
ThingsJS: Towards a Flexible and Self-Adaptable Middleware for
Dynamic and Heterogeneous IoT Environments

Julien Gascon-Samson
University of British Columbia

Vancouver, BC, Canada
julien.gascon-samson@ece.ubc.ca

Mohammad Ra�uzzaman
University of British Columbia

Vancouver, BC, Canada
ra�uzzaman@ece.ubc.ca

Karthik Pattabiraman
University of British Columbia

Vancouver, BC, Canada
karthikp@ece.ubc.ca

ABSTRACT
The Internet of Things (IoT) has gained wide popularity both in
academic and industrial contexts. Nowadays, such systems exhibit
many important challenges across many dimensions. In this work,
we propose ThingsJS, a rich Javascript-based middleware platform
and runtime environment that abstracts the inherent complexity
of such systems by providing a high-level framework for IoT sys-
tem developers, built over Javascript. ThingsJS abstracts several
large-scale distributed systems considerations, such as schedul-
ing, monitoring and self-adaptation, by means of a rich constraint
model, a multi-dimensional resource prediction approach and a
SMT-based scheduler to properly schedule and manage the execu-
tion of high-level, large-scale distributed applications on hetero-
geneous physical IoT devices. ThingsJS also provides a rich inter-
device communication framework built on top of the widely-used
publish/subscribe/MQTT paradigm. Finally, ThingsJS also proposes
a rich inter-device Javascript-based code migration framework to
support the transparent migration of live IoT components between
heterogeneous devices.

CCS CONCEPTS
• Software and its engineering→Development frameworks
and environments;Runtime environments; System description
languages;

KEYWORDS
IoT, Internet of Things, Javascript, Scheduling, Code Migration,
Publish/Subscribe, MQTT, Dependability, Security

ACM Reference Format:
Julien Gascon-Samson, Mohammad Ra�uzzaman, and Karthik Pattabira-
man. 2017. ThingsJS: Towards a Flexible and Self-Adaptable Middleware
for Dynamic and Heterogeneous IoT Environments. In M4IoT’17: M4IoT’17:
Middleware and Applications for the Internet of Things, December 11–15, 2017,
Las Vegas, NV, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3152141.3152391

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
M4IoT’17, December 11–15, 2017, Las Vegas, NV, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5170-6/17/12. . . $15.00
https://doi.org/10.1145/3152141.3152391

1 INTRODUCTION
The Internet of Things (IoT) involves multiple devices across many
domains that are inter-connected in order to provide and exchange
data. IoT systems exhibit important challenges across many dimen-
sions, such as very high device heterogeneity, and the usage of many
diverse programming languages, APIs and protocols. These factors,
combined with the large-scale nature of many IoT systems which
can often comprise several thousands of nodes, require developers
to handle complex distributed systems and software dependabil-
ity considerations. These can in turn open the door to bugs and
security vulnerabilities [7].

In this paper, we propose ThingsJS, a rich Javascript-based mid-
dleware and runtime environment aimed at addressing the above
challenges. While JavaScript has gained wide popularity as a pro-
gramming language for web applications [13, 16], it has recently
been proposed as a language for IoT programming as well. This
is because of its event-driven nature, and large installed base of
libraries and developers who know the language. Consequently,
there have been a number of open-source Virtual Machines (VMs)
developed for running JavaScript code on IoT devices [2, 3, 11, 23].

This paper presents a holistic view of our ThingsJS platform,
the set of challenges that it aims at solving, as well as the set of
research contributions. We note that at this stage, we have neither
formalized all our design choices nor conducted formal evaluations
of our system; rather, this paper outlines our main goals and design
choices, as well as relevant related work. We provide the following
main contributions in ThingsJS:

• A platform comprising a set of APIs and a set of high-level
programming and MQTT-based communication paradigms
to e�ciently write the code for the various components of
an IoT system in JavaScript, as well as a declarative syntax
to describe the relationships and constraints between the
components and devices (Section 2).

• A �exible model where the components are scheduled and
dispatched to IoT devices on-the-�y, while ensuring that
constraints are respected, by leveraging a novel machine
learning-based resource prediction model combined with an
SMT solver-based scheduler (Section 3).

