
Modeling Input-Dependent Error Propagation in
Programs

Guanpeng Li and Karthik Pattabiraman
University of British Columbia

{gpli, karthikp}@ece.ubc.ca

Abstract—Transient hardware faults are increasing in com-
puter systems due to shrinking feature sizes. Traditional methods
to mitigate such faults are through hardware duplication, which
incurs huge overhead in performance and energy consumption.
Therefore, researchers have explored software solutions such
as selective instruction duplication, which require fine-grained
analysis of instruction vulnerabilities to Silent Data Corruptions
(SDCs). These are typically evaluated via Fault Injection (FI),
which is often highly time-consuming. Hence, most studies confine
their evaluations to a single input for each program. However,
there is often significant variation in the SDC probabilities of both
the overall program and individual instructions across inputs,
which compromises the correctness of results with a single input.

In this work, we study the variation of SDC probabilities
across different inputs of a program, and identify the reasons for
the variations. Based on the observations, we propose a model,
VTRIDENT, which predicts the variations in programs’ SDC
probabilities without any FIs, for a given set of inputs. We find
that VTRIDENT is nearly as accurate as FI in identifying the
variations in SDC probabilities across inputs. We demonstrate
the use of VTRIDENT to bound overall SDC probability of a
program under multiple inputs, while performing FI on only a
single input.

Keywords—Error Propagation, Soft Error, Silent Data Corrup-
tion, Error Resilience, Program Analysis, Multiple Inputs

I. INTRODUCTION

Transient hardware fault probabilities are predicted to
increase in future computer systems due to growing system
scales, progressive technology scaling, and lowering operat-
ing voltages [29]. While such faults were masked through
hardware-only solutions such as redundancy and voltage guard
bands in the past, these techniques are becoming increasingly
challenging to deploy as they consume significant amounts of
energy, and as energy is becoming a first class constraint in
microprocessor design [5]. As a result, software needs to be
able to tolerate hardware faults with low overheads.

Hardware faults can cause programs to fail by crashing,
hanging or producing incorrect program outputs, also known
as silent data corruptions (SDCs). SDCs are a serious concern
in practice as there is no indication that the program failed, and
hence the results of the program may be taken to be correct.
Hence, developers must first evaluate the SDC probability of
their programs, and if it does not meet their reliability target,
they need to add protection to the program until it does.

Fault injections (FIs) are commonly used for evaluating and
characterizing programs’ resilience, and to obtain the overall
SDC probability of a program. In each FI campaign, a single
fault is injected into a randomly sampled instruction, and the

program is executed till it crashes or finishes. FI therefore
requires that the program is executed with a specific input. In
practice, a large number of FI campaigns are usually required
to achieve statistical significance, which can be extremely
time-consuming. As a result, most prior work limits itself to
a single program input or at most a small number of inputs.
Unfortunately, the number of possible inputs can be large, and
there is often significant variance in SDC probabilities across
program inputs. For example, in our experiments, we find that
the overall SDC probabilities of the same program (Lulesh)
can vary by more than 42 times under different inputs. This
seriously compromises the correctness of the results from FI.
Therefore, there is a need to characterize the variation in SDC
probabilities across multiple inputs, without expensive FIs.

We find that there are two factors determining the variation
of the SDC probabilities of the program across its inputs (we
call this the SDC volatility): (1) Dynamic execution footprint
of each instruction, and (2) SDC probability of each instruction
(i.e., error propagation behaviour of instructions). Almost all
existing techniques [7], [8], [10] on quantifying programs’
failure variability across inputs consider only the execution
footprint of instructions. However, we find that the error
propagation behavior of individual instructions often plays as
important a role in influencing the SDC volatility (Section III).
Therefore, all existing techniques experience significant inac-
curacy in determining a program’s SDC volatility.

In this paper, we propose an automated technique to
determine the SDC volatility of a program across different
inputs, that takes into account both the execution footprint of
individual instructions, and their error propagation probabili-
ties. Our approach consists of three steps. First, we perform
experimental studies using FI to analyze the properties of SDC
volatility, and identify the sources of the volatility. We then
build a model, VTRIDENT, which predicts the SDC volatility
of programs automatically without any FIs. VTRIDENT is
built on our prior model, TRIDENT [11] for predicting
error propagation, but sacrifices some accuracy for speed of
execution. Because we need to run VTRIDENT for multiple
inputs, execution speed is much more important than in the
case of TRIDENT. The intuition is that for identifying the
SDC volatility, it is more important to predict the relative
SDC probabilities among inputs than the absolute probabilities.
Finally, we use VTRIDENT to bound the SDC probabilities
of a program across multiple inputs, while performing FI on
only a single input. To the best of our knowledge, we are the
first to systematically study and model the variation of SDC
probabilities in programs across inputs.

The main contributions are as follows:

• We identify two sources of SDC volatility in
programs, namely INSTRUCTION-EXECUTION-
VOLATILITY that captures the variation of
dynamic execution footprint of instructions, and
INSTRUCTION-SDC-VOLATILITY that captures the
variability of error propagation in instructions, and
mathematically derive their relationship (Section III).

• To understand how SDC probabilities vary across
inputs, we conduct a FI study using nine bench-
marks with ten different program inputs for each
benchmark, and quantify the relative contribu-
tion of INSTRUCTION-EXECUTION-VOLATILITY and
INSTRUCTION-SDC-VOLATILITY (Section IV) to the
overall SDC volatility.

• Based on the understanding, we build a model, VTRI-
DENT1, on top of our prior framework for model-
ing error propagation in programs TRIDENT (Sec-
tion V-B). VTRIDENT predicts the SDC volatility of
instructions without any FIs, and also bounds the SDC
probabilities across a given set of inputs.

• Finally, we evaluate the accuracy and scalability of
VTRIDENT in identifying the SDC volatility of in-
structions (Section VI), and in bounding SDC proba-
bilities of program across inputs (Section VII).

Our main results are as follows:

• Volatility of overall SDC probabilities is due to
both the INSTRUCTION-EXECUTION-VOLATILITY
and INSTRUCTION-SDC-VOLATILITY. Using only
INSTRUCTION-EXECUTION-VOLATILITY to predict
the overall SDC volatility of the program results
in significant inaccuracies, i.e., an average of 7.65x
difference with FI results (up to 24x in the worst case).

• We find that the accuracy of VTRIDENT is 87.81%
when predicting the SDC volatility of individual in-
structions in the program. The average difference
between the variability predicted by VTRIDENT and
that by FI is only 1.26x (worst case is 1.29x).

• With VTRIDENT 78.89% of the given program
inputs’ overall SDC probabilities fall within the
predicted bounds. With INSTRUCTION-EXECUTION-
VOLATILITY alone, only 32.22% of the probabilities
fall within the predicted bounds.

• Finally, the average execution time for VTRIDENT
is about 15 minutes on an input of nearly 500 million
dynamic instructions. This constitutes a speedup of
more than 8x compared with the TRIDENT model to
bound the SDC probabilities, which is itself an order
of magnitude faster than FI [11].

II. BACKGROUND

In this section, we first present our fault model, then define
the terms we use, and the software infrastructure we work with.

1VTRIDENT stands for “Volatility Prediction for TRIDENT”.

A. Fault Model

In this paper, we consider transient hardware faults that
occur in the computational elements of the processor, including
pipeline stages, flip-flops, and functional units. We do not
consider faults in the memory or caches, as we assume that
these are protected with ECC. Likewise, we do not consider
faults in the processor’s control logic as we assume it is
protected. Neither do we consider faults in the instructions’
encoding as these can be detected through other means such
as error correcting codes. Finally, we assume that program does
not jump to arbitrary illegal addresses due to faults during the
execution, as this can be detected by control-flow checking
techniques [27]. However, the program may take a faulty legal
branch (execution path is legal but branch direction can be
wrong due to faults propagating to it). Our fault model is in
line with other work in the area [6], [9], [14], [24], [33].

B. Terms and Definitions

• Fault Occurrence: The event corresponding to the
occurrence of transient hardware fault in the processor.
The fault may or may not result in an error.

