
Modeling	Soft-Error	
Propagation	in	Programs
Guanpeng (Justin)	Li	
Karthik Pattabiraman

Siva	Hari
Michael	Sullivan
Timothy	Tsai

Motivation:	Soft	Errors

2

= 0001 = 0101

[1]

Soft	errors	becoming	more	
common	in	processors

[1]	 http://aviral.lab.asu.edu/soft-error-resilience/

Silent	Data	Corruption	(SDC)

Normal	Execution

Fault

Error	Propagation

SDC

Crash

Benign

Incorrect	
Output

Correct	Output

Exceptions,	No	Output

Amazon	S3	Incident

3

Software	Solutions

Device/Circuit	Level

Architectural	Level		

Operating	System	Level

Application	Level

Impactful	Errors

Pr
ot
ec
tio

n	
O
ve
rh
ea
d

Soft	Error

4

In
cr
ea
si
ng
	

Software	protection	 techniques	are	
more	flexible	and	cost-effective!

Selective	Instruction	Duplication

“The	Golden	Curve”

SD
C	
Co
ve
ra
ge

Protection	Overhead

Application	Specific!

*Measured	in	Libquantum,	SPEC

Instruction	Sequence Instruction	Duplication

Instruction:
SDC	Rate	=	X%
Overhead	=	Y%

Selected	Instructions	for	
Given	Target	SDC	Coverage

A	Knapsack	Problem

5

Developing	Fault-Tolerant	Applications

Development	of	Application Evaluate	Program	SDC	Rate

Selective	Protection

Acceptable

New	Release

Measure	Instruction	 SDC	Rates

1. Thousands	of	fault	injections	need	to	be	done	
2.		Repeat	every	time	code	is	modified

6

Estimating	SDC	Rate

Our	Goal

Ac
cu
ra
cy

Speed

AVF/
PVF/
ePVF

[MICRO’03,	HPCA’10,	DSN’16]

SymPLFIED/
Relyzer/
GangES

[DSN’08,	ASPLOS’12,	ISCA’14]

No	existing	technique	models	error	propagation	
in	both	fast	and	accurate	way!	

Fast	prediction	of	SDC	
without	fault	injection!

8

Challenges

• Tracking	SDC	propagation	is	hard

• Over	billions	of	executed	instructions

• Every	instruction	may	propagate	errors	with	different	probabilities

• Dynamic	nature	of	program	execution

• Control-flow	divergence

… …

BR

… …

Corrupting	subsequent	states

T F

8

… …… …… …… …

Trident:	Key	Insight

• Error	propagations	can	be	decomposed	into	modules,	which	can	

be	abstracted	into	probabilistic	events

• Decomposition

• Abstraction

9

Trident:	Workflow

Source	Code

Program	Input

Output	Insn.

Insn.	SDC	Rates

Overall	SDC	Rate

Insn.	for	Prediction

Profiling Prediction

10

BB12

… …

Trident:	Our	Approach

• Three-level	modeling

• Register-communication

• Control-flow

• Memory	dependency

Reg.

Mem.Contl.

BB4

$2	=	LOAD	0x04

$3	=	ADD	$2,	4

CMP	$4,	$3,	4

BR	$4,	BB5,	BB10

BB5

$5	=	MUL	$6,	16

… …

BB10

… …

… …

BB102

...	=	LOAD	0x08

T1 F1

T2 F2

fS

fC fM

BB11
STORE	…,	0x08

11

fs =	100%	*	100%	*	25%	*	100%	=	25%

BB12

… …
BB11
STORE	…,	0x08

BB4

$2	=	LOAD	0x04

$3	=	ADD	$2,	4

CMP	$4,	$3,	4

BR	$4,	BB5,	BB10

BB5

$5	=	MUL	$6,	16

… …

BB10

… …

… …

BB102

...	=	LOAD	0x08

T1 F1

T2 F2

<100%>

<100%>

<25%>

<100%>

Propagation	
probability	
within	BB4	?

Reg.

Mem.Contl.

fS

fC fM

Reg.

12

Trident:	Register	Commn.

Trident:	Control-Flow

BB12

… …
BB11
STORE	…,	0x08

BB4

$2	=	LOAD	0x04

$3	=	ADD	$2,	4

CMP	$4,	$3,	4

BR	$4,	BB5,	BB10

BB5

$5	=	MUL	$6,	16

… …

BB10

… …

… …

BB102

...	=	LOAD	0x08

T1 F1

T2 F2

Corruption
probability	
of	STORE	?