• A state-preserving high-level JavaScript migration engine
that transparentlymigrates the execution of JavaScript-based
applications across heterogeneous IoT devices (Section 4).

2 SYSTEM ARCHITECTURE
The high-level architecture of the ThingsJS Framework is made
of several distributed components and is presented in Figure 1.
From a holistic point of view, a ThingsJS environment comprises a

M4IoT’17, December 11–15, 2017, Las Vegas, NV, USA J. Gascon-Samson, M. Rafiuzzaman, and K. Pa�abiraman

highly-distributed ThingsJS Application (Section 2.1), and dynam-
ically manages its execution over a set of heterogeneous devices
through the ThingsJS Framework (Section 2.2).

2.1 ThingsJS Application
A ThingsJS application is made of several components and is ex-
ecuted in a distributed fashion across the various devices of a
ThingsJS system. Note that in our model, a device can refer to
either an IoT device, or other processing nodes, such as a cloud VM.

2.1.1 Source Code. At its core, a ThingsJS application contains
source code expressed in a high-level language, in amodular fashion
(i.e., in the form a set of components). In this paper, the language
we consider is JavaScript, due to its widespread popularity and
portability across a wide range of devices [2, 11]. The use of a high-
level language also allows developers to shield themselves from
platform-speci�c considerations. As such, as part of the ThingsJS
framework, we provide a set of core APIs that developers can con-
sume to write their applications. Such APIs include abstractions
of �le system access (as the components might run on arbitrary
nodes), hardware access (i.e., sensors), publish/subscribe for inter-
component communications (Section 2.3) and are designed to be
migration-aware, so that they can properly sustain a code migration
(Section 4). Developers are free to use external libraries as in regular
JavaScript, but they are responsible for ensuring that such libraries
can be migrated as well.

2.1.2 Components. As part of the ThingsJS philosophy, devel-
opers are encouraged to modularize their source code as much
as possible, following the software engineering principle of one
component $ one responsibility, and let the runtime dynamically
decide on the best placement of components to devices. In this spirit,
having a set of small components allows for greater scheduling
�exibility, and partially shields the developer from scheduling con-
siderations. In turn, this allows the use of more elaborate heuristics
depending on the desired optimization criteria. Implementation-
wise, in Javascript, one component would typically correspond to
one js �le. The example outlined in Figure 1 models a rudimentary
ThingsJS application designed to manage the temperature inside
the various rooms of a given building. It models three components:
(1) a sensor, which is in charge of collecting readings from temper-
ature sensors located in the di�erent rooms a the building; (2) an
actuator, which allows for regulating the power output to adjust
the temperature across the various rooms and (3) a regulator, which
receives temperature sensor readings from the sensors and which
instructs actuators to increase or decrease the power output. In this
example, we identi�ed three roles/responsibilities, which led us to
decouple our implementation into three components, and let the
ThingsJS Scheduler schedule the execution of the components.

2.1.3 Device and Component Declaration. In addition to the
source code in the form of js �les, developers must specify a set of
devices on which the components will be run. Also, as there will
likely be more than one instance of some of the components (i.e., a
building can contain many temperature sensors and actuators, but
perhaps only one regulator), then developers must also specify the
di�erent instances of each component to be executed. Note that
ThingsJS allows for these to dynamically change, as devices and

SmartJS Manager

Physical
Constraints
Description

Logical
Constraints
Description

smart3js1

SmartJS Runtime

SmartJS App Source Code
(Node.js)

Component:
Sensor.js

Component:
Actuator.js

Component:
Regulator.js

Component Declaration
{sensor1,sensor2},

{actuator1,actuator2}, regulator1

SmartJS Device Declaration

smart3js1 smart0js1 cloud1

sensor1

actuator1

sensor2

smart0js1

SmartJS Runtime
actuator1

cloud1

SmartJS Runtime
regulator1

Figure 1: High-Level Architecture of ThingsJS

components can dynamically be added and/or removed. In the ex-
ample outlined in Figure 1, two IoT devices are de�ned: smart3js1,
(e.g., a Raspberry PI Model 3b), and smart0js1, (e.g., a Raspberry
PI Model 0W). In addition, a cloud VM device is de�ned (cloud1).