• Fault Activation: The event corresponding to the
manifestation of the fault to the software, i.e., the fault
becomes an error and corrupts some portion of the
software state (e.g., register, memory location). The
error may or may not result in a failure (i.e., SDC,
crash or hang).

• Crash: The raising of a hardware trap or exception
due to the error, because the program attempted to
perform an action it should not have (e.g., read outside
its memory segments). The OS terminates the program
as a result.

• Silent Data Corruption (SDC): A mismatch between
the output of a faulty program run and that of an error-
free execution of the program.

• Benign Faults: Program output matches that of the
error-free execution even though a fault occurred
during its execution. This means either the fault was
masked, or overwritten by the program.

• Error propagation: Error propagation means that
the fault was activated, and has affected some other
portion of the program’s state, say ’X’. In this case, we
say the fault has propagated to state X. We focus on
the faults that affect the program state, and therefore
consider error propagation at the application level.

• SDC Probability: We define the SDC probability as
the probability of an SDC given that the fault was
activated – other work uses a similar definition [9],
[13], [21], [22], [31], [34].

C. LLVM Compiler and LLVM Fault Injector

In this paper, we use the LLVM compiler [20] to perform
the program analysis, FI experiments, and to implement our
model. Our choice of LLVM is motivated by three reasons.
First, LLVM uses a typed intermediate representation (IR) that
can easily represent source-level constructs. In particular, it
preserves the names of variables and functions, which makes

source mapping feasible. This allows us to perform a fine-
grained analysis of which program locations cause certain
failures and map it to the source code. Secondly, LLVM IR
is a platform-neutral representation that abstracts out many
low-level details of the hardware and assembly language.
This greatly aids in portability of our analysis to different
architectures, and simplifies the handling of the special cases
of different assembly language formats. Finally, LLVM IR has
been shown to be accurate for doing FI studies [31], and there
are many fault injectors developed for LLVM [1], [22], [28],
[31]. Most of the papers we compare with in this study also use
LLVM infrastructure [9], [21]. Therefore, in this paper, when
we say instruction, we mean an instruction at the LLVM IR
level. However, our methodology is not tied to LLVM.

We use LLVM Fault Injector (LLFI) [31] to perform
FI experiments. LLFI is found to be accurate in studying
SDCs [31]. Since we consider transient errors that occur in
computational components, we inject single bit flips in the
return values of the target instruction randomly chosen at
runtime. We consider single bit flips as this is the de-facto
fault model for simulating transient faults in the literature [9],
[21], [14]. Although there have been concerns expressed about
the representativeness of using single-bit flip faults for FI to
model soft errors [4], a recent study [28] has shown that there
is very little difference in SDC probabilities due to single and
multiple bit flips at the application level. Since we focus on
SDCs, we use single bit flips in our evaluation.

III. VOLATILITIES AND SDC

In this section, we explain how we calculate the overall
SDC probability of a program under multiple inputs. Statistical
FI is the most common way to evaluate the overall SDC
probability of a program and has been used in other related
work in the area [7], [10], [14], [15], [21]. It randomly injects
a large number (usually thousands) of faults under a given
program input, one fault per program execution, by uniformly
choosing program instruction for injection from the set of all
executed instructions.

Equation 1 shows the calculation of the overall SDC
probability of the program, Poverall, from statistical FI. NSDC

is the number of FI campaigns that result in SDCs among all
the FI campaigns. Ntotal is the total number of FI campaigns.
Equation 1 can be expanded to the equivalent equations shown
in Equation 2. Pi is the SDC probability of each (static)
instruction that is chosen for FI, Ni is the amount of times
that the static instruction is chosen for injection over all FI
campaigns. i to n indicates all the distinct static instructions
that are chosen for injection.

Poverall = NSDC/Ntotal (1)

= (

n∑
i=1

Pi ∗Ni)/Ntotal =

n∑
i=1

Pi ∗ (Ni/Ntotal) (2)

In Equation 2, we can see that Ni/Ntotal and Pi are the
two relevant factors in the calculation of the overall SDC
probability of the program. Ni/Ntotal can be interpreted as the
probability of the static instruction being sampled during the
program execution. Because the faults are uniformly sampled
during the program execution, Ni/Ntotal is statistically equiv-
alent to the ratio between the number of dynamic executions of

the chosen static instruction, and the total number of dynamic
instructions in the program execution. We call this ratio the
dynamic execution footprint of the static instruction. The larger
the dynamic execution footprint of a static instruction, the
higher the chance that it is chosen for FI.

Therefore, we identify two kinds of volatilities that affect
the variation of Poverall when program inputs are changed
from Equation 2: (1) INSTRUCTION-SDC-VOLATILITY, and
(2) INSTRUCTION-EXECUTION-VOLATILITY. INSTRUCTION-
SDC-VOLATILITY represents the variation of Pi across
the program inputs, INSTRUCTION-EXECUTION-VOLATILITY
is equal to the variation of dynamic execution footprints,
Ni/Ntotal, across the program inputs. We also define the
variation of Poverall as OVERALL-SDC-VOLATILITY. As ex-
plained above, INSTRUCTION-EXECUTION-VOLATILITY can
be calculated by profiling the number of dynamic instruc-
tions when inputs are changed, which is straight-forward to
derive. However, INSTRUCTION-SDC-VOLATILITY is diffi-
cult to identify as Pi requires a large number of FI cam-
paigns on every such instruction i with different inputs,
which becomes impractical when the program size and the
number of inputs become large. As mentioned earlier, prior
work investigating OVERALL-SDC-VOLATILITY considers
only the INSTRUCTION-EXECUTION-VOLATILITY, and ig-
nores INSTRUCTION-SDC-VOLATILITY [7], [10]. However,
as we show in the next section, this can lead to significant
inaccuracy in the estimates. Therefore, we focus on deriving
INSTRUCTION-SDC-VOLATILITY efficiently in this paper.

IV. INITIAL FI STUDY

In this section, we design experiments to show
how INSTRUCTION-SDC-VOLATILITY and INSTRUCTION-
EXECUTION-VOLATILITY contribute to OVERALL-SDC-
VOLATILITY, then explain the variation of INSTRUCTION-
SDC-VOLATILITY across programs.

TABLE I: Characteristics of Benchmarks

Benchmark Suite/Author Description Total
Dynamic
Instructions
(Millions)

Libquantum SPEC Simulation of quantum
computing

6238.55

Nw Rodinia A nonlinear global
optimization method
for DNA sequence
alignments

564.63

Pathfinder Rodinia Use dynamic program-
ming to find a path on a
2-D grid

6.71

Streamcluster Rodinia Dense Linear Algebra 3907.70
Lulesh Lawrence

Livermore National
Laboratory

Science and engineering
problems that use mod-
eling hydrodynamics

3382.79

Clomp Lawrence
Livermore National
Laboratory

Measurement of HPC
performance impacts

11324.17

CoMD Lawrence
Livermore National
Laboratory

Molecular dynamics al-
gorithms and workloads

17136.62

FFT Open Source 2D fast Fourier trans-
form

6.37

Graph Open Source Graph traversal in opera-
tional research

0.15

A. Experiment Setup

1) Benchmarks: We choose nine applications in total for
our experiments. These are drawn from standard benchmark

suites, as well as from real world applications. Note that there
are very few inputs provided with the benchmark applications,
and hence we had to generate them ourselves. We search
the entire benchmark suites of Rodinia [3], SPLASH-2 [32],
PARSEC [2] and SPEC [16], and choose applications based
on two criteria: (1) Compatibility with our toolset (i.e., we
could compile them to LLVM IR and work with LLFI), and
(2) Ability to generate diverse inputs for our experiments. For
the latter criteria, we choose applications that take numeric
values as their program inputs, rather than binary files or files
of unknown formats, since we cannot easily generate different
inputs in these applications. As a result, there are only three
applications in Rodinia and one application in SPEC meeting
the criteria. To include more benchmarks, we pick three HPC
applications (Lulesh, Clomp, and CoMD) from Lawrence Liv-
ermore National Laboratory [17], and two open-source projects
(FFT [19] and Graph [18]) from online repositories. The nine
benchmarks span a wide range of application domains from
simulation to measurement, and are listed in Table I.

