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ABSTRACT

Cyber-physical systems (CPS) consist of software and physical
components which are knitted together and interact with each other
continuously. CPS have been targets of security attacks due to their
safety-critical nature and relative lack of protection. Specification
based intrusion detection systems (IDS) using data, temporal, data
temporal and time, and logical correlations have been proposed
in the past. But none of the approaches except the ones using
logical correlations take into account the main ingredient in the
operation of CPS, namely the use of physical properties. On the
other hand, IDS that use physical properties either require the
developer to define invariants manually, or have designed their
IDS for a specific CPS. This paper proposes CORGIDS, a generic
IDS capable of detecting security attacks by inferring the logical
correlations of the physical properties of a CPS, and checking if they
adhere to the predefined framework. We build a CORGIDS-based
prototype and demonstrate its use for detecting attacks in the two
CPS. We find that CORGIDS achieves a precision of 95.70%, and a
recall of 87.90%, with modest memory and performance overheads.
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1 INTRODUCTION

Cyber-physical Systems (CPS) interact closely with their physical
environment, e.g., smart grids, smart automobiles. CPS have been
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targets of security attacks due to their safety-critical nature and
relative lack of protection. The advent of interconnected CPS to the
Internet (also known as the Internet of Things) has exacerbated their
vulnerability as they obviate the need for attackers to have physical
access to the CPS. Attacks on CPS such as the smart grid [32], smart
cars [8] and smart medical devices [22, 30] have been demonstrated
in the recent past. Therefore, there is a compelling need to protect
CPS from security attacks.

Intrusion Detection Systems (IDS) have been used for protecting
computer systems from security attacks, including CPS [6, 24, 27].
Traditional forms of IDS are signature-based, where signatures of
known attacks are compared against the operations of the system
to identify attacks. Unfortunately, signature-based IDS are a poor
fit for CPS as the attacks are often tailored to each kind of CPS,
and hence cannot be described by generic signatures. Further, due
to the remote and often disconnected nature of their operation,
the attack database in CPS cannot be updated frequently unlike
traditional computer systems. Finally, a motivated attacker can
launch hitherto unknown attacks against a CPS, thereby evading
detection by signature-based schemes.

In contrast to signature-based IDS, anomaly based IDS extract
a model of a system’s behavior and detect any deviations from
the extracted model as an attack. Such IDS do not need an attack
database, and can hence detect hitherto unknown attacks. Because
CPS have constrained behaviors, it is often straightforward to derive
anomaly based IDS for them, making these systems a good match
for CPS. Unfortunately, anomaly based systems exhibit high rates of
false-positives in practice, as learning a stable model of the system is
often challenging. Therefore, some researchers have proposed using
physics-based models for anomaly detection models for intrusion
detection in CPS [9, 10, 25, 26, 35]. The notion is that because CPS
interact closely with their physical environments, they need to
follow laws of physics, which can in turn be used as the detection
model. Efforts have been made to use the physical properties of the
power grid [10, 28], unmanned aircraft vehicles (UAVs) [25] and
water treatment systems [1] to build a model which represents the
expected behavior of the CPS. However, in the prior work, the IDS
is designed specifically for a particular CPS. Therefore, the above
solutions cannot be easily generalized to other CPS, as the process
of finding an appropriate model is both time consuming and effort
intensive for developers.
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In this paper, we consider the logical correlations among the
physical properties of the CPS as the model for anomaly-based IDS.
Our hypothesis is that physical properties exhibit deterministic
and predictable correlations among themselves, as they have to
adhere to the laws of physics. For example, consider the case of an
Unmanned Aerial Vehicle (UAV), which needs to follow Newton’s
laws of motion during flight. Some physical properties of an UAV
are: distance travelled, altitude, speed, battery life left and flight
time. When an UAV is flying at a fixed altitude, it has a non-zero
speed due to which the distance traveled and flight time increases,
while the battery life left in the UAV decreases. These relationships
encompass the logical correlations among the physical properties
of the UAV. If during flight it is observed that the battery life left in
the UAV is not decreasing while the speed of the UAV is non-zero,
this would imply that there is some anomaly in the system, which
potentially indicates an attack.

This paper proposes a generic intrusion detection system capable
of detecting security attacks by inferring the logical correlations of
the system and checking if they adhere to a predefined framework.
We use HMMs to automatically infer the logical correlations among
the physical properties of the system with no a priori knowledge
of the physical laws adhered to by the system or any intervention
by the programmer. The HMM identifies a state as malicious by
detecting either an undesired data correlation or lack of an expected
data correlation among its physical properties. We use HMMs as
they are good at detecting outliers, and are typically used to model
time-based systems (Section 3.2). Though other papers have used
logical correlations to detect anomalies [9, 19, 19, 21, 21, 35], none
of them have used HMMs as the core to build a generic IDS. To the
best of our knowledge, CORGIDS is the first generic intrusion detection
system which uses HMMs to infer logical correlations exhibited by the
system to determine if an intrusion has occurred.

Our contributions are:

(a) We propose the use of logical correlations among the physi-
cal properties of a CPS to detect intrusions, and use HMMs
to infer the logical correlations.

(b) We designed a CORrelation based Generic Intrusion Detec-
tion System (CORGIDS), using HMMs to detect intrusions.
We demonstrate its use in two CPS, namely i) an UAV, and
ii) a smart artificial pancreas platform.

(c) We evaluate the effectiveness of CORGIDS by performing
five targeted attacks on the above mentioned CPS. We find
that CORGIDS is successfully able to detect all five attacks,
and has lower false-positive and false-negative rates than
other intrusion detection techniques.

2 RELATED WORK

We begin by reviewing different techniques for creating anomaly-
based IDS. Based on the models created, IDS can be categorized into
three main classes, a) data invariants, which aims to use the values
of data variables to generate the model; b) temporal invariants,
which uses the sequence of events in a given system to create
the model; and (c) physical invariants, which uses the physical
properties to create a multi-dimensional model. We discuss these
invariants below.