2.1.4 Physical and Logical Constraints. As we mentioned, we
let the ThingsJS Manager schedule the placement of components to
devices. In order for the Manager to make optimal choices, a set of
constraints must be speci�ed, as the set of devices which can hold
a given component instances might be restricted. For instance, a
sensor component instance might have to be restricted to a speci�c
device or set of devices, due to the presence of the physical sensor.
On the other end, while there might be some �exibility allowed
for other components, the component may be too demanding in
terms of system resources for it to be run on a given device. For
example, the regulator component might be too demanding to be
run on a Raspberry PI Model 0W. ThingsJS proposes mechanisms
to express such constraints, and distinguishes between two sets of
constraints:

Physical Constraints which model the system characteristics
of the various ThingsJS devices themselves. They typically model
the physical capabilities (e.g., CPU, memory), the networking capa-
bilities (e.g., incoming and outgoing bandwidth and latency), the
power source (e.g., battery or grid). Note that some of these con-
straints are periodically refreshed as measurements are performed.

Logical Constraints, which model the characteristics of the
ThingsJS components. They model, for each component, the various
resource requirements (CPU, memory, incoming/outgoing band-
width and latency), and can also be used to bind speci�c components
to speci�c devices, e.g., due to dependencies with hardware.

2.2 ThingsJS Framework
The ThingsJS Framework includes infrastructure components that
are responsible for managing the dynamic execution of a ThingsJS
application over the set of available IoT devices.

2.2.1 Manager. The ThingsJS Manager manages the execution
of all components across all devices. It takes as input a ThingsJS ap-
plication as described in Section 2.1 and schedules and monitors its

ThingsJS: Towards a Flexible and Self-Adaptable Middleware for IoT M4IoT’17, December 11–15, 2017, Las Vegas, NV, USA

Figure 2: Topic-Based Publish/Subscribe Model

distributed execution across all participating ThingsJS devices. The
deployment process itself is currently done through a command-line
interface. We are however working on an API and a web interface
to ease this process. Note that the scheduling is done through the
ThingsJS Scheduler (Section 3.2).

2.2.2 Runtime. An instance of the ThingsJS Runtime is present
on every device. It locally manages the execution of all compo-
nents on the device. It also includes a collector component which
monitors available system resources and captures highly detailed
performance data for each component to be fed to the Scheduler’s
prediction model for scheduling purposes (Section 3).

2.3 Inter-Component Communications
In ThingsJS, we require that all inter-component communications
follow a topic-based publish/subscribe [9] (MQTT) model. The
choice of this model was primarily motivated by the logical decou-
pling of content producers from content consumers that it provides,
which allows for abstracting many networking-related considera-
tions such as the management of ip addresses/ports, low-level con-
nections, protocols, etc. Also, due to its lightweightness and simple
yet �exible conceptual model, the use of topic-based publish/sub-
scribe enjoys widespread popularity in IoT applications. Requiring
all components to use pub/sub also allows ThingsJS to optimize
the pub/sub overlay at the infrastructure level, while abstracting
such considerations from ThingsJS Application developers, i.e., they
only need to know that a pub/sub service is always available and
consume the appropriate APIs that are provided, irrespective of
how the service is provided.

From an implementation standpoint, a topic-based pub/sub in-
frastructure can be provided in several di�erent ways: under a
client-server model [1], as a service in the cloud [10], and also in a
peer-to-peer fashion [6, 21]. In the context of this paper, we opted
for a classic client-server approach due to its simplicity, but we do
plan as future work to explore alternative �exible approaches at
providing pub/sub in an adaptive way.