2) Input Generation: Since all the benchmarks we choose
take numerical values as their inputs, we randomly generate
numbers for their inputs. The inputs generated are chosen
based on two criteria: (1) The input should not lead to any
reported errors or exceptions that halt the execution of the
program, as such inputs may not be representative of the
application’s behavior in production, And (2) The number of
dynamic executed instructions for the inputs should not exceed
50 billion to keep our experimental time reasonable. We report
the total number of dynamic instructions generated from the
10 inputs of each benchmark in Table I. The average number
of dynamic instructions per input is 472.95 million, which is
significantly larger than what have been used in most other
prior work [9], [21], [24], [33], [34]. We consider large inputs
to stress VTRIDENT and evaluate its scalability.

3) FI methodology: As mentioned before, we use
LLFI [31] to perform the FI experiments. For each application,
we inject 100 random faults for each static instruction of the
application – this yields error bars ranging from 0.03% to
0.55% depending on the application for the 95% confidence
intervals. Because we need to derive SDC probabilities of
every static instruction, we have to perform multiple FIs on
every static instruction in each benchmark. Therefore, to bal-
ance the experimental time with accuracy, we choose to inject
100 faults on each static instruction. This adds up to a total
number of injections ranging from 26,000 to 2,251,800 in each
benchmark, depending on the number of static instructions in
the program.

B. Results

1) INSTRUCTION-EXECUTION-VOLATILITY and
OVERALL-SDC-VOLATILITY: We first investigate
the relationship between INSTRUCTION-EXECUTION-
VOLATILITY and OVERALL-SDC-VOLATILITY. As
mentioned in Section III, INSTRUCTION-EXECUTION-
VOLATILITY is straight-forward to derive based on the
execution profile alone, and does not require performing any
FIs. If it is indeed possible to estimate OVERALL-SDC-
VOLATILITY on the basis of INSTRUCTION-EXECUTION-
VOLATILITY alone, we can directly plug in INSTRUCTION-
EXECUTION-VOLATILITY to Ni and Ntotal in Equation 2

when different inputs are used and treat Pi as a constant
(derived based on a single input) to calculate the overall SDC
probabilities of the program with the inputs.

We profiled INSTRUCTION-EXECUTION-VOLATILITY in
each benchmark and use it to calculate the overall SDC
probabilities of each benchmark across all its inputs. To show
OVERALL-SDC-VOLATILITY, we calculate the differences
between the highest and the lowest overall SDC probabili-
ties of each benchmark, and plot them in Figure 1. In the
figure, Exec. Vol. represents the calculation with the vari-
ation of INSTRUCTION-EXECUTION-VOLATILITY alone in
Equation 2, treating Pi as a constant, which are derived by
performing FI on only one input. FI indicates the results
derived from FI experiment with the set of all inputs of each
benchmark. As can be observed, the results for individual
benchmark with OVERALL-SDC-VOLATILITY estimated from
Exec. Vol. alone are significantly lower than the FI results (up
to 24x in Pathfinder). The average difference is 7.65x. This
shows that INSTRUCTION-EXECUTION-VOLATILITY alone is
not sufficient to capture OVERALL-SDC-VOLATILITY, mo-
tivating the need for accurate estimation of INSTRUCTION-
SDC-VOLATILITY. This is the focus of our work.

Fig. 1: OVERALL-SDC-VOLATILITY Calculated by
INSTRUCTION-EXECUTION-VOLATILITY Alone (Y-axis:
OVERALL-SDC-VOLATILITY, Error Bar: 0.03% to 0.55% at
95% Confidence)

2) Code Patterns Leading to INSTRUCTION-SDC-
VOLATILITY: To figure out the root causes of INSTRUCTION-
SDC-VOLATILITY, we analyze the FI results and their error
propagation based on the methodology proposed in our prior
work [11]. We identify three cases leading to INSTRUCTION-
SDC-VOLATILITY.

Case 1: Value Ranges of Operands of Instructions

Different program inputs change the values that individual
instructions operate with. For example, in Figure 2a, there
are three instructions (LOAD, CMP and BR) on a straight-
line code sequence. Assume that under some INPUT A, R1
is 16 and R0 is 512, leading the result of the CMP (R3) to
be FALSE. Since the highest bit of 512 is the 9th bit, any
bit-flip at the bit positions that are higher than 9 in R1 will
modify R1 to a value that is greater than R0. This may in turn
cause the result of the CMP instruction (R3) to be TRUE. In
this case, the probability for the fault that occurred at R1 of
the LOAD instruction to propagate to R3 is (32-9)/32=71.88%
(assuming a 32-bit data width of R1). In another INPUT B,
assume R1 is still 16, but R0 becomes 64 of which the highest

bit is the 6th bit. In this case, the probability for the same
fault to propagate to R3 becomes (32-6)/32=81.25%. In this
example, the propagation probability increases by almost 10%
for the same fault for a different input. In other words, the
SDC volatility of the LOAD instruction in the example is
changed by about 10%. We find that in the nine benchmarks,
the proportion of instructions that fall into this pattern varies
from 3.07% (FFT) to 15.23% (Nw) - the average is 6.98%.
The instructions exhibit different error propagation even if the
control flow does not change.

R1 = LOAD R2
… ...
R3 = CMP GT R1, R0
BR R3, … ...

(a) Value Range

BR R1, … ...

STORE

T1 F1

… ...
T2

(b) Execution Path

R2 = CMP GT R1, R0
BR R2, … ...

STORE, … ...

… ...

T

F

(c) Size of Loop

Fig. 2: Patterns Leading to INSTRUCTION-SDC-VOLATILITY

Case 2: Execution Paths and Branches

Different program inputs may exercise different execution
paths of programs. For example, in Figure 2b, there are
three branch directions labeled with T1, F1 and T2. Each
direction may lead to a different execution path. Assume that
the execution probabilities of T1, F1 and T2 are 60%, 70%
and 80% for some INPUT A. If a fault occurs at the BR
instruction and modifies the direction of the branch from F1
to T1, the probability of this event is 70% as the execution
probability of F1 is 70%. In this case, the probability for
the fault to propagate to the STORE instruction under T2 is
70%*80%=56%. Assuming there is another INPUT B which
makes the execution probabilities of T1, F1 and T2, 10%, 90%
and 30% respectively. The probability for the same fault to
propagate to the STORE instruction becomes 90%*30%=27%.
Thus, the propagation probability of the fault decreases by 29%
from INPUT A to INPUT B, and thus the SDC volatility of
the BR instruction is 29%. In the nine benchmarks, we find
that 43.28% of the branches on average exhibit variations of
branch probabilities across inputs, leading to variation of SDC
probability in instructions.

Case 3: Number of Iterations of Loops

The number of loop iterations can change when program
inputs are changed, causing volatility of error propagation. For
example, in Figure 2c, there is a loop whose termination is
controlled by the value of R2. The CMP instruction compares
R1 against R0 and stores it in R2. If the F branch is taken,
the loop will continue, whereas if T branch is taken, the loop
will terminate. Assume that under some INPUT A the value
of R0 is 4, and that in the second iteration of the loop, a fault
occurs at the CMP instruction and modifies R2 to TRUE from
FALSE, causing the loop to terminate early. In this case, the
STORE instruction is only executed twice whereas it should be
executed 4 times in a correct execution. Because of the early
termination of the loop, there are 2 STORE executions missing.
Assume there is another INPUT B that makes R0 8, indicating
there are 8 iterations of the loop in a correct execution. Now
for the same fault in the second iteration, the loop terminates
resulting in only 2 executions of the STORE whereas it should
execute 8 times. 6 STORE executions are missing with INPUT

B (8-2=6). If the SDC probability of the STORE instruction
stays the same with the two inputs, INPUT B triples (6/2=3)
the probability for the fault to propagate through the missing
STORE instruction, causing the SDC volatility. In the nine
benchmarks, we find that 90.21% of the loops execute different
numbers of iterations when the input is changed.