Data Invariants: Significant work [4, 5, 11, 12, 15] has been
done to determine how to extract data invariants from a system.
Ernst et al. [15] built Daikon to dynamically mine data invariants
of a system, thus creating pre- and post-conditions which hold
at every entry and exit of a method/function. Csallner et al. [12]
propose DySy to extract data invariants by dynamically executing
test cases and simultaneously performing symbolic execution of the
program under study. In subsequent work, Csallner [11] designed
DSD-Crasher to determine a program’s intended behavior for auto-
matically generating test cases and finding bugs. Baliga et al. [4, 5]
proposed Gibraltar, for inferring and enforcing data invariants to
detect rootkits in the operating system’s kernel.

Temporal Invariants: Temporal invariants have been used to
get a better understanding of a system, uncover bugs and to build
IDS. Yang et al. [34], define their model, Perracotta, to take as input
a program and dynamically output temporal invariants. Gabel and
Su [17] built Javert which is configured with two basic predefined
patterns of temporal invariants. In subsequent work [18] they built
a tool OCD, which is capable of analyzing the trace continuously
using a sliding window concept to generate invariants. Beschast-
nikh et al. [7] generate temporal invariants dynamically through
the use of system logs (traces) and programmer-specified regular
expressions. Lemieux et al. [23] dynamically generate all the in-
stantiations of the invariants from a log file and the property types
supplied in their tool called TEXADA.

Physical Invariants: Approaches from the prior work which
use physical properties of the CPS, to generate invariants can be
classified into those that manually define physical invariants of the
CPS, and those that generate the invariants automatically from the
CPS’s behavior. The second approach is more useful than the first
one, as it reduces the developer effort and time.

e Manually defined physical invariants: Mitchell and Chen
[25] aim to secure an UAV by specifying the physical invari-
ants for each sensor and actuator embedded inside the sys-
tem. In subsequent work, they designed an adaptive specifi-
cation based IDS [26] called BRUIDS, which could be adapted
based on the attacker type and environment changes. Sim-
ilarly, Choudhari et al. [10] manually describe scheduling
invariants and physical invariants in the form of Lyapunov
functions. Combining these invariants they produce coop-
erating invariants which specify and maintain the stability
of the system. In another work, Paul et al. [28] represent
a CPS with one system invariant which encapsulates all of
its subsystems. Adepu and Mathur [1] design an IDS for a
water treatment plant by manually describing the invariants
for a particular sensor in terms of the water level changes
between two consecutive readings.

e Automatically generated physical invariants: Chen et
al. [9] dynamically generate the physical invariant which is
a Support Vector Machine (SVM) model. This SVM model is
then used to classify an activity as benign or malicious for
a real-world water purification plant. However, as they use
statistical model checking, they only provide probabilistic
guarantees that the system is correct, leaving room for false
positives and false negatives. Zohrevand et al. [35] dynami-
cally generated the physical invariant which was a hidden



semi-Markov model for a water supply system. Though they
based their approach on data collected from a real water sup-
ply system, their model was specialized for a specific CPS. In
recent work, Aliabadi et al. [2] designed ARTINALI, which
dynamically mined data, time and event invariants from an
execution trace of the program. They used the invariants in
an IDS, but did not consider physical properties other than
time when generating the invariants. Krotofil et al. [21] used
correlations to identify anomalies in the Tennessee Eastman
(TE) process challenge (a realistic simulation of a chemical
process). They used the Pearson correlation coefficient for
deriving the cluster entropy, which is highly sensitive to
outliers, and does not work well with non-linear data unlike
HMMs. Also, they rely on physical placement of the sensors
for the effectiveness of their approach. On the other hand,
Tturbe et al. [19] use HMMs to distinguish between malicious
attacks and natural disturbances for TE process challenge
using logical correlations. In contrast, we focus on attack
detection rather than diagnosis.

Summary: There has been significant prior work to use data and
temporal invariants for intrusion detection. Unfortunately, the for-
mer class of systems incur high false-positives and false-negatives,
thus implying unreliable detection. Physical invariants have the
capacity to detect security attacks with low false positives and
negatives, but current work either requires the invariants to be
manually specified, which is time and effort intensive, or the sys-
tems have important gaps which inhibit their generalizability. In
this paper, we propose an automated technique for capturing the
logical correlations among physical variables in a generic CPS, and
use such correlations for detecting intrusions.

3 APPROACH

We first introduce our approach for building a generic IDS. We begin
by presenting the threat model. Then we introduce HMMs which
we employ to find the correlation between the logical properties of
the system to detect intrusions. Secondly, we present the work-flow
of CORGIDS and an example to illustrate the work-flow.

3.1 Threat Model

Access: We use the term System Under Test (SUT) to represent
the system on which we want to perform our analysis. We assume
that the attacker has the capability to gain read and write access to
the communication channel between the SUT and the controller.
Using this access, the attacker can modify the contents or add data
packets being transferred. This assumption is realistic as previous
work [14] has shown that such access is rather easy to get.

Further, we assume that the attacker has the root access to the
SUT, which means that the application code can be modified to suit
the attacker’s needs. However, as an attacker is likely to want to
remain stealthy, we assume that they are more likely to make small
changes to the program rather than large-scale changes such as
replacing the entire program with their own. We also assume the
attacker cannot modify the operating system kernel or the device
firmware. This can be ensured by using code signing or trusted
computing hardware if it is available.

Capabilities: We assume that the attacker, using access to the
communication channel, can perform two types of attacks. The
first one is spoofing, where the contents of the data packets can be
modified, and the second one is flooding where the number of data
packets being sent to the controller can be increased. The attacker
can also perform physical attacks on the CPS, for example by re-
booting it, at arbitrary points in time. For this paper, we are not
considering network attacks such as Denial-of-Service (DoS) or mes-
sage dropping attacks. Also, we only consider attacks that change
the correlation between the logical properties. Attacks which do
not create an impact on the logical properties are not considered.

3.2 Hidden Markov Models

We build an IDS using an HMM to find logical correlations among
the physical variables in a system. HMMs are useful for systems
which can be represented by sequences or time series. An HMM is
a finite model that can be used to describe a probability distribution
over an infinite number of possible sequences in a given system [13].
Unlike a simple Markov model, an HMM is composed of a number
of hidden states. Each hidden state ’emits’ symbols according to
emission probabilities, and the states are interconnected by state-
transition probabilities. Starting from an initial state, a sequence
of states is generated by moving from state to state according to
the state-transition probabilities until an end state is reached. Each
state then emits symbols according to that state’s emission prob-
ability distribution, creating an observable sequence of symbols.
More formally, an HMM can be represented by ( 7, A, 0) where x
represents the starting probability of the transitions between the
hidden states, while the transition probability matrix is denoted by
A and 0 represents the emission probability of the hidden states.