Figure 2 shows an example usage scenario in the context of our
SmartTemperature demo app. On the left, sensors 1 and 2 act as
publishers and transmit relevant publication messages (sensor data
in the form of a sensor ID and a temperature intensitymeasurement)
to topic smartsensor/temperature. The regulator component
is the sole subscriber to that topic. In response, the regulator pro-
duces actuation publications (actuator ID, power output) published

1 // ...
2
3 // Connect
4 pubsub.connect(function() {
5
6 // Subscribe to temperature messages
7 pubsub.subscribe("smartsensor/temperature", function(d) {
8
9 if (d.temperature > threshold) {

10 pubsub.publish("smartsensor/actuation", {
11 id: d.id,
12 powerVariation: -5
13 });
14 } else if (d.temperature < threshold) {
15 pubsub.publish("smartsensor/actuation", {
16 id: d.id,
17 powerVariation: 5
18 });
19 }
20
21 });
22 });

Figure 3: Regulator - Sample Code

over topic smartsensor/actuation, which are then consumed by
the actuator components to regulate the power output. Figure 3 il-
lustrates the sample pub/sub-related code for the SmartTemperature
demo application, based on the model shown in Figure 2.

3 DYNAMIC SCHEDULING
Considering a set of components and a set of devices, the ThingsJS
Scheduler (a subcomponent of the Manager) comes up with an
optimal way to schedule the execution of every component on
to a speci�c IoT device, while respecting the physical and logical
constraints described in Section 2.1.4. In other words, for every
component, the Scheduler has to pick the best target device among
all (potentially thousands of) available IoT devices.

3.1 Optimal Device for a given Component
We consider a device Di to be optimal for component Ci if it min-
imizes the execution time of Ci , while respecting all constraints
and accounting for the current execution of all other components
on Di . In future work, we plan on supporting other optimization
criteria; e.g., minimizing component-to-component response time,
bandwidth usage, costs, etc., as di�erent components may have
di�erent optimization goals.

3.2 ThingsJS Scheduler: Challenges
Selecting the best device to host a given component is challenging
due to the following reasons:

(1) Non-Deterministic Performance. While the execution
time of a componentCi varies according to the resources in a given
deviceDi , there can often be some noise. In other words, di�erences
in results can be observed upon running the same component C1
under similar system conditions.

(2) IoT Devices Heterogeneity. The ideal IoT device choice
to host a given component is application-dependent, as di�erent
applications will exhibit di�erent resource requirements (i.e., CPU,
RAM, bandwidth, etc.).

(3) Computational Overhead and System Complexity. Es-
tablishing a strong correlation between the set of available resources
on a given platform and the set of execution times of a given pro-
gram is a challenging problem, due in part to (2), but also due to the

M4IoT’17, December 11–15, 2017, Las Vegas, NV, USA J. Gascon-Samson, M. Rafiuzzaman, and K. Pa�abiraman

fact that several distributed and operating system-related factors
come into play. Extracting the usage of various resources from all
IoT devices in order to estimate the execution time of di�erent
applications incurs high computational overhead and complexity.
There is a need to develop an e�cient resource prediction model,
which is one of our key contributions.

3.3 ThingsJS Scheduler: Design
The ThingsJS Scheduler operates in two steps. First, it uses Machine
Learning (ML) techniques to predict the execution time of a given
component over all available devices Di 2 D. Then, it makes use
of a SMT-based (Satis�ability-Modulo-Theory) solver to determine
the best assignation of components to devices which minimizes
execution time and which respects the set of physical and logical
constraints, as described in Section 2.1.4.

3.3.1 Predicting Execution Times. Asmentioned previously, each
component periodically reports its performance metrics (usage of a
wide range of system resources) to the Collector subcomponent of
the ThingsJSManager. In the training phase, the ThingsJS Scheduler
continuously feeds the data received from the Collector to the pre-
dictionmodel so that the latter is continuously re�nedwith live data
(i.e., available system resources) from all available devices. Then,
with su�cient training data, and by making use of several di�erent
regression models [15, 20, 22, 22, 24], the prediction model can be
used to predict what the execution time of an arbitrary component
Ci would be over the set of devices Di 2 D with high accuracy.
Note that each regression model here serves its own purpose to
predict the execution times of di�erent kinds of components, and
their corresponding hyper-parameters are dynamically tuned each
time based on the nature of the input data to give the best possi-
ble prediction. The �nal prediction is generated by processing the
prediction results from all of them. The training process is iterative
and follows a feedback loop: as scheduled components are executed
over devices, their observed performance metrics are collected and
continuously fed back to the prediction model to improve it.