V. MODELING INSTRUCTION-SDC-VOLATILITY

We first explain how the overall SDC probability of a
program is calculated using TRIDENT, which we proposed
in our prior work [11]. We then describe VTRIDENT,
an extension of TRIDENT to predict INSTRUCTION-SDC-
VOLATILITY. The main difference between the two models
is that VTRIDENT simplifies the modeling in TRIDENT
to improve running time, which is essential for processing
multiple inputs.

A. TRIDENT

1) How TRIDENT works: TRIDENT [11] models error
propagation in a program using static and dynamic analyses
of the program. The model takes the code of the program
and executes it with a (single) program input provided to
analyze error propagation. It tracks error propagation at three
levels, namely static instruction sequence, control-flow and
memory dependency in the program execution (see appendix
for details). The output of TRIDENT is the SDC probability
of each individual instruction and the overall SDC probability
of the program. TRIDENT requires a single program input for
its calculations, and consequently, the output of TRIDENT
is specific to the program input provided.

As mentioned in Section IV-B2, we identify three patterns
leading to INSTRUCTION-SDC-VOLATILITY in programs.
TRIDENT first tracks error propagation in static instructions,
in which the propagation probability of each instruction is
computed based on the profiled values and the mechanism of
the instruction. The propagation probabilities of the instruc-
tions are used to compute the SDC probability of each straight-
line code sequence. Since the profiling phase is per input, Case
1 is captured and different values of instructions from different
inputs can be factored into the computation. After tracking
errors at the static instruction level, TRIDENT computes the
probability leading to memory corruption if any control-flow
divergence occurs. At this phase, branch probabilities and loop
information are profiled for the computation, which are also
input specific. Therefore, Cases 2 and 3 are also captured by
TRIDENT when different inputs are used.

2) Drawbacks of TRIDENT: Even though TRIDENT
is orders of magnitude faster than FI and other models in
measuring SDC probabilities, it can sometimes take a long
time to execute depending on the program input. Further,
when we want to calculate the variation in SDC probabilities
across inputs, we need to execute TRIDENT once for each
input, which can be very time-consuming. For example, if
TRIDENT takes 30 minutes on average per input for a given
application (which is still considerably faster than FI), it would
take more than 2 days (50 hours) to process 100 inputs. This
is often unacceptable in practice. Further, because TRIDENT
tracks memory error propagation in a fine-grained manner, it
needs to collect detailed memory traces. In a few cases, these

traces are too big to fit into memory, and hence we cannot run
TRIDENT at all. This motivates VTRIDENT, which does not
need detailed memory traces, and is hence much faster.

B. VTRIDENT

As mentioned above, the majority of time spent in execut-
ing TRIDENT is in profiling and traversing memory depen-
dencies of the program, which is the bottleneck in scalability.
VTRIDENT extends TRIDENT by pruning any repeating
memory dependencies from the profiling, and keeping only
distinct memory dependencies for tracing error propagation.
The intuition is that if we equally apply the same pruning to
all inputs in each program, similar scales of losses in accuracy
will be experienced across the inputs. Therefore, the relative
SDC probabilities across inputs are preserved. Since volatility
depends only on the relative SDC probabilities across inputs,
the volatilities will also be preserved under pruning.

vTrident● Program code (LLVM IR)

● Program inputs
● Instruction-SDC-Volatility

● Instruction-Execution-Volatility

Fig. 3: Workflow of VTRIDENT

1) Workflow: Figure 3 shows the workflow of VTRI-
DENT. It is implemented as a set of LLVM compiler passes
which take the code of the program (compiled into LLVM IR)
and a set of inputs of the program. The output of VTRIDENT
is the INSTRUCTION-SDC-VOLATILITY and INSTRUCTION-
EXECUTION-VOLATILITY of the program across all the in-
puts provided, both at the aggregate level and per-instruction
level. Based on Equation 2, OVERALL-SDC-VOLATILITY
can be computed using INSTRUCTION-SDC-VOLATILITY and
INSTRUCTION-EXECUTION-VOLATILITY.

VTRIDENT executes the program with each input pro-
vided, and records the differences of SDC probabilities
predicted between inputs to generate INSTRUCTION-SDC-
VOLATILITY. During each execution, the program’s dynamic
footprint is also recorded for the calculation of INSTRUCTION-
EXECUTION-VOLATILITY. The entire process is fully auto-
mated and requires no intervention of the user. Further, no FIs
are needed in any part of the process.

2) Example: We use an example from Graph in Figure 4a
to illustrate the idea of VTRIDENT and its differences from
TRIDENT. We make minor modifications for clarity and
remove some irrelevant parts in the example. Although VTRI-
DENT works at the level of LLVM IR, we show the corre-
sponding C code for clarity. We first explain how TRIDENT
works for the example, and then explain the differences with
VTRIDENT.

In Figure 4a, the C code consists of three functions,
each of which contains a loop. In each loop, the same array
is manipulated symmetrically in iterations of the loops and
transferred between memory back and forth. So the load and
store instructions in the loops (LOOP 1, 2 and 3) are all
memory data-dependent. Therefore, if a fault contaminates any
of them, it may propagate through the memory dependencies
of the program. init() is called once at the beginning, then
Parcour() and Recher() are invoked respectively in LOOP 4
and 5. printf (INDEX 6) at the end is the program’s output. In

the example, we assume LOOP 4 and 5 execute two iterations
each for simplicity. Therefore, the fault leads to an SDC if the
fault propagates to the instruction.

function init(...){
for(...){ LOOP 1

...
store …, R1; INDEX 1

}
}

function Parcour(...){
for(...){ LOOP 2

....
R2 = load R1; INDEX 2
…
store R2, R1; INDEX 3

}
}

function Recher(...){
for(...){ LOOP 3

R3 = load R1; INDEX 4
…
store R3, R1; INDEX 5

}
}

init();

while(...){ LOOP 4
Parcour();

}

while(...){ LOOP 5
Recher();

}
printf *R1; INDEX 6

(a) Code Example

S

L

S

L

S

L

S

L

S

P

INDEX 1

INDEX 2

INDEX 3

INDEX 2

INDEX 3

INDEX 4

INDEX 5

INDEX 4

INDEX 5

INDEX 6

1 1

1 1

0.5 0.8

0.5 0.8

LOOP 2

LOOP 2

LOOP 3

LOOP 3

LOOP 1

vT
rid

en
t

Pr
un

in
g

INPUT A INPUT B

LOOP 5

LOOP 4

(b) Pruning in VTRIDENT

Fig. 4: Example of Memory Pruning

… … INDEX 1 LOOP 1

TridentPruning

S S S S

L L L L

S S S S

L L L L

S S S S

L L L L

S S S S

L L L L

S S S S

P

… … INDEX 2

… … INDEX 3

… … INDEX 2

… … INDEX 3

… … INDEX 4

… … INDEX 5

… … INDEX 4

… … INDEX 5

… … INDEX 6

LOOP 2

LOOP 2

LOOP 3

LOOP 3

LOOP 4

LOOP 5

Fig. 5: Memory Dependency Pruning in TRIDENT
To model error propagation via memory dependencies of

the program, a similar memory dependency graph is created
in Figure 5. Each node represents either a dynamic load or
store instruction of which indices and loop positions of their
static instructions are marked on their right. In the figure,
each column of nodes indicates data-dependent executions of
the instructions - there is no data flowing between columns
as the array of data are manipulated by LOOP 1, 2 and 3
symmetrically. In this case, TRIDENT finds the opportunity to
prune the repeated columns of nodes to speed up its modeling
time as error propagations are similar in the columns. The
pruned columns are drawn with dashed border in the figure,
and they indicate the pruning of the inner-most loops. TRI-
DENT applies this optimization for memory-level modeling,

resulting in significant acceleration compared with previous
modeling techniques [11]. However, as mentioned, the graph
can still take significant time to construct and process.