HMMs are a good fit for problems in which i) the model parame-
ters and observed data are present, and there is a need to estimate
the sequence of hidden states; ii) the observed data is given and the
model parameters are to be estimated, and iii) the information of
model parameters and observed data is present while there is a need
to find the likelihood of the data. In CORGIDS, we use HMMs for the
third kind of problem, i.e., we measure the likelihood of the current
observed data belonging to the predefined model’s parameters. In
order to do so, we feed the values of correlated physical properties
of the system into an HMM, which then infers the correlations
between them. These correlations are then used to determine the
likelihood of the current observed data as stemming from the model
and its parameters. Any deviation is signaled as an anomaly and a
possible security attack.

We use HMMs as the core of intrusion detection module mainly
because they are capable of finding data patterns in high dimen-
sional, non-linear time series based data systems. Also, HMMs
work by creating hidden states and then transitioning between
them which is very similar to the operations of CPS system, which
are typically modeled as state machines. Unlike techniques such as
correlation coefficients, HMMs are also highly resilient to noise and
outliers. For instance, Krotofil et al. [21] use Pearson Correlation Co-
efficient(PCC) to determine correlation for the cluster entropy. PCC
measures linear correlation among the variables, therefore is not
suitable for multidimensional non-linear data. Also the variables
undergoing PCC must be either based on interval or ratio scale,



making this approach much less generic. Chen at el. [9] employ
SVMs to detect an anomaly in a time series based system. Unfor-
tunately, SVMs do not work well with time series data, because
they work with a snapshot of the state and classify it into a class.
However, by manipulating the input feature vector to the SVM in
such a way that it encapsulates the time factor, authors use it for
anomaly detection. On the other hand, Aliabadi et al. [2] use Fre-
quent Item Set Mining algorithm which does not model the system,
but mines the data under different events. Unfortunately, they do
not consider the physical properties, except time, of the CPS. Iturbe
et al. [19] use Principal Component Analysis (PCA) which infers
correlation among the variables and is better suited for linear corre-
lations, as it works by generating orthogonal projections. However,
for non-linearly correlated data as in our case, PCA is not able to
find correlations.

3.3 Work-flow of CORGIDS

CORGIDS is a generic intrusion detection system which exploits the
correlation of the logical properties of the SUT to detect intrusions.
Figure 1 shows the key components and the work flow of CORGIDS.

/ 1. LOGGING PHASE \ ﬂ
System under test

1.1Logging module

System System System
trace trace trace
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Intrusion detector model
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Figure 1: Workflow of CORGIDS

The CORGIDS workflow can be broken down into three main
phases, namely, a) Logging Phase; b) Building an Intrusion Detector
Phase; and c) Detecting Intrusion Phase. We explain each of the
phases below.

(a) Logging Phase: The 1. Logging Phase in Figure 1 is the start-
ing point for building an intrusion detector and for deploying
it on a system for which intrusion detection is desired. SUT is
an input to this phase and is passed through the 1.1 Logging
module in which it is manually instrumented to collect the
values of the correlated properties!. These properties are
chosen by the user based on her general knowledge of the
SUT. The Logging phase will ensure that the traces which
contain the values of the properties while the system is run-
ning are collected. Also, we assume that the source code of

! The approach of manually instrumenting the code to collect logs has been used by
prior work [2, 9]

System under test \

l & 3. DETECTING INTRUSION PHASE/

the SUT is available and can be modified for instrumentation
- this is reasonable as the developer of the system will deploy
CORGIDS. At the end of this logging phase, the system traces
containing the values of the logical properties of the SUT
are collected.

(b) Building an Intrusion Detector: In this phase, the system

traces collected from the Logging Phase are used to build an
HMM which behaviorally represents the SUT. The pseudo
code for the algorithm for building an intrusion detector is
below. To build an intrusion detector the system traces are
fed into the HMM model for its training in Line 2.

Algorithm Building an intrusion detector

1
2
3
4
5

: procedure BUILDANINTRUSIONDETECTOR (logs):

trainedModel = trainHMMModel (logs)

: for lin logs

logLikelihood(i) = log(trainedModel(1))
S = sum of all logLikelihood(i)’s

6: M = mean of S

7:

8

return trainedModel, M;
: procedure TRAINHMMMOoDEL (logs):

9. for hiddenStates = 2, hiddenStates++

10:
11:
12:
13:

create an HMM model model(i);

logLikelihood(i) = log(model(i))

if & (logLikelihood) < Threshold then
return model(i);

We begin training an HMM in procedure TRAINHMMMODEL
in Line 8, by varying the number of hiddenStates. The num-
ber of hidden states is a free parameter of an HMM which
needs tuning in order to create a model which can be used for
intrusion detection. We iterate and create HMM’s model(i)
with the starting value of two hidden states and keep in-
creasing the number of hidden states by one (Line 9 - 10).
The log likelihood of the model(i) is calculated which rep-
resents the goodness of the model(i) fit of the model to the
data that was used for constructing it. The log likelihood is
stored in logLikelihood(i) as shown in Line 11. The threshold
in Line 12 represents the minimum difference between the
current and previous HMM’s log likelihood. Using threshold
as a stopping criteria for HMM has also been used in prior
work [16]. The best HMM is returned in Line 13 with its
parameters as the model to be used for intrusion detection.
At this point the trainedHMMModel is used to calculate the
log likelihood for each of the training system traces (Line
3). As a by product, the mean of log likelihood is calculated
(Line 5- 6) to get the estimated log likelihood value M (Line
6) for a training log. M is then used for comparison in the
later steps to detect intrusion. Creating HMMs by increasing
the number of hidden states uses a significant amount of
memory and computational power. However as this phase
needs to be carried out just once for a SUT, it is not a major
bottleneck. Once the intrusion detector HMM is created, it
can be used to detect an anomaly in the next phase, which
is much more efficient.