3.3.2 Scheduling. The predicted set of execution times for com-
ponentCi over the set of IoT devices Di 2 D are fed to the ThingsJS
Scheduler, which, as mentioned previously, is initially responsible
for determining where each component should be placed. To that
end, it uses a SMT solver (i.e., Z3 [8]) to �nd the most suitable global
con�guration in an e�cient manner. Note that since the scheduling
occurs at the macro level, one cannot necessarily assume that a
given component Ci will be placed on the device which minimizes
its execution time, as the scheduler must come up with the best
global con�guration while respecting the constraints.

3.3.3 Adaptability. As the system is running and conditions
change (e.g., constraints become violated, new component instances
are launched, some nodes switch to battery power), there may be
a need for migrating already-executing components to di�erent
devices (see Section 4). In the case of constraints violations, the
scheduler must come up with an alternate con�guration to resolve
the reported violations. If new components are being introduced,
then the scheduler must also come up with a suitable con�guration
to dispatch the execution of these components. In other cases, the
scheduler can produce an alternate con�guration which would

minimize the objective function for some of the components by
means of a better placement. In all these cases, the Scheduler must
also take into consideration the costs of migrating components, in
order to �nd the right balance between migrating components and
the costs involved in the migration. The exact formulation of the
cost model is deferred to future work.

3.3.4 Fault Tolerance. Both IoT nodes and components are sub-
ject to arbitrary failures. If ThingsJS components exceed the avail-
able resources (e.g., memory), they are prone to failure. Upon a
component crashing, the ThingsJS Runtime on the appropriate IoT
node will detect the failure, inform the Master who will then re-
execute the Scheduler to reschedule that component on another
node. We can extend the execution time prediction model in 3.3.1
to predicting the failures of ThingsJS components on IoT nodes
before they occur, in order to preemptively reschedule components.
In the case of a node failure, the ThingsJS Manager will detect the
failure (loss of communication with the appropriate Runtime), and
will trigger the rescheduling of all components that were executing
on that device, following the same approach.

The code migration approach that we discuss next (Section 4)
can be used for fault tolerance as well. We plan on working on
automatic snapshotting of the state of ThingsJS components so that
their latest known state can be restored upon a failure occuring.

4 CODE MIGRATION
Upon the SmartJS Manager generating a new con�guration in
which some of the component instances are moved to a di�erent
device, it becomes necessary to dynamically move the execution of
such components from the old device to the new one. Upon com-
ponent C1 being moved from device D1 to D2, a trivial approach
would simply consist of the Manager asking the Runtime on D1 to
shut down component C1 and asking the Runtime on D2 to start a
new instance of C1 on D2. Obviously, this approach is very limited,
as the current state of C1 will not be preserved. While some IoT
components might be stateless, such as simple sensors, we envision
that as IoT devices become more and more powerful, such devices
will be executing more complex applications. For instance, taking
the example shown in Figure 2, one could imagine a sensor or actu-
ator component that could remember a set of local historical values
and perform some more elaborate local computations based on
such values. There are also already some discussions in executing
machine learning applications on IoT nodes [14].

For stateful Javascript IoT applications, a simple migration ap-
proach could be, for all components, to provide APIs allowing
them to save and restore their current state. Such a solution would
however require ThingsJS developers to implement the serializing
behavior for all components, which would be cumbersome. There-
fore, there is a compelling need to come up with an automated and
dynamic migration approach that will alleviate ThingsJS developers
from such considerations.

4.1 Process Migration: Challenges
Process migration techniques can be used to dynamically migrate
the execution of a running process from one device to another. Many
techniques have been proposed [17, 19, 25, 26], which typically
operate by saving and restoring the process memory space.

ThingsJS: Towards a Flexible and Self-Adaptable Middleware for IoT M4IoT’17, December 11–15, 2017, Las Vegas, NV, USA

In our case, components are written in JavaScript, a high-level
language. Process migration would then involve migrating the vir-
tual machine (VM) process itself, which is in charge of executing
a given component, at the expense of potentially large serialized
states and high overheads on resource-constrained IoT devices. Se-
rializing the VM process would also prevent the ThingsJS Runtime
from executing multiple JavaScript components within the same
VM space - which might be desirable to reduce the memory foot-
print of each component - as the serialization of the VM process
would serialize all components managed by the VM.