To address this issue, VTRIDENT further prunes memory
dependency by tracking error propagations only in distinct
dependencies to speed up the modeling. Figure 4b shows the
idea: The graph shown in the figure is pruned to the one by
TRIDENT in Figure 5. Arrows between nodes indicate prop-
agation probabilities in the straight-line code. Because there
could be instructions leading to crashes and error masking
in straight-line code, the propagation probabilities are not 1.
The propagation probabilities marked beside the arrows are
aggregated to compute SDC probabilities for INPUT A and
INPUT B respectively. For example, if a fault occurs at INDEX
1, the SDC probability for the fault to reach program output
(INDEX 6) is calculated as 1∗1∗0.5∗0.5 = 25% for INPUT A,
and 1∗1∗0.8∗0.8 = 64% for INPUT B. Thus, the variation of
the SDC probability is 39% for these two inputs. VTRIDENT
prunes the propagation by removing repeated dependencies
(their nodes are drawn in dashed border in Figure 4b). The
calculation of SDC probability for the fault that occurred at
INDEX 1 to INDEX 6 becomes 1*0.5 = 50% with INPUT A,
and 1*0.8 = 80% with INPUT B. The variation between the
two inputs thus becomes 30%, which is 9% lower than that
computed by TRIDENT (i.e., without any pruning).

We make two observations from the above discussion: (1)
If the propagation probabilities are 1 or 0, the pruning does
not result in loss of accuracy (e.g., LOOP 4 in Figure 4b).
(2) The difference with and without pruning will be higher if
the numbers of iterations become very large in the loops that
contain non-1 or non-0 propagation probabilities (i.e., LOOP
5 in Figure 4b). This is because more terms will be removed
from the calculation by VTRIDENT. We find that about half
(55.39%) of all faults propagating in the straight-line code have
either all 1s or at least one 0 as the propagation probabilities,
and thus there is no loss in accuracy for these faults. Further,
the second case is rare because large iterations of aggregation
on non-1 or non-0 numbers will result in an extremely small
value of the overall SDC probability. This is not the case as
the average SDC probability is 10.74% across benchmarks.
Therefore, the pruning does not result in significant accuracy
loss in VTRIDENT.

VI. EVALUATION OF VTRIDENT

In this section, we evaluate the accuracy and perfor-
mance of VTRIDENT in predicting INSTRUCTION-SDC-
VOLATILITY across multiple inputs. We use the same bench-
marks and experimental procedure as before in Section IV. The
code of VTRIDENT can be found in our GitHub repository.2

A. Accuracy

To evaluate the ability of VTRIDENT in identifying
INSTRUCTION-SDC-VOLATILITY, we first classify all the
instructions based on their INSTRUCTION-SDC-VOLATILITY
derived by FI and show their distributions – this serves as
the ground truth. We classify the differences of the SDC
probabilities of each measured instruction between inputs into
three categories based on their ranges of variance (<10%,

2https://github.com/DependableSystemsLab/Trident

10%−20% and >20%), and calculate their distribution based
on their dynamic footprints. The results are shown in Fig-
ure 6. As can be seen in the figure, on average, only 3.53%
of instructions across benchmarks exhibit variance of more
than 20% in the SDC probabilities. Another 3.51% exhibit a
variance between 10% and 20%. The remaining 92.93% of the
instructions exhibit within 10% variance across inputs.

We then use VTRIDENT to predict the INSTRUCTION-
SDC-VOLATILITY for each instruction, and then compare
the predictions with ground truth. These results are also
shown in Figure 6. As can be seen, for instructions that
have INSTRUCTION-SDC-VOLATILITY less than 10%, VTRI-
DENT gives relatively accurate predictions across bench-
marks. On average, 97.11% of the instructions are predicted to
fall into this category by VTRIDENT, whereas FI measures
it as 92.93%. Since these constitute the vast majority of
instructions, VTRIDENT has high accuracy overall.

On the other hand, instructions that have INSTRUCTION-
SDC-VOLATILITY of more than 20% are significantly un-
derestimated by VTRIDENT, as VTRIDENT predicts the
proportion of such instructions as 1.84% whereas FI measures
it as 3.53% (which is almost 2x more). With that said,
for individual benchmarks, VTRIDENT is able to distin-
guish the sensitivities of INSTRUCTION-SDC-VOLATILITY
in most of them. For example, in Pathfinder which has the
largest proportion of instructions that have INSTRUCTION-
SDC-VOLATILITY greater than 20%, VTRIDENT is able
to accurately identify that this benchmark has the highest
proportion of such instructions relative to the other programs.
However, we find VTRIDENT is not able to well identify the
variations that are greater than 20% as mentioned above. This
case can be found in Nw, Lulesh, Clomp and FFT. We discuss
the sources of inaccuracy in Section VIII-A. Since these
instructions are relatively few in terms of dynamic instructions
in the programs, this underprediction does not significantly
affect the accuracy of VTRIDENT.

We then measure the overall accuracy of VTRIDENT in
identifying INSTRUCTION-SDC-VOLATILITY. The accuracy
is defined as the number of correctly predicted variation
categories of instructions over the total number of instructions
being predicted. We show the accuracy of VTRIDENT in
Figure 7. As can be seen, the highest accuracy is achieved in
Streamcluster (99.17%), while the lowest accuracy is achieved
in Clomp (67.55%). The average accuracy across nine bench-
marks is 87.81%, indicating that VTRIDENT is able to
identify most of the INSTRUCTION-SDC-VOLATILITY.

Finally, we show the accuracy of predicting OVERALL-
SDC-VOLATILITY using VTRIDENT, and using
INSTRUCTION-EXECUTION-VOLATILITY alone (as before)
in Figure 8. As can be seen, the average difference between
VTRIDENT and FI is only 1.26x. Recall that the prediction
using INSTRUCTION-EXECUTION-VOLATILITY alone (Exec.
Vol.) gives an average difference of 7.65x (Section IV).
The worst case difference when considering only Exec.
Vol. was 24.54x, while it is 1.29x (in Pathfinder) when
INSTRUCTION-SDC-VOLATILITY is taken into account.
Similar trends are observed in all other benchmarks.
This indicates that the accuracy of OVERALL-SDC-
VOLATILITY prediction is significantly higher when
considering both INSTRUCTION-SDC-VOLATILITY and

Fig. 6: Distribution of INSTRUCTION-SDC-VOLATILITY predictions by vTrident Versus Fault Injection Results (Y-axis:
Percentage of instructions, Error Bar: 0.03% to 0.55% at 95% Confidence)

Fig. 7: Accuracy of VTRIDENT in Predicting INSTRUCTION-
SDC-VOLATILITY Versus FI (Y-axis: Accuracy)

Fig. 8: OVERALL-SDC-VOLATILITY Measured by FI and
Predicted by VTRIDENT, and INSTRUCTION-EXECUTION-
VOLATILITY alone (Y-axis: OVERALL-SDC-VOLATILITY,
Error Bar: 0.03% to 0.55% at 95% Confidence)

INSTRUCTION-EXECUTION-VOLATILITY rather than just
using INSTRUCTION-EXECUTION-VOLATILITY.

B. Performance

We evaluate the performance of VTRIDENT based on its
execution time, and compare it with that of TRIDENT. We do
not consider FI in this comparison as FI is orders of magnitude
slower than TRIDENT [11]. We measure the time taken by
executing VTRIDENT and TRIDENT in each benchmark,
and compare the speedup achieved by VTRIDENT over
TRIDENT. The total computation is proportional to both the
time and power required to run each approach. Parallelization
will reduce the time spent, but not the power consumed.
We assume that there is no parallelization for the purpose
of comparison in the case of TRIDENT and VTRIDENT,
though both TRIDENT and VTRIDENT can be parallelized.
Therefore, the speedup can be computed by measuring their
wall-clock time.