(c) Detecting Intrusion Phase: This phase starts with the Log-
ging Phase which is used to collect the system trace from
the SUT while it is running. In this phase, only the system
trace corresponding to the running SUT is collected, rather
than many different system traces. The trace generated is
then used together with the intrusion detector built in the
Building an Intrusion Detector Phase. Using the HMM model
and its saved parameters, the log likelihood of the current
system trace is calculated and compared with the mean log
likelihood M calculated in the Building an Intrusion Detector
in Line 6. If the log likelihood of the system trace is less than
a specified range (8) from M, it signifies that the system trace
does not follow the behavior which was observed when the
HMM was being trained. The specified range (5) is found by
running a sensitivity analysis (Section 6.1). Further, as the
system traces used for building the HMM were assumed to
be correct (i.e., not attacked), this implies that the current
system trace represents a system under attack. Thus, we flag
the current state of the SUT to be malicious.

3.4 Example

TEST SYSTEM TRACE

Altitude, Battery, Distance, Speed, Flight time

— :

/ ——»

Hidden +—— ' Hidden \
state 1 state 2
' Hidd /
Mean log probabllrt\r\ ‘cen
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(M) =-4335.533 " HIDDEN MARKOV MODEL
Range (8) from M = 328.15 /
l Log Likelihood of current trace = -7650.34
Is current log
probability =
M — 8)?
NO ¢ & YES
INTRUSION NO INTRUSION

Figure 2: Approach of CORGIDS

We use our earlier example of an UAV from Section 1 to illustrate
how CORGIDS can be used to detect intrusions in Figure 2. As
described in Section 1, an UAV has physical properties such as the
current altitude, battery percentage left, distance traveled, current
speed and flight time. These physical properties are correlated to
each other as per the laws of physics. We now elaborate how our
approach will detect an intrusion in an UAV using the work-flow
described in Figure 2. We use a distance spoofing scenario for the
UAV as an example.

Table 1: Slice of a non-faulty system trace obtained while
flying an UAV on a random route

Altitude | Battery | Distance Speed | Flight time
(m) left (%) | travelled (m) | (m/s) | (s)

40 89 42.1445 1 38.32
40 89 44.2563 2 39.342
40 89 47.2397 3 40.356
40 89 51.0202 3 41.376
40 88 55.2434 4 42.345
40 88 59.5897 4 43.346
40 88 64.1632 4 44.335
41 88 68.8979 4 45.323
41 88 73.7389 4 46.351
41 87 78.6564 4 47.448
41 87 83.6196 4 48.551
41 87 88.6138 4 49.61
41 87 93.627 5 50.604
41 86 98.6659 5 51.507

Table 2: Slice of a faulty system trace obtained while an UAV
was flying on a random route and infected by distance spoof-
ing attack

Altitude | Battery | Distance Speed | Flight time
(m) left (%) | traveled (m) | (m/s) | (s)

40 89 42.7868 1 38.206
40 89 45.2942 2 39.279
41 89 48.6934 3 40.272
42 89 42 4 41.261
42 88 57.0199 4 42.267
43 88 46 4 43.285
43 88 66.0254 4 44.357
44 88 70.7879 4 45.347
44 87 65 4 46.292
45 87 80.5709 4 47.37
46 87 85.5441 4 48.386
46 87 49 4 49.373
47 86 54 4 50.367
47 86 100.6006 4 51.402

First the Logging Phase starts, where the UAV is instrumented to
collect the correlated properties such as current altitude, current
battery percentage left, distance traveled, current speed and flight
time. The above properties are collected at regular intervals of time
to form the system traces. A section of the sample system trace
collected is shown in Table 1. In the trace, we can observe that all the
properties are correlated with each other, and that the correlations
are fairly stable. For instance, if the Speed of the UAV increases, the
Distance traveled will also increase. Further, the Distance traveled
property can have values that are either increasing or stagnant. We
run multiple iterations of the UAV by varying the routes it travels,
to collect non-faulty system traces from it.

In the second phase, we Build an Intrusion Detector by using the
system traces collected from Logging Phase. We start by generating



model(i) by varying the number of hidden states in line 9 to 10 in
the given algorithm. Then for each of the model(i) generated, we
calculate the logLikelihood(i) in line 11 to determine if the model(i)
fits the data used for constructing it. To accomplish this, the differ-
ence in logLikelihood(i) is compared to the Threshold in line 12 and
if the Threshold is met, model(i) is returned. We found that an HMM
with 15 hidden states is the one which meets the threshold. As
showing 15 hidden states in the Figure 2 will clutter it, we simplify
the model by showing only 3 hidden states. Further, in lines 3 to 5,
the sum of logLikelihood’s for all the correlated logs S is calculated
from which M (mean log likelihood) = —4535.933 is extracted.

To demonstrate how an attack will be detected by our approach,
we consider an attack where the attacker decides to spoof the values
of distance traveled found inside the data packets being transferred
from the UAV to the Ground Control Station (GCS). UAV’s periodi-
cally send the flight data to the GCS to keep it updated about its
whereabouts. To intervene the working of UAV, the attacker gains
access to the communication channel between the UAV and GCS.
Now, an attacker can easily change the contents of the data packets
being transferred. This attack is explained in detail in Section 5.

In the final phase, when the UAV is deployed in production, the
Detecting Intrusion Phase activates in the GCS and uses the current
system trace produced from the logging module along with the
trained HMM. A slice of the faulty-system trace is shown in Table 2.
As can be observed, the values of distance traveled are changing
but do not follow the correlations observed in the earlier trace in
Table 1. As only the distance traveled values have been tampered
with, leaving other logical properties intact, we get a correlation
which is different from the one that is expected by the trained
HMM. This results in the difference between the mean and current
log likelihood values being greater than the threshold value - say
(6). From Figure 2, the log likelihood of the current system trace is
more than § from the M (mean log likelihood). Therefore, CORGIDS
flags the current state of the UAV to be malicious. The value of the
threshold (8) = 328.19 is determined experimentally (Section 6.1).

4 EXPERIMENTAL SETUP

This section first describes the details of the two testbeds on which
CORGIDS is applied, then briefly describes the attacks to be planted.
It then discusses the experimental procedures, and how we chose
the experimental parameters. Finally, it presents the evaluation
criteria which will be used in Section 6.

4.1 Testbeds

To demonstrate the generality of CORGRIDS, we choose two testbeds
on which we carry out our experiments. These testbeds are two CPS

which contain correlated properties and a predefined framework

according to which the properties change their values.