In addition, considering that an IoT system will most likely fea-
ture a set of heterogeneous devices and that the ThingsJS runtime
might schedule the execution of a given component on di�erent
physical devices, transparent process migration techniques are
infeasible due to low-level platform di�erences (e.g., processor,
memory-space, etc.) between them. Therefore, we do not plan to
take this approach.

4.2 JavaScript Component Migration
As an alternative to process migration, we propose, as a novel con-
tribution, a set of techniques to perform live migration of JavaScript
components (applications) from one VM to another, irrespective of
the physical platform. Provided that the migration occurs purely
in the JavaScript application space, such an approach allows us to
solve the challenges outlined above: supporting the execution of sev-
eral ThingsJS components in the same VM context, and achieving
component migration across heterogeneous devices. The following
subsections give an insight into the main code migration-related
challenges that we are currently working on solving, as well as an
insight into the solutions that we are proposing.

4.2.1 Main Challenge: Handling Closures. At its core, a JavaScript
application comprises a global scope in which all the variables and
functions are de�ned by default. In order to capture the state of a
JavaScript application, one needs to be able to recursively capture
the state of all variables de�ned in the global scope. JavaScript also
exposes a rich object model, in which properties can be dynamically
added to objects, which, combined with a rich re�ection API, allows
one to recursively iterate through objects to serialize their state.

However, JavaScript considers functions as data, which can lead
to increased complexity, as functions can be anonymously de�ned,
bound to variables and returned. Increased complexity stems from
the ability of functions to not only access the variables de�ned in
their own scope, but also those de�ned within their ancestors’ scope
(closures). The code sample illustrated in �gure 4 illustrates the
use of closures in Javascript to de�ne a Counter entity. In this code
sample, the Counter function stores the initial value of the counter,
and returns another (anonymous) function which increments the
counter. At line 5, we observe that the nested function can access
and modify variable value de�ned in the parent scope. Then, upon
storing the return value of Counter in a variable, one can invoke
the anonymous functions (lines 14 and 15) to increment the counter.

Saving closures brings additional complexity, stemming from the
fact that in order to properly store the state of all variables which
point to functions (i.e., f and g), one needs to store the state of the
closures that such functions contain (the scope, which refers to all
variables that the function can access). In the case of f and g, the

1 function Counter (v a l) {
2 var va lue = v a l ;
3
4 return function () {
5 va l u e = va lue + 1 ;
6 // Can access parent function local variable
7 return va lue ;
8 }
9 } ;
10
11 var f = Counter (5) ;
12 var g = Counter (2) ;
13
14 document . w r i t e l n (f ()) ; // Prints 6
15 document . w r i t e l n (g ()) ; // Prints 3

Figure 4: Counter JavaScript Example

scope would contain the current value of variables value and val,
private to each instance of the closure.

From a graph theoretic perspective, the hierarchy of closure
scopes form a tree-like structure [13] that one has to walk to prop-
erly save the hierarchical state of all closures de�ned in a given
JavaScript application. However, the JavaScript re�ection API does
not contain provisions for accessing the scope of closures, i.e., the
set of variables that a given function de�nes or can access.

4.2.2 Saving and Restoring Closures. In order to solve the se-
rialization challenges described at the previous section, [13] et al.
propose an approach in which the Javascript Virtual Machine (VM)
is instrumented to allow access to the internal states, in order to be
able to track closures scopes and to properly serialize them. Then,
reconstruction code is generated to be able to reconstruct the pro-
gram context. If possible, we prefer to avoid VM instrumentation,
as such techniques might be VM and platform-dependant.

As part of our contributions, we come up with an approach in
which we instrument the code prior to it’s execution by means
of static Javascript code injection, with the goal of exposing the
data hierarchy and closure nesting (i.e., the scope tree) within the
program under a dynamic tree-like structure. Upon a snapshot being
taken, the dynamic scope tree is walked downwards starting from
the top to be serialized. The restoration process then consists of
parsing the state and generating appropriate closure reconstruction
code, which yields a program that is functionally equivalent to the
original program at the moment of taking its snapshot. In other
words, the code is di�erent, but the data and the logic that it exposes
are equivalent, and execution can then proceed.