We also measure the time per input as both TRIDENT
and VTRIDENT experience similar slowdowns as the number
of inputs increase (we confirmed this experimentally). The
average execution time of VTRIDENT is 944 seconds per
benchmark per input (a little more than 15 minutes). Again,
we emphasize that this is due to the considerably large input
sizes we have considered in this study (Section IV).

The results of the speedup by VTRIDENT over TRI-
DENT are shown in Figure 9. We find that on average
VTRIDENT is 8.05x faster than TRIDENT. The speedup in
individual cases varies from 1.09x in Graph (85.16 seconds
versus. 78.38 seconds) to 33.56x in Streamcluster (3960 sec-
onds versus. 118 seconds). The variation in speedup is because
applications have different degrees of memory-boundedness:
the more memory bounded an application is, the slower it is
with TRIDENT, and hence the larger the speedup obtained by
VTRIDENT (as it does not need detailed memory dependency
traces). For example, Streamcluster is more memory-bound
than computation-bound than Graph, and hence experiences
much higher speedups.

Fig. 9: Speedup Achieved by VTRIDENT over TRIDENT.
Higher numbers are better.

Note that we omit Clomp from the comparison since
Clomp consumes more than 32GB memory in TRIDENT,
and hence crashes on our machine. This is because Clomp
generates a huge memory-dependency trace in TRIDENT,
which exceeds the memory of our 32GB-memory machine (in
reality, it experiences significant slowdown due to thrashing,
and is terminated by the OS after a long time). On the other
hand, VTRIDENT prunes the memory dependency and incurs
only 21.29MB memory overhead when processing Clomp.

VII. BOUNDING OVERALL SDC PROBABILITIES WITH
VTRIDENT

In this section, we describe how to use VTRIDENT to
bound the overall SDC probabilities of programs across given
inputs by performing FI with only one selected input. We need
FI because the goal of VTRIDENT is to predict the variation
in SDC probabilities, rather than the absolute SDC probability
which is much more time-consuming to predict (Section V-B).
Therefore, FI gives us the absolute SDC probability for a given
input. However, we only need to perform FI on a single input
to bound the SDC probabilities of any number of given inputs
using VTRIDENT, which is a significant savings as FI tends to
be very time-consuming to get statistically significant results.

For a given benchmark, we first use VTRIDENT to pre-
dict the OVERALL-SDC-VOLATILITY across all given inputs.
Recall that OVERALL-SDC-VOLATILITY is the difference
between the highest and the lowest overall SDC probabilities
of the program across its inputs. We denote this range by R.
We then use VTRIDENT to find the input that results in the
median of the overall SDC probabilities predicted among all
the given inputs. This is because we need to locate the center
of the range in order to know the absolute values of the bounds.
Using inputs other than the median will result in a shifting of
the reference position, but will not change the boundaries being
identified, which are more important. Although VTRIDENT
loses some accuracy in predicting SDC probabilities as we
mentioned earlier, most of the rankings of the predictions
are preserved by VTRIDENT. Finally, we perform FI on
the selected input to measure the true SDC probability of
the program, denoted by S. Note that it is possible to use
other methods for this estimation (e.g., TRIDENT [11]).
The estimated lower and upper bounds of the overall SDC
probability of the program across all its given inputs is derived
based on the median SDC probability measured by FI, as
shown below.

[(S −R/2), (S +R/2)] (3)

We bound the SDC probability of each program across its
inputs using the above method. We also use INSTRUCTION-
EXECUTION-VOLATILITY alone for the bounding as a point
of comparison. The results are shown in Figure 10. In the
figure, the triangles indicate the overall SDC probabilities
with the ten inputs of each benchmark measured by FI. The
overall SDC probability variations range from 1.54x (Graph)
to 42.01x (Lulesh) across different inputs. The solid lines
in the figure bound the overall SDC probabilities predicted
by VTRIDENT. The dashed lines bound the overall SDC
probabilities projected by considering only the INSTRUCTION-
EXECUTION-VOLATILITY.

On average, 78.89% of the overall SDC probabilities of
the inputs measured by FI are within the bounds predicted
by VTRIDENT. For the inputs that are outside the bounds,
almost all of them are very close to the bounds. The worst
case is FFT, where the overall SDC probabilities of two inputs
are far above the upper bounds predicted by VTRIDENT. The
best cases are Streamcluster and CoMD where almost every
input’s SDC probability falls within the bounds predicted by
VTRIDENT (Section VIII-A explains why).

On the other hand, INSTRUCTION-EXECUTION-
VOLATILITY alone bounds only 32.22% SDC probabilities on

average. This is a sharp decrease in the coverage of the bounds
compared with VTRIDENT, indicating the importance
of considering INSTRUCTION-SDC-VOLATILITY when
bounding overall SDC probabilities. The only exception is
Streamcluster where considering INSTRUCTION-EXECUTION-
VOLATILITY alone is sufficient in bounding SDC probabilities.
This is because Streamcluster exhibits very little SDC volatility
across inputs (Figure 6).

In addition to coverage, tight bounds are an important
requirement, as a loose bounding (i.e., a large R in Equation 3)
trivially increases the coverage of the bounding. To investigate
the tightness of the bounding, we examine the results shown
in Figure 8. Recall that OVERALL-SDC-VOLATILITY is rep-
resented by R, so the figure shows the accuracy of R. As we
can see, VTRIDENT computes bounds that are comparable
to the ones derived by FI (ground truth), indicating that the
bounds obtained are tight.

VIII. DISCUSSION

In this section, we first summarize the sources of inaccu-
racy in VTRIDENT, and then we discuss the implications of
VTRIDENT for error mitigation techniques.

A. Sources of Inaccuracy

Other than the loss of accuracy from the coarse-grain track-
ing in memory dependency (Section V-B), we identify three
potential sources of inaccuracy in identifying INSTRUCTION-
SDC-VOLATILITY by VTRIDENT. They are also the sources
of inaccuracy in TRIDENT, which VTRIDENT is based on.
We explain how they affect identifying INSTRUCTION-SDC-
VOLATILITY here.

Source 1: Manipulation of Corrupted Bits

We assume only instructions such as comparisons, logical
operators and casts have masking effects, and that none of
the other instructions mask the corrupted bits. However, this
is not always the case as other instructions may also cause
masking. For example, repeated division operations such as
fdiv may also average out corrupted bits in the mantissa of
floating point numbers, and hence mask errors. The dynamic
footprints of such instructions may be different across inputs
hence causing them to have different masking probabilities, so
VTRIDENT does not capture the volatility from such cases.
For instance, in Lulesh, we observe that the number of fdiv
may differ by as much as 9.5x between inputs.

Source 2: Memory Copy

VTRIDENT does not handle bulk memory operations
such as memmove and memcpy. Hence, we may lose track
of error propagation in the memory dependencies built via
such operations. Since different inputs may diversify mem-
ory dependencies, the diversified dependencies via the bulk
memory operations may not be identified either. Therefore,
VTRIDENT may not be able to identify INSTRUCTION-SDC-
VOLATILITY in these cases.

Source 3: Conservatism in Determining Memory Corrup-
tion

We assume all the store instructions that are dominated by
the faulty branch are corrupted when control-flow is corrupted,

Fig. 10: Bounds of the Overall SDC Probabilities of Programs (Y-axis: SDC Probability; X-axis: Program Input; Solid Lines:
Bounds derived by VTRIDENT; Dashed Lines: Bounds derived by INSTRUCTION-EXECUTION-VOLATILITY alone, Error Bars:
0.03% to 0.55% at the 95% Confidence). Triangles represent FI results.

similar to the examples in Figure 2b and Figure 2c. This is a
conservative assumption, as some stores may end up being
coincidentally correct. For example, if a store instruction is
supposed to write a zero to its memory location, but is not
executed due to the faulty branch, the location will still be
correct if there was a zero already in that location. These are
called lucky loads in prior work [6]. When inputs change, the
number of lucky loads may also change due to the changes
of the distributions of such zeros in memory, possibly causing
volatility in SDC. VTRIDENT does not identify lucky loads,
so it may not capture the volatility from such occasions.