(a) Unmanned Aerial Vehicle (UAV): An UAV, commonly known
as a drone, is different from an aircraft mainly because it does
not have a pilot aboard. UAV’s periodically send the flight
data to the GCS to keep it updated about its whereabouts. A
UAV mainly consists of sensors, control logic and actuators
forming a closed loop. The sensors sense the current state
of the UAV and its environment and pass it on to the con-
troller, which makes the decision about the next step to be

taken. The decision taken is then sent to the actuator - this
loop runs infinitely often while the UAV is flying. We use
ArduPilot’s Software in the Loop (SITL) [3] to perform our
experiments. ArduPilot is an open-source autopilot software
and is vastly deployed on various vehicle systems. We use
SITL as a simulator on a local machine as we did not have
access to a real UAV.

Smart Artificial Pancreas (SAP): SAP is a device used by the
diabetic patients to automatically analyze the insulin to be
injected to the patient based on the blood glucose samples
collected. SAP helps in reducing human error and analyzes
the current blood glucose levels regularly at fixed intervals
of time. A SAP consists mainly of i) a blood glucose monitor,
which reads the blood glucose levels of the patients at regu-
lar interval of time, ii) a controller, which based on the blood
glucose values decides the insulin that needs to be injected,
iii) an insulin pump, which based on the value generated by
the controller, injects a specific amount of insulin into the
patient. We use Open Artificial Pancreas System (OpenAPS)
an open source SAP to evaluate CORGIDS. OpenAPS imple-
ments the controller part of the SAP, and has been used in
prior studies [2]. We did not have access to a real patient, due
to which we use the simulated values from blood glucose
monitor and the insulin pump for our experiments. The val-
ues of blood glucose instead from the blood glucose monitor,
were taken from the test cases provided by OpenAPS. These
values were then served as input to the OpenAPS to get
the insulin required by the patient. We install the OpenAPS
controller on a Raspberry Pi 3 microprocessor to evaluate
the memory and performance overhead of CORGIDS.

(b

=

4.2 Experimental Procedure

To evaluate CORGIDS’s efficacy, we partition the process of attack
detection into two phases, namely training phase and testing phase.
The system traces obtained from SUT are randomly divided into
training and testing batches. The training phase is the one in which
we train our intrusion detector from the non-faulty system traces
that are randomly assigned. Sensitivity analysis is also performed
to analyze the parameters which have the most impact on the
performance of the intrusion detector. For instance, for the UAV
testbed, we randomly generated routes which the UAV used as the
flight plan. Therefore, after having the UAV fly on all the randomly
generated routes, we obtain the non-faulty system traces. These
logs were then randomly distributed for training and testing. In
the testing phase, we test the intrusion detector to find out if an
intrusion was correctly detected. The results are then used to gauge
the performance of CORGIDS based on the evaluation criteria. In
order to reduce variability, we ran five-fold cross validation for each
of the attacks described above.

5 ATTACKS DESCRIPTION AND DETECTION

In this subsection we discuss the attacks we emulated on each
testbed, and their implications. The attacks which we discuss here
are targeted attacks, which means that they specifically target phys-
ical properties of the two CPS platform. Note that the attacks de-
signed for both the testbeds are intentionally stealthy, i.e. we expect



that the attacker wants to remain undetected while introducing
some malicious content to accomplish his goal. Also, we use attack
trees for planting attacks on the testbeds. These attack trees are
based on prior attacks on very similar systems, thus making them
realistic and appropriate for testing CORGIDS.

5.1 Attacks on UAV
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I I [ ]
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Figure 3: Attack tree for UAV

As discussed above, an UAV regularly transmits flight data to the
GCS, so that it can be tracked throughout its flight. The GCS based
on the flight data received interprets if the UAV is following the
instructed guidelines or has drifted from it. We formulate an attack
tree for faulty UAV operations (shown in Figure 3), based on attacks
introduced in previous work [20, 25]. There are three branches in
this tree, namely, i) Network Tampering; ii) Storage Tampering;
and iii) Measurement Tampering. We used two branches to develop
attacks which are discussed below.

e Battery Tampering Attack (Block B1-B4): This attack
occurs when an attacker is able to tamper with the control
logic of the UAV by hacking it. By changing the control logic,
the attacker can change the decisions that are made based on
the input physical properties from the sensors. Obtaining the
access of the UAV is not an unreasonable condition mainly
due to the availability of tools capable of achieving the same
[29, 31]. In this attack, the attacker can change the part of the
code where the percentage of battery left in the UAV is being
sent to the GCS. The original value of percentage battery left
in the UAV can be substituted with a value greater than the
current value, to lead the GCS into the false understanding
that the UAV has plenty of battery left in it. Specifically,
if the attacker through eavesdropping the communication
channel, knows that the battery decreases at a particular
rate, he can then send faulty values to make the GCS believe
that battery is depleting at a decreased rate to accomplish his
motive. Thus eventually, reaching to a point where the UAV
crashes on the ground due to battery drainage, and leads to
the possession of sensitive data by the attacker. As we did not
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have access to a real UAV, we performed our experiments on
ArduPilot (a real time simulator for UAV) running on a local
machine. Therefore, we had access to the UAV and modified
its control logic to plant this attack in the code.

Flooding Attack (Block A1-A4): The flooding attack oc-
curs when the communication channel between the UAV
and GCS is compromised. In this scenario, an attacker can
mount the attack by flooding the communication channel by
the sending the extra packets along with the ones destined
to be received by the GCS [29]. The motive of this attack
could be populating the channel so that the GCS is unable
to infer the correct whereabouts of the UAV thereby, leading
the attacker to control and use the UAV as desired. The extra
packets being sent can contain physical properties which are
different from the legitimate ones. However, we assume that
the attacker is stealthy and chooses values close to the real
ones to avoid detection. To achieve this attack we injected
faulty data packets into the communication channel between
UAV and GCS.

Distance Spoofing Attack (Block A(1,2,5,6)): By sending
a different value of the distance traveled rather than the
original value, an attacker can falsely portray the current
route or the current position of the UAV to the GCS. This
attack can take place when an attacker eavesdrops on the
communication channel to know the format of data being
transmitted. This knowledge then can be used to spoof the
value of the distance covered in the data packets being sent
to the GCS. The motivation behind this attack can be that
the attacker wants to fool the GCS by leading it to believe
that the UAV is following a different schedule/route than the
planned one. This attack is mounted by spoofing false dis-
tance traveled data into the communication channel between
the GCS and UAV. Similar to flooding attack, we intercepted
the communication channel to send spoofed values for the
distance traveled property to the GCS.