4.2.3 Additional Challenges. An additional challenge is when to
perform the migration in a JavaScript program. As we cannot easily
access, serialize and deserialize the JavaScript call stack and event
queue, we schedule the saving of the state to be executed at the end
of the event queue by means of timers (since JavaScript is single-
threaded, it does not allow the current thread to be preempted). We
believe however that this is an acceptable solution due to the event-
based, asynchronous nature of Javascript. We are also looking at
supporting the serialization of nested libraries. Another important
challenge that we aim at tackling is the correct serialization of the
MQTT/pub-sub layer, which will involve serializing the set of all

M4IoT’17, December 11–15, 2017, Las Vegas, NV, USA J. Gascon-Samson, M. Rafiuzzaman, and K. Pa�abiraman

subscribers-topics, and ensuring that no publications are lost during
the migration process.

5 RELATEDWORK
To the best of our knowledge, the idea of scheduling applications
on IoT nodes is novel, and we think that ThingsJS opens the door
to important contributions in this area. There has been some prior
work in scheduling applications in a cloud setting [5, 12], but we
think that using such approaches directly could be impractical due
to the many key di�erences between cloud and IoT systems.

There has been some previous work in migrating Javascript code
across browsers, but to the best our knowledge, we found no ap-
proach that dealt with the speci�c problem of migrating Node.js
out-of-browser applications. Most relevant related work include
[16], which proposes a framework to migrate the state of browser-
based Javascript applications across web browsers, and [13], builds
upon the prior approach by improving the handling of nested clo-
sures by instrumenting the VM to access its internal state. Note
that our approach improves on [13] by avoiding low-level VM in-
strumentation in order to increase cross-device/VM portability.

From a systems perspective, there has been some work in propos-
ing virtual machines and frameworks for developing and running
IoT applications. Garvin et al. [11] introduce the Samsung IoT.js
project, an embedded, tiny JavaScript virtual machine aiming at
running JS code on resource-constrained IoT devices. On the other
hand, the Intel XDK framework [2] aims at proposing a framework
for writing mobile and IoT applications using web technologies
(HTML5, Javascript). Some recent research and industry proposals
aim at proposing emergent paradigms that can be used to model
the roles and relationships among IoT systems, such as actor-based
approaches, which can be leveraged to model the communication
�ows between components [4, 18]. We note however that ThingsJS
di�er by providing an integrated platform that aims at solving
challenges across multiple dimensions.

6 CONCLUSION
In this paper, we presented an overview of ThingsJS, our rich
Javascript-based IoT middleware which aims at simplifying the
development of IoT applications across heterogeneous IoT devices.
We discussed the holistic architecture and the technical decisions
of ThingsJS, as well as the main contributions that we intend to
bring, across several domains. Our contributions are (1) providing
a rich platform that can abstract scheduling, communications and
fault tolerance considerations, (2) predicting the load of IoT appli-
cations and dynamically scheduling their placement across devices,
and (3) enabling the transparent migration of rich IoT JavaScript
applications across heterogeneous IoT devices.

ACKNOWLEDGMENTS
This work is supported by a research gift form Intel, a Discovery
grant, and a Post-Doctoral Fellowship from the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES
[1] 2013. Redis Website. (2013). http://www.redis.io/

[2] 2014. Intel XDK. (2014). https://software.intel.com/en-us/xdk
[3] 2017. mJS. (2017). https://github.com/cesanta/mjs
[4] 2017. Node-RED Website. (2017). https://nodered.org/
[5] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,

Minlan Yu, and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the Best
Cloud Con�gurations for Big Data Analytics.. In NSDI. 469–482.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, and A.I.T. Rowstron. 2002. Scribe: a
large-scale and decentralized application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications 20, 8 (2002), 1489–1499.

[7] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. 2011. Comprehensive Experimental Analyses of Automotive
Attack Surfaces. In Proceedings of the 20th USENIX Conference on Security. USENIX,
Berkeley, USA.