B. Implication for Mitigation Techniques

Selective instruction duplication is an emerging mitigation
technique that provides configurable fault coverage based on
performance overhead budget [9], [21], [23], [24]. The idea is
to protect only the most SDC-prone instructions in a program
so as to achieve high fault coverage while bounding perfor-
mance overheads. The problem setting is as follows: Given
a certain performance overhead C, what static instructions
should be duplicated in order to maximize the coverage for
SDCs, F , while keeping the performance overhead below C.
Solving the above problem involves finding two factors: (1)
Pi: The SDC probability of each instruction in the program,
to decide which set of instructions should be duplicated, and
(2) Oi: The performance overhead incurred by duplicating
the instructions. Then the problem can be formulated as a
classical 0-1 knapsack problem [26], where the objects are
the instructions and the knapsack capacity is represented by C,
the maximum allowable performance overhead. Further, object
profits are represented by the estimated SDC probability (and
hence selecting the instruction means obtaining the coverage
F), and object costs are represented by the performance
overhead of duplicating the instructions.

Almost all prior work investigating selective duplication
confines their study to a single input of each program in
evaluating Pi and Oi [9], [21], [23], [24]. Hence, the pro-
tection is only optimal with respect to the input used in the
evaluation. Because of the INSTRUCTION-SDC-VOLATILITY
and INSTRUCTION-EXECUTION-VOLATILITY incurred when
the protected program executes with different inputs, there is

no guarantee on the fault coverage F the protection aims to
provide, compromising the effectiveness of the selective dupli-
cation. To address this issue, we argue that the selective dupli-
cation should take both INSTRUCTION-SDC-VOLATILITY and
INSTRUCTION-EXECUTION-VOLATILITY into consideration.
One way to do this is solving the knapsack problem based
on the average cases of each Pi and Oi across inputs, so that
the protection outcomes, C and F , are optimal with respect to
the average case of the executions with the inputs. This is a
subject of future work.

IX. RELATED WORK

There has been little work investigating error propagation
behaviours across different inputs of a program. Czek et al. [7]
were among the first to model the variability of failure rates
across program inputs. They decompose program executions
into smaller unit blocks (i.e., instruction mixes), and use the
volatility of their dynamic footprints to predict the variation
of failure rates, treating the error propagation probabilities as
constants in their unit blocks across different inputs. Their
assumption is that similar executions (of the unit blocks) result
in similar error propagations, so the propagation probabilities
within the unit blocks do not change across inputs. Thus, their
model is equivalent to considering just the execution volatility
of the program (Section III), which is not very accurate as we
show in Section IV.

Folkesson et al. [10] investigate the variability of the failure
rates of a single program (Quicksort) with its different inputs.
They decompose the variability into the execution profile, and
its data usage profile. The latter requires the identification of
critical data and its usage within the program - it is not clear
how this is done. They consider limited propagation of errors
across basic blocks, but not within a single block. This results
in their model significantly underpredicting the variation of
error propagation. Finally, it is difficult to generalize their
results as they consider only one (small) program.

Di Leo et al. [8] investigate the distribution of failure
types under hardware faults when the program is executed
with different inputs. However, their study focuses on the
measurement of the volatility in SDC probabilities, rather than
on predicting it. They also attempt to cluster the variations

and correlate the clusters with the program’s execution profile.
However, they do not propose a model to predict the variations,
nor do they consider sources of variation beyond the execution
profile - again, this is similar to using only the execution
volatility to explain the variation of SDC probabilities. Tao et
al. [30] propose efficient detection and recovery mechanisms
for iterative methods across different inputs. Mahmoud et
al. [25] leverage software testing techniques to explore input
dependence for approximate computing. However, neither of
them focus on hardware faults in generic programs. Gupta et
al. [12] measure the failure rate in large-scale systems with
multiple program inputs during a long period, but they do not
propose techniques to bound the failure rates. In contrast, our
work investigates the root causes behind the SDC volatility
under hardware faults, and proposes a model to bound it in an
accurate and scalable fashion.

Other papers that investigate error propagation confine
their studies to a single input of each program. For example,
Hari et al. [14], [15] group similar executions and choose
the representative ones for FI to predict SDC probabilities
given a single input of each program. Li et al. [21] find
patterns of executions to prune the FI space when computing
the probability of long-latency propagating crashes. Lu et
al. [24] characterize error resilience of different code patterns
in applications, and provide configurable protection based on
the evaluation of instruction SDC probabilities. Feng et al. [9]
propose a modeling technique to identify likely SDC-causing
instructions. Our prior work. TRIDENT [11], which VTRI-
DENT is based on, also restricts itself to single inputs. These
papers all investigate program error resilience characteristics
based on static and dynamic analysis, without large-scale FI.
However, their characterizations are based on the observations
derived from a single input of each program, and hence their
results may be inaccurate for other inputs.

X. CONCLUSION

Programs can experience Silent Data Corruptions (SDCs)
due to soft errors, and hence we need fault injection (FI) to
evaluate the resilience of programs to SDCs. Unfortunately,
most FI studies only evaluate a program’s resilience under a
single input or a small set of inputs as FI is very time con-
suming. In practice however, programs can exhibit significant
variations in SDC probabilities under different inputs, which
can make the FI results inaccurate.

In this paper, we investigate the root causes of variations in
SDCs under different inputs, and we find that they can occur
due to differences in the execution of instructions as well as
differences in error propagation. Most prior work has only
considered the former factor, which leads to significant inaccu-
racies in their estimations. We propose a model VTRIDENT to
incorporate differences in both execution and error propagation
across inputs. We find that VTRIDENT is able to obtain
achieve higher accuracy and closer bounds on the variation
of SDC probabilities of programs across inputs compared to
prior work that only consider the differences in execution of
instructions. We also find VTRIDENT is significantly faster
than other state of the art approaches for modeling error
propagation in programs, and is able to obtain relatively tight
bounds on SDC probabilities of programs across multiple
inputs, while performing FI with only a single program input.

ACKNOWLEDGEMENT

This research was partially supported by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
through the Discovery Grants and Strategic Project Grants
(SPG) Programmes. We thank the anonymous reviewers of
DSN’18 for their insightful comments and suggestions.

REFERENCES

[1] Rizwan A Ashraf, Roberto Gioiosa, Gokcen Kestor, Ronald F DeMara,
Chen-Yong Cher, and Pradip Bose. Understanding the propagation of
transient errors in hpc applications. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, page 72. ACM, 2015.

[2] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
parsec benchmark suite: Characterization and architectural implications.
In Proceedings of International Conference on Parallel Architectures
and Compilation Techniques, pages 72–81. ACM, 2008.

[3] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite
for heterogeneous computing. In International Symposium on Workload
Characterization (IISWC 2009), pages 44–54. IEEE, 2009.

[4] Hyungmin Cho, Shahrzad Mirkhani, Chen-Yong Cher, Jacob A Abra-
ham, and Subhasish Mitra. Quantitative evaluation of soft error injection
techniques for robust system design. In Proceedings of the 50th Annual
Design Automation Conference, page 101. ACM, 2013.

[5] Cristian Constantinescu. Intermittent faults and effects on reliability of
integrated circuits. In Reliability and Maintainability Symposium, page
370. IEEE, 2008.

[6] Jeffrey J Cook and Craig Zilles. A characterization of instruction-level
error derating and its implications for error detection. In International
Conference on Dependable Systems and Networks(DSN), pages 482–
491. IEEE, 2008.

[7] Edward W. Czeck and Daniel P. Siewiorek. Observations on the effects
of fault manifestation as a function of workload. IEEE Transactions on
Computers, 41(5):559–566, 1992.

[8] Domenico Di Leo, Fatemeh Ayatolahi, Behrooz Sangchoolie, Johan
Karlsson, and Roger Johansson. On the impact of hardware faults–an
investigation of the relationship between workload inputs and failure
mode distributions. Computer Safety, Reliability, and Security, pages
198–209, 2012.