Detection of attacks on UAV

Battery Tampering Attack: As detailed in the attack de-
scription, the attacker changes only the battery values in a
data packet which also contains other correlated properties
such as distance traveled, altitude, speed, and flight time.
When this data is received by the GCS with CORGIDS en-
abled on it, the trained HMM model in the intrusion detector
module detects an abnormal activity. A malicious activity is
detected because the correlation expected by the HMM is
not the same as received by it, mainly due to the difference
in the relationship of battery with the other properties in
the data packet. As a result, the log likelihood of the current
system trace comes out to be less than the intrusion detector,
which makes it faulty.

Flooding Attack: To detect this attack, the data packets that
are received by the GCS are fed into the intrusion detector
module of CORGIDS. A key point to note here is that, if the
UAV sends one data packet per second to the GCS, the data
packets received at the GCS end will be greater because of
the flooding attack. The trained HMM model will detect a



malicious activity as the number of data packets which are
used for decision making are greater than the case when
there is no flooding attack. This will lead to a lesser log
likelihood of the current data packets than the trained HMM,
thus flagging the current state as anomalous.

¢ Distance Spoofing Attack: When spoofed messages reach
the GCS, they are given to the trained HMM model to find
out discrepancy, if any. An important thing to note here is
that the number of data packets sent by the UAV and re-
ceived by the GCS are same. However, in some packets the
distance traveled by UAV is spoofed to falsely portray that
it is following a different route or may be the sensors are
returning some faulty values. However, the correlation be-
tween the distance traveled and other flight data parameters
from faulty and non-faulty packets, is not what is expected
by the trained HMM. Thus, the intrusion detector flags the
current state to be anomalous as the log likelihood of the
data packets fed into it is lesser than expected.

5.3 Attacks on SAP

The correct execution of SAP is of vital importance as the life of
the patient depends on it. As discussed above, SAP consists of three
components: blood glucose monitor, controller and insulin pump
forming a closed loop. The attacks we derive for SAP are discussed
below and take advantage of the communication channel and the
access of the code for the controller 2. We build an attack tree shown
in Figure 4 using the attacks demonstrated in prior work [2, 30].
We base our attacks on the two scenarios described in it.
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Figure 4: Attack tree for SAP

e Insulin Tampering Attack (Block A1-A4): Similar to bat-
tery tampering attack, this attack also occurs when the at-
tacker can hack the controller i.e., OpenAPS [30]. After hack-
ing, the attacker can modify the logic where the rate of

2The attacks on SAP may seem similar to the ones proposed by [2], mainly because of
similar attack names, but the attack and its detection methodology is totally different
when compared to ours.

insulin is calculated, based on the input blood glucose values
sampled from the patient. This will lead to injection of faulty
insulin dosage into the patients body which can prove fatal.
As we used the Raspberry Pi 3 for our SAP experiments,
we remotely connected to it and then changed the control
logic to reflect this attack. After the attack had been planted,
the insulin dosage command sent out by the controller was
faulty as expected.

Glucose Spoofing Attack (Block B1-B4): The glucose spoof-
ing attack modifies the value of the blood glucose contained
in the data packets being sent from the patient. The incorrect
value which will be substituted can be either greater than or
less than the current blood glucose value. This change in the
real value will lead the controller to calculate an incorrect
value of insulin (though the logic through which insulin dose
calculated is untouched), which will have harmful effects on
the patient. This attack was mounted by injecting false data
into the communication channel between the blood glucose
monitor and the controller.

Detection of attacks on SAP

Insulin Tampering Attack: As the attacker modifies only
the insulin dosage while keeping the other properties the
same, the intrusion detector is able to detect the attack, as the
current correlation is not what it expects after its training
phase. Similar to above attacks the log likelihood of the
current system trace is less than that of the trained HMM,
thus arousing suspicion.

Glucose Spoofing Attack: The intrusion detector module
of CORGIDS receives the correlated properties which con-
tains both faulty and non-faulty values of the blood glucose
in it. Thus, based on this input data, the log likelihood gen-
erated by the current log differs from that expected by the
trained HMM. This indicates that there is an intrusion in the
current state of the SAP.

Although, the attacks that are demonstrated in this paper break
the logical correlation directly, CORGIDS is also capable of detect-
ing an anomaly which is generated through indirect attacks. For
example, instead of changing the physical property like battery %
left in the battery tampering attack (this is a attack in which cor-
relations are broken directly), we could change either the value of
some variable (other than the physical variable) used in the UAV or
alter other logic which does not directly effect the physical property.
These changes will propagate in the program and ultimately reach
the receiving end of the CPS (an actuator). If they do not, then the
attack is likely to be harmless as the attacker cannot change the
physical behavior of the CPS without modifying its outputs.

5.4

6 EVALUATION

In this section, we present the results from the sensitivity analysis
and attacks seeded in section 5. We also compare CORGIDS to
closely related work in terms of the metrics in Section 6.2.

6.1 Sensitivity Analysis

Before evaluating CORGRIDS, we performed a sensitivity analysis
to find out the values of the three experimental parameters which



have the highest values of Precision and Recall (Section 6.2). The
three experimental parameters are as follows.

e Window size (w): A window size is defined as the time du-
ration which is under consideration for detecting any intru-
sion [35] in a SUT. A large w means that greater historical
data is required by the HMM to decide of a malicious activity.

o Acceptable range (§): An acceptable range defines a range
within which the testing system trace’s likelihood can vary
from the mean log likelihood from the trained HMM. A log
with the value within range from the specified mean will be
marked to be similar to the training logs. If the value of § is
chosen to be large, then we are enforcing loose control and
allowing system traces with substantial variation from the
trained HMM to be considered benign.

o Threshold of consecutive decisions (1): We perform a stateful
test [33] by maintaining the historical decisions and gener-
ating alert only if it goes above the threshold. The intuition
behind using the A is to look at the historical decisions of
the intrusion detector to see if there is really an anomaly or
if it is just one time spike in the system. Greater value of A
enforces more number of consecutive historical intrusion
decisions to generate an alert.