80% 20%

30% 70%

<100%>

<100%>

<25%>

<100%>
=

*For	non-loop-terminating	branches

Reg.

Mem.Contl.

fS

fC fM

Contl.

fC

STORE	exec.	prob.
F1*T2

BR	dom.	prob.
F1

Corrupted

13

Trident:	Memory-Dependency

BB12

… …
BB11
STORE	…,	0x08

BB4

$2	=	LOAD	0x04

$3	=	ADD	$2,	4

CMP	$4,	$3,	4

BR	$4,	BB5,	BB10

BB5

$5	=	MUL	$6,	16

… …

BB10

… …

… …

BB102

...	=	LOAD	0x08

T1 F1

T2 F2

Dependent	
LOAD	&	STORE

80% 20%

30% 70%

<100%>

<100%>

<25%>

<100%>

Reg.

Mem.Contl.

fS

fC fM

Mem.

P(In) = fS (In)* fC (In2)* fS (In3)* fC (In4) … …

14

*	n	corresponds	to	the	index	of	dynamic	instructions	

Experimental	Setup

Benchmark	Application	 Domains

15

• Fault	Model
• Single	bit-flip	injections	– accurate	[DSN’17]

• Random	insn.	– one	per	program	execution

• Benchmarks
• 11	open-source	benchmarks	from	various	domains

• Comparison	with	fault	injection
• Accuracy

• Speed	(wall	clock	time)

Experimental	Methodology

Reg.

Mem.Contl.

fS

Reg.

Mem.Contl.

fS+fC
Two	Simpler	Models	for	Comparison

Goal	is	to	predict	SDC	rate	as	per	fault	injection

[1]	LLVM	Fault	Injector	[DSN’14]

Reminder	:

16

• Baseline:	Fault	injection	derived	by	LLFI	[1]

• The	closer	SDC	rate	to	fault	injection,	 the	better	prediction

• Created	two	simpler	models

• Accuracy	of	each	sub-model

• As	proxy	to	prior	work

Evaluation:	Accuracy

• Mean	Absolute	Error
• Trident:	4.75%
• Simpler	Models:	15.13%	and	19.13%

• t-Test	on	Individual	Instructions
• Trident:	8	out	of	11	are	statistically	indistinguishable
• Simpler	Models	(fS and	fS+fC):	Only	2	and	4

Program	SDC	Rate;	3,000	Sampled	 Instructions;	Error	Bar:	+/-0.07%	~	+/-1.76%	at	95%	Confidence	Interval	

Trident is	close	to	fault	injection	results,	and	
significantly	better	than	the	simpler	models!

3,000	randomly	sampled	
instructions	for	fault	injection	

and	the	models

17

Evaluation:	Speed

• Program’s	Overall	SDC	Rate:
• 6.7x	faster	at	3,000	samples

• Per-Instruction	SDC	Rate:
• On	average,	380x	faster	at	100	samples	

per	instruction

• Benchmarks:	FI	takes	nearly	100	hours	
whereas	Trident	takes	<20	mins

Trident is	faster	than	fault	injection	by	2	orders	of	magnitude!

Wall-Clock	 Time	of	Estimating	Program	SDC	Rate

18

Use	Case:	Selective	Instruction	Duplication

SD
C	
Co
ve
ra
ge

Protection	Overhead

*Measured	in	Libquantum,	SPEC

By	Fault	Injections

By	Trident

“The	Golden	Curve”

By	fS+fC
By	fS

Selective	Instruction	Duplication

Recap	:

19

Extension

• Understand	how	error	propagation	is	affected	by	multiple	inputs

• Extension	for	bounding	SDC	rate	with	multiple	inputs

20

Session	6:	Modeling	and	Verification
Wednesday,	June	27th

“Modeling	Input-Dependent	Error	Propagation	in	Programs”

Summary

• Fault	injections	are	too	slow	to	integrate	into	software	development	cycle	

• Trident is	both	accurate	and	fast	in	predicting	SDC	rates

• Can	guide	selective	protection	of	instructions	in	programs	– comparable	

to	fault	injection	in	accuracy	for	fraction	of	cost

• Open	Source:	https://github.com/DependableSystemsLab/Trident

Guanpeng (Justin)	Li
University	of	British	Columbia	 (UBC)

gpli@ece.ubc.ca
21