[8] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An E�cient SMT Solver.
In Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340. http://dl.
acm.org/citation.cfm?id=1792734.1792766

[9] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. 2003. The Many Faces of Publish/Subscribe. ACM Comput. Surv. 35, 2 (2003),
114–131. https://doi.org/10.1145/857076.857078

[10] J. Gascon-Samson, F. P. Garcia, B. Kemme, and J. Kienzle. 2015. Dynamoth:
A Scalable Pub/Sub Middleware for Latency-Constrained Applications in the
Cloud. In Distributed Computing Systems (ICDCS), 2015 IEEE 35th International
Conference on. 486–496. https://doi.org/10.1109/ICDCS.2015.56

[11] Evgeny Gavrin, Sung-Jae Lee, Ruben Ayrapetyan, and Andrey Shitov. 2015. Ultra
Lightweight JavaScript Engine for Internet of Things. In SPLASH Companion
2015. ACM, New York, NY, USA, 19–20.

[12] Herodotos Herodotou, Fei Dong, and Shivnath Babu. 2011. No one (cluster) size
�ts all: automatic cluster sizing for data-intensive analytics. In Proceedings of the
2nd ACM Symposium on Cloud Computing. ACM, 18.

[13] Jin-woo Kwon and Soo-Mook Moon. 2017. Web Application Migration with
Closure Reconstruction. In Proceedings of the 26th International Conference on
World Wide Web (WWW ’17). Geneva, Switzerland, 133–142.

[14] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F.
Kawsar. 2016. DeepX: A Software Accelerator for Low-Power Deep Learning
Inference on Mobile Devices. In 2016 15th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN). 1–12. https://doi.org/10.1109/
IPSN.2016.7460664

[15] Andy Liaw, Matthew Wiener, et al. 2002. Classi�cation and regression by ran-
domForest. R news 2, 3 (2002), 18–22.

[16] James Teng Kin Lo, Eric Wohlstadter, and Ali Mesbah. 2013. Imagen: Runtime
Migration of Browser Sessions for Javascript Web Applications. In Proceedings of
the 22Nd International Conference on World Wide Web (WWW ’13). ACM, New
York, NY, USA, 815–826.

[17] Dejan S. Miloȷ́ičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Song-
nian Zhou. 2000. Process Migration. ACM Comput. Surv. 32, 3 (Sept. 2000),
241–299. https://doi.org/10.1145/367701.367728

[18] Per Persson and Ola Angelsmark. 2015. Calvin–merging cloud and iot. Procedia
Computer Science 52 (2015), 210–217.

[19] E. T. Roush and R. H. Campbell. 1996. Fast dynamic process migration. In
Proceedings of 16th International Conference on Distributed Computing Systems.
637–645. https://doi.org/10.1109/ICDCS.1996.508015

[20] Peter J Rousseeuw and Annick M Leroy. 2005. Robust regression and outlier
detection. Vol. 589. John wiley & sons.

[21] Vinay Setty, Maarten Van Steen, Roman Vitenberg, and Spyros Voulgaris. 2012.
PolderCast: Fast, Robust, and Scalable Architecture for P2P Topic-based Pub/Sub.
In International Middleware Conference (Middleware). 271–291.

[22] Donald F Specht. 1991. A general regression neural network. IEEE transactions
on neural networks 2, 6 (1991), 568–576.

[23] S. Tilkov and S. Vinoski. 2010. Node.js: Using JavaScript to Build High-
Performance Network Programs. IEEE Internet Computing 14, 6 (Nov 2010),
80–83. https://doi.org/10.1109/MIC.2010.145

[24] Hrishikesh D Vinod. 1978. A survey of ridge regression and related techniques
for improvements over ordinary least squares. The Review of Economics and
Statistics (1978), 121–131.

[25] Amirreza Zarrabi. 2012. A generic process migration algorithm. International
Journal of Distributed and Parallel Systems 3, 5 (2012), 29.

[26] S. Zhongyuan, Q. Jianzhong, L. Shukuan, and Z. Qiang. 2015. Use Pre-record
Algorithm to Improve Process Migration E�ciency. In 2015 14th International
Symposium on Distributed Computing and Applications for Business Engineering
and Science (DCABES). 50–53. https://doi.org/10.1109/DCABES.2015.20