The results from sensitivity analysis are shown in Figure 5. w is
measured in minutes while § in standard deviations. A key point to
note here is that more the value of precision and recall for a set of
experimental parameters, higher is the rate of detection. We carry
out our sensitivity analysis by varying one parameter at a time and
keeping others constant. For instance, Graph a denotes the scenario
where the w is varied from 2 to 4 minutes while keeping § =1 and A
= 2. Similar to graph a, we now sweep the constant parameters, that
is, § and A from their lowest to the highest values. This forms the
first row, Graph a - d in Figure 5. Similar to first row, we conduct
experiments by varying § in second row and A in last row. This
sensitivity analysis represents the data collected from the distance
spoofing attack on the UAV testbed. Though similar analysis was
performed for the other attacks on the UAV and SAP, due to space
limitations they are not included here.

From the graphs, the precision and recall are increasing as the w
is increasing from 2 to 4 minutes, while they are decreasing when
the § and A are increasing from 1 to 3 standard deviations and 2
to 4 decisions respectively. From this trend we can infer that the
precision and recall are largest when we have a large window size
(w) with small threshold of consecutive decisions (1) and acceptable
range (6). Similar trend was observed for other attacks on the two
testbeds. The reason for the trend observed is that a HMM requires
substantial historical data to determine if there is some anomaly
in the system. With less history (smaller window size), it is unable
to correctly infer the state of the current state of the system. Thus,
when we provide greater window size (w) of 4 minutes, it is able to
create a more realistic model of the system. As the HMM is now
more confident abut the system after having a large w, it can now
make decisions confidently, thus giving the best results for the least
value of § and A.

An important point to note here is that though CORGIDS is able
to detect attacks even with less favorable values of w, A and 6, it
achieves less precision and recall in doing so. On the other hand, if

Table 3: FP and FN obtained for CORGIDS on the two
testbeds

‘ Testbed ‘ Targeted Attack ‘ FP (%) ‘ FN(%) ‘

Battery Tampering 0.0 12.20
UAV Flooding 0.0 11.30
Distance Spoofing 0.0 12.80
Insulin Tampering 5.60 | 4.20
Glucose Spoofing 2.80 | 8.40

SAP

Table 4: Comparison of Precision and Recall for OpenAPS
platform

‘ Methodology ‘ Testbed ‘ FP(%) | FN(%)| Precision(%)| Recall(%)

SEGMeter 12 2.3 89.06 97.7

ARTINALL OpenAPS 13.5 2 87.89 98

Zohrevand Water

et al. [35] Treatment | - - 78.87 81.4
System

Chen Water

etal. [9] Purification | - 15 - -
Plant
UAV 0.00 12.10 | 100 87.90

CORGIDS SAP 4.20 6.30 95.70 93.70

we use the results obtained from sensitivity analysis we are able
to have higher values of precision and recall. Thus, either we can
choose the lesser favorable parameters and obtain results quickly
at the cost of accuracy, or we can work with the most favorable
parameters while incurring some latency but obtain the fewer FNs.

6.2 Evaluation Criteria

We use Precision, Recall, performance overheads and memory over-
heads to evaluate CORGIDS.

e Precision: For a malicious execution of SUT, when an intru-

sion detector correctly detects an intrusion, is called Pre-

cision. For an intrusion detector, the higher precision the
better.

Recall: While Recall is the percentage when the SUT exe-

cution was malicious and the intrusion detector correctly

identified it among all the malicious SUT executions. For an
intrusion detector, the higher recall the better.

e Performance Overhead: Performance overhead reflects the
additional time taken, when CORGIDS is deployed on the
SUT. It helps to determine if the time taken by the IDS to
detect intrusion is greater than the cycle, in which case it is
not very helpful to use an IDS.

e Memory Overhead: As the devices in which CORGIDS will be
used will be memory constrained, it is essential to calculate
its memory overhead. Memory occupied by CORGIDS on
SUT will be used to determine this overhead.

As we don’t have access to a real UAV and use a simula-
tor for the experiments, we do not calculate memory and
performance overheads for UAV testbed.

For evaluating CORGIDS, we choose the value obtained for each
of the three variables (w, A and ) for which the sensitivity analysis



=== Precision === Recall == Precision == Recall

15 15

1 1
05 // 05
[ [

2 3 4 2 3

Window size (minutes) Window size (minutes)

(a)=1and A=2

=& Precision =-#= Recall

(b)S=3and A =2

=& Precision =—#= Recall

15 15

1 + 2 4
0.5
0 -

14 4 *
05

0 #— + -

4

S|

1 15 2
Range (standard deviation)

25 3 1 15 2
Range (standard deviation)

25

(e)w=2and 1 =2

== Precision == Recall

(f)w=4and 1 =2

=== Precision === Recall
15

3

15

0.5

15

=== Precision == Recall == Precision == Recall

.

15

2 3 4 2 3 4

Window size (minutes) Window size (minutes)

(c)6=1and 1 =4 (dS=3and =4

= Precision =—#= Recall == Precision ==#= Recal

15

14 + . 4 + +

1 15 2

3 o 3 ®

0.5 g
—
0 + Py
25 3 1 15 2 25 3
Range (standard deviation)

Range (standard deviation)

@ w=2and =4

=== Precision === Recall

(hyw=-4and -4

== Precision == Recall
15

1 1
0.5 0.5
0 + 0¢ *

2 3 4 2 3

Threshold Threshold

(i()w=2and =1 (j)w=2and 6 =3

0.5

e

1
o5 ‘\o\.
0

2 3 4 2 3 4

Threshold Threshold

(k)w=4and =1 ()w=4and5=3

Figure 5: Sensitivity Analysis: Variables are w, § and A. The vertical axes in all figures are the values of precision and recall
calculated after averaging 5 fold cross validation of test system traces.

was performed. Table 3 contains the results for False Positives (FP)
and False Negatives (FN) for the two testbeds, namely, an UAV
and SAP on which CORGIDS was deployed. Table 4 compares our
results to only those related papers [2, 9, 35] which dynamically
generate physical invariants 3. We acknowledge that Table 4 does
not provide an apples-to-apples comparison, but we include it here
to provide better context about CORGIDS’ performance. Krotofil
et. al. and Iturbe et. al. [19, 21] do not measure the performance of
their methodology, and hence we could not compare with them.
We additionally calculate precision and recall for our and the pa-
pers mentioned in table 4. To calculate the FP and FN values for
CORGIDS which will be used to generate precision and recall, we
average over FP and FN values from Table 3. We cannot compare
the precision value of CORGIDS with Chen et. al. [9], as the later
did not provide it in their paper.

