion detection
- Simplicity and timing predictability
- Learn invariants based on dynamic execution

- Monitor invariants at runtime for violations



[USENIX’2015] ‘ B \

Threat Model

CVE-2016-1516/2016]

:::) Measurements Cyber Process
Stuxnet[2010] (Control Algorithm)

Communication network -

Physical Process

Commands <Z|| C

[HealthCom2013]
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Intrusion Detection Systems (IDS)

% Signature-based IDSs [csur2014]

X

Specification-based IDSs [smartGridcom2010]

Anoma Iy-ba sed IDSs [Computers&Security2009]

 Static analysis

* Dynamic analysis



Dynamic Analysis Techniques

* [nvariant Examples

— Energy usage >=0

— Current - Past <= Threshold () Data

Daikon

@ icseoy)

Gk-tail @ -\
Texada
[ASE’15] @ Perfume property miner

[ASE’14]
Event

32



D: Data
E: Event
T: Time

D1

El

D2

Main ldea

T1 T2 T3

D3 D4

E4

D5
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Methodology

* ARTINALI: A Real Time-specific Invariant iNference
AlLgorlthm

— 3 dimensions and 6 classes of invariants

Data Data per event |
P(D|E)
- | Data per time
Event l ‘ P(D I T)
Time per event |
P(E[T)

Time



ARTINALI Implementation

Program Under -IJ
Test (PUT

[1. ARTINALI D|E MINER ] [2.ARTINALI E|T MINER ]

DJE EIT
| invariants invariants !

[ 3. ARTINALID|T MINER ]

Real-time data
invariants

[ 4.1DS PROTOTYPE ]

35



CPS Platforms for Evaluation

 Advanced metering
infrastructure (AMI)

— SEGMeter

e http://smartenergygroups.com

e Smart Artificial Pancreas
(SAP)

— OpenAPS
* https://openaps.org/

36



CPS

Experimental Setup

(
To test
Traces

Intrusion
Detector

\IDS prototype

A A

=» Attack
detected!

J

Invariant Interface

L [ ]

CPS model
(invariant set)

[Daikon Texada [ Perfume

ARTINALI

37



Targeted Attacks

CPS Platform Targeted attack Attack entry point

AMI Meter spoofing [ACSAC2010] Deception on A
(SEGMeter)
Sync. Tampering [ACSAC2010] Deception on D
Message dropping [CCNC2011] DoS on A
SAP CGM spoofing [Healthcom2011] Deception on A
(OpenAPS)
Stop basal injection [BHC2011] Deception and DoS on C
Resume basal injection [BHC2011] Deception and DoS on C

Take away :

ARTINALI detected all the targeted attacks




Arbitrary Attacks

Data mutations

Artificial delay insertion

O Delayed
state

State space

“ pedReference firsttr =
firs'# = **(Int

sole.WriteLine("The address st

System.Con

Console.WriteLine(Environment . NewLine);

TypedReference secondtr = _ makeref(se
(1tPtr secon iy = **(IntPtr**)(8secy
sole.writeLine("The addg

Smart facial recognition system
(CVE-2016-1516)

Synchronization tampering in
smart meter, [ACSAC2010]

. Unsafe state

Y

State space

CGM spoofing in SAP, [BHC2011]
39



Accuracy Metrics

* False Negative Rate (FNR) " -

Number of detected attacks « 100 - N
Total number of injected attacks

* False Positive Rate (FPR)

Number of raised alarms

X
Total number of attack-free tests 100

* F-Score(p)

(14+82%)xTP /on
(1+32)XxTP+B2xFN+FP -— -

40



80

Parameter Tuning

SEGMeter

S0 90 120
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L AN\
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5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
#Training traces #Training traces () #Training traces (d) #Training traces
(a) (b) c
OpenAPS * ‘ X/X '
|
90 90 90 120
80 | 80 '
100 I
70 70 ?
60 60 80 : -
I
50 1 50 A Y// :
1 60 1
40 - \ | 40 :
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20 ¥ 20
/ . % 1
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#Training traces #Training traces #Training traces #Training traces
(a) (b) (c) (d)

(a) Daikon (b) Texada (c)Perfume (d) ARTINALI

——FP (%)
~—FN(%)
w=fe=F-score(2)
i F-sCOrE(1)

e F-score(0.5)

—4=—FP (%)
== FN(%)
==fe=F-score(2)
i F-scOre(1)

wsfie F-score(0.5)
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False Negative (FN) Rate

* ARTINALI-based IDS reduces the ratio of FN by 89 to 95%
compared with the other tools across both platforms.

- SEGMeter

FNR (%)- 95% confidence interval
M Data mutation 100
90

M Branch flipping I
80

i Artificial delays 79

'Aggregated FN 60 [
50
40 T
30 '
20
10 T
J ﬁii ==

0 -
Daikon Texada Perfume ARTINALI



False Positive (FP) Rate

* ARTINALI-based IDS reduces the ratio of FP by 20 to 48%
compared with the other tools across both platforms.

- SEGMeter

30

25

20 -

illl

ARTINALI

15

10

FPR (%)- 95% confidence interval

(15-12)/15=20%
improvement

Perfume



Performance and Memory

SEGMeter
Performance Detection Memory
Overhead (%) time (sec) usage
Daikon 27.3 16.63 1.24 MB
Texada 23.7 14.45 3.21 VIB
Pefume 32.08 19.57 3.94 VIB
ARTINALI 31.6 19.25 2.96 MB
. TO TO+60 T0+120
Time >
<€ > € > € >
CPS 1stexecution CPS 2" execution CPS 3 execution



Summary of ARTINALI

e ARTINALI: A Multi-Dimensional model for CPS
— Captures data-event-time interplay
— Introduces Real-time data invariants
— Increases the coverage of IDS
— Decreases the rate of false positives
— Imposes comparable overheads

 Examine generalizability of ARTINALI
— Unmanned Aerial Vehicle (UAV)

* https://github.com/karthikp-ubc/Artinali
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Driving Cars from Soft Errors [SC'17 - to appear]
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Ongoing work and conclusion
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Ongoing Work: Formal Analysis

* Formally model the states of the CPS
e Combine with formal attacker models

 Model-check the system for security invariants
— Identify unsafe states and paths to unsafe states

— Automatically mount the attacks on the system




Ongoing Work: SmartJS

* SmartlJS: Smart JavaScript-based Runtime
System for programming loT systems

— Security and Performance constraints

— Dynamic code migration to satisfy constraints

. sensor.
Surveillances loT -

ttttttttttttttttttttttt

Control Center for Combined loT

(-2 () (]

, function(d) {

SmartJS: Brings devices from various
manufacturers into a single unified
platform.




Ongoing Work: Resilient ML

Deriving ML algorithms resilient to perturbations
- Small changes = Similar outputs
- Convergence properties

J(0,.0,) ..

0,
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Conclusion

CPS systems resilience and security are important challenges

Two systems for resilience and security
1. Deep Neural Network Accelerators for Self-Driving Cars
2. Invariant monitoring for embedded system security

Future work
1. Formal analysis for CPS
2. Smart runtimes for loT
3. Resilient Machine Learning

Questions? karthikp@ece.ubc.ca