[9] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke.
Shoestring: probabilistic soft error reliability on the cheap. In ACM
SIGARCH Computer Architecture News, volume 38, page 385. ACM,
2010.

[10] Peter Folkesson and Johan Karlsson. The effects of workload input
domain on fault injection results. In European Dependable Computing
Conference, pages 171–190, 1999.

[11] Guanpeng Li, Karthik Pattabiraman, Siva Kumar Sastry Hari, Michael
Sullivan and Timothy Tsai. Modeling soft-error propagation in pro-
grams. In IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 2018.

[12] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari.
Failures in large scale systems: long-term measurement, analysis, and
implications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, page 44.
ACM, 2017.

[13] Siva Kumar Sastry Hari, Sarita V Adve, and Helia Naeimi. Low-
cost program-level detectors for reducing silent data corruptions. In
International Conference on Dependable Systems and Networks (DSN),
pages 1–12. IEEE, 2012.

[14] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep
Ramachandran. Relyzer: exploiting application-level fault equivalence
to analyze application resiliency to transient faults. In ACM SIGARCH
Computer Architecture News, volume 40, page 123. ACM, 2012.

[15] Siva Kumar Sastry Hari, Radha Venkatagiri, Sarita V Adve, and
Helia Naeimi. Ganges: Gang error simulation for hardware resiliency
evaluation. In International Symposium on Computer Architecture
(ISCA), pages 61–72. IEEE, 2014.

[16] John L Henning. Spec cpu2000: Measuring cpu performance in the
new millennium. Computer, 33(7):28–35, 2000.

[17] https://asc.llnl.gov/CORAL-benchmarks/. Coral benchmarks.

[18] https://github.com/coExp/Graph. Github.

[19] https://github.com/karimnaaji/fft. Github.

[20] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization, page 75. IEEE, 2004.

[21] Guanpeng Li, Qining Lu, and Karthik Pattabiraman. Fine-grained
characterization of faults causing long latency crashes in programs.
In IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 450–461. IEEE, 2015.

[22] Guanpeng Li, Karthik Pattabiraman, Chen-Yang Cher, and Pradip Bose.
Understanding error propagation in GPGPU applications. In Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, pages 240–251. IEEE, 2016.

[23] Guanpeng Li, Karthik Pattabiraman, Chen-Yong Cher, and Pradip Bose.
Experience report: An application-specific checkpointing technique for
minimizing checkpoint corruption. In 26th International Symposium on
Software Reliability Engineering (ISSRE), pages 141–152. IEEE, 2015.

[24] Qining Lu, Guanpeng Li, Karthik Pattabiraman, Meeta S Gupta, and
Jude A Rivers. Configurable detection of sdc-causing errors in pro-
grams. ACM Transactions on Embedded Computing Systems (TECS),
16(3):88, 2017.

[25] Abdulrahman Mahmoud, Radha Venkatagiri, Khalique Ahmed, Sarita V.
Adve, Darko Marinov, and Sasa Misailovic. Leveraging software testing
to explore input dependence for approximate computing. Workshop on
Approximate Computing Across the Stack (WAX), 2017.

[26] George B Mathews. On the partition of numbers. Proceedings of the
London Mathematical Society, 1(1):486–490, 1896.

[27] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. Control-
flow checking by software signatures. IEEE Transactions on Reliability,
51(1):111–122, 2002.

[28] Behrooz Sangchoolie, Karthik Pattabiraman, and Johan Karlsson. One
bit is (not) enough: An empirical study of the impact of single and
multiple bit-flip errors. In International Conference on Dependable
Systems and Networks (DSN), pages 97–108. IEEE, 2017.

[29] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve,
Saurabh Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cap-
pello, Bill Carlson, Andrew A Chien, Paul Coteus, Nathan A De-
Bardeleben, Pedro C Diniz, Christian Engelmann, Mattan Erez, Saverio
Fazzari, Al Geist, Rinku Gupta, Fred Johnson, Sriram Krishnamoorthy,
Sven Leyffer, Dean Liberty, Subhasish Mitra, Todd Munson, Rob
Schreiber, Jon Stearley, and Eric Van Hensbergen. Addressing failures
in Exascale computing. The International Journal of High Performance
Computing Applications, 28(2):129–173, 2014.

[30] Dingwen Tao, Shuaiwen Leon Song, Sriram Krishnamoorthy, Panruo
Wu, Xin Liang, Eddy Z Zhang, Darren Kerbyson, and Zizhong Chen.
New-sum: A novel online abft scheme for general iterative methods.
In Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing, pages 43–55. ACM,
2016.

[31] Jiesheng Wei, Anna Thomas, Guanpeng Li, and Karthik Pattabiraman.
Quantifying the accuracy of high-level fault injection techniques for
hardware faults. In 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 375–382. IEEE,
2014.

[32] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The splash-2 programs: Characterization
and methodological considerations. In 22nd Annual International
Symposium on Computer Architecture, pages 24–36. IEEE, 1995.

[33] Keun Soo Yim, Zbigniew T Kalbarczyk, and Ravishankar K Iyer. Quan-
titative analysis of long-latency failures in system software. In Pacific
Rim International Symposium on Dependable Computing(PRDC), pages
23–30. IEEE, 2009.

[34] Keun Soo Yim, Cuong Pham, Mushfiq Saleheen, Zbigniew Kalbarczyk,
and Ravishankar Iyer. Hauberk: Lightweight silent data corruption error
detector for GPGPU. In International Parallel & Distributed Processing
Symposium (IPDPS), page 287. IEEE, 2011.

● Program Source
Code (LLVM IR)

● Program Input

● Instructions
Considered as
Program Output

● Overall SDC
Probability of the
Program

● SDC Probabilities
of Individual
Instructions

Trident

Fig. 11: Workflow of TRIDENT

XI. APPENDIX

In this appendix, we summarize how TRIDENT [11] models
error propagation in programs. This is provided for completeness,
and is based on the material in our earlier paper [11].

A. Overview

The overall workflow of TRIDENT is shown in Figure 11. The
inputs of TRIDENT are the program’s source code compiled with
LLVM IR, and an input of the program. The outputs of TRIDENT
are the SDC probabilities of each program instruction, and the overall
SDC probability of the program with the given input.

TRIDENT consists of two phases: (1) Profiling, and (2) In-
ferencing. In the profiling phase, TRIDENT executes the program
under the input provided, and gathers information such as instruction
dependencies, and branch execution counts. These are used for
constructing the model. Once the model is constructed, TRIDENT is
ready for the inferencing phase, where a location of fault activation
is given to TRIDENT to compute the SDC probability of the given
fault. There are three sub-models in TRIDENT which model error
propagation at three levels: (1) Static-instruction level, (2) Control-
flow level, and (3) Memory level. The results from the three sub-
models are aggregated to calculate the SDC probability of the given
instruction where the fault is activated.

B. Static-Instruction Sub-Model

A fault activated first propagates on its static data-dependent
instruction sequence. A static data-dependent instruction sequence is a
sequence of statically data-dependent instructions that are usually con-
tained in the same basic block. TRIDENT computes a propagation
probability for each instruction in the sequence, and then aggregates
the probabilities to compute the probability for the fault from the
activation location to the end of the sequence.

C. Control-Flow Sub-Model

A static data-dependent instruction sequence usually ends with
either a branch or store instruction. If it ends with a branch instruction,
the fault may propagate to the branch instruction and modify the
direction of the branch, leading to control-flow divergence. Conse-
quently, the store instructions dominated by the branch may not be
executed correctly, causing corruptions in memory. Control-flow sub-
model identifies which store instructions are affected by the control-
flow divergence, and at what probabilities.

D. Memory Sub-Model

Once a store instruction is corrupted, the fault continues to prop-
agate in memory and may finally reach the program output. Knowing
which store instructions are corrupted, memory sub-model further
tracks the error propagation via memory dependency. A memory
dependency graph is constructed based on the memory addresses
profiled from all load and store instructions, and the sub-model
computes the probability for the fault in the corrupted store instruction
to propagate to the program output via the memory dependency.