6.3 RQ1. Precision

In this subsection, we discuss the precision achieved by seeding
the attacks on the SUT and using CORGIDS to detect an intrusion.
Also, we compare our precision with prior work in Table 4. As can
be observed, CORGIDS achieves precision of 100% and 95.70% for
the UAV and OpenAPS platform respectively. In comparison, no
other intrusion detector has a precision greater than 90%. Specifi-
cally, CORGIDS provides an 21.33% improvement in precision over
Zohravend et al. [35] and approximately 8.88% over Aliabadi et al.
[2] for the OpenAPS platform.

The reason behind the higher precision percentage for CORGIDS
is the use of correlations exhibited by the two CPS. CORGIRDS

3Note: For the research papers with which we compare our work for the UAV and SAP
testbed, we directly use the FPs, FNs, precision and recall evaluation metrics provided
by them. We manually calculated Precision and Recall for [2] from the FP and FN
values provided in their paper

detects attacks by using an HMM to infer if the current system
traces exhibits the same trend with which it was trained. This is the
reason that especially for the UAV platform, the HMM recognizes an
anomaly with almost 100% precision. The reason for comparatively
low precision value for OpenAPS platform is the lack of training
examples. We maintained a 70:30 ratio for training and testing traces.
However the lack of availability of patient’s diabetic therapy data
led to a lower number of training samples. This, in turn, negatively
affected the training of the HMM used by CORGIDS.

6.4 RQ2. Recall

Here we discuss the recall factor of CORGIDS and compare it to
the related work mentioned in tables 3 and 4 respectively. From
Table 4, CORGIDS receives a high recall percentage among all the
related work. Though CORGIDS does not have the highest recall,
it is quite close to ARTINALI with 93.70% for the OpenAPS plat-
form. CORGIDS improves the recall by 15.11% when compared to
Zohravend et al. [35]. On the other hand, CORGIDS achieves 11.14%
lower recall than ARTINALI when both of them are compared with
their lowest recall factors.

CORGIDS achieves lesser recall than ARTINALI [2] mainly be-
cause the behavior of the SUT under attack was stealthy and did
not deviate much from the normal trend. As the deviation was
less, the logical correlation between the properties seemed very
similar to the one expected, thus the HMM did not mark the state
as anomalous. As Chen et al. [9] do not provide recall factor, but
give the value of FN for their approach, we compare the FN value to
CORGIDS, which is 15%. This is higher than CORGID’s FN values
or 12.10% and 6.30% for the two platforms. Chen et al. use SVMs
for intrusion detection, while CORGIDS uses HMMs. HMMs are



better able to capture the sequence of states and their transitions
in a CPS, and hence CORGIDS achieves lower FN values.

6.5 RQ3. Memory overhead

We measured the memory overhead of CORGIDS running on the
OpenAPS platform. The experiments were performed on a Rasp-
berry Pi 3 with approximately 1 GB of RAM. We found that CORGIDS
consumes 36.15 MB when detecting intrusion. The reason behind
this memory overhead is that CORGIDS uses HMM for intrusion de-
tection. The trained HMM model when loaded into memory along
with the libraries required for it to generate a decision, requires
more space. However, as CORGIDS is used by controller to detect in-
trusion in the SUT, and the controllers are not memory constrained
as compared to the SUT. For instance, in Raspberry Pi 3, it took
only a fraction (36.15 MB) of memory from the 1 GB available RAM.
Thus, we surmise that the memory overhead incurred by CORGIDS
is acceptable.

6.6 RQA4. Performance overhead

Like memory overhead, performance overhead measurements were
also taken from the Raspberry Pi 3 platform. We consider the av-
erage of 10 executions for the overhead. Ideally, the time taken to
deduce a decision should be less that the execution cycle of the SUT,
in order for the intrusion detector to keep up with the system. It
takes approximately 1.25 seconds for CORGIDS to generate a deci-
sion based on the input correlated logs. This is negligible compared
to the time taken by a single execution cycle of OpenAPS, which is
about 5 minutes.

Scalability of CORGIDS: To understand the scalability of the
overheads with HMM size, we varied the HMMs used for intrusion
detection. Thus, we created multiple HMMs by varying the tuning
parameter of a HMM, which is the number of hiddenStates. The
number of hiddenStates were varied among 2, 5, 10, 15, 20. We
observed that the memory and performance overhead of CORGIDS
remains the same regardless of the number of hiddenStates in the
HMM. This is because the libraries which are loaded along with the
HMM is the dominant factor in the time, and this does not depend
on the number of hiddenStates in the HMM.

7 DISCUSSION

We first discuss the threats to validity followed by the generic
applicability and how CORGIDS can be circumvented.

7.1 Threats to validity

We consider three threats to validity, namely, i) Internal, ii) Ex-
ternal and iii) Construct. An Internal threat to our work is that
we have considered only five attacks. For instance, we have not
experimented with other types of targeted attacks such as drop-
ping attacks or arbitrary attacks like data mutation, branch flipping
or artificial delay insertion [2]. Instead, we attempted to mitigate
this threat by using attacks which are very different in nature and
exploit different domains of the testbeds. Another internal threat is
the use of simulations to gauge the effectiveness and performance
of CORGIDS. Though this threat is substantial, we have attempted
to mitigate it by keeping the simulations as unbiased as possible. For

instance, for each flight of an UAV, we randomized the number of
way-points, latitude and longitude of each way-point and altitude.
However, for future work, we will also evaluate CORGIDS on a real
testbed. An External threat consists of the use of only two testbeds
from the CPS domain to prove that our approach is effective and
general. However, finding testbeds which are publicly available
(open-source) and also are security critical is a difficult task. We
attempted to mitigate this threat by choosing two testbeds which
are entirely different in behavior and utility. An UAV is used for
flight operations and uses physical laws of motion for operation,
while the SAP is a medical device and uses biological properties of
the human body to calculate the appropriate amount of insulin to
be injected. Finally, the Construct threat to validity is use of only FP,
FN and Precision, Recall for the evaluation of CORGIDS. However,
these metrics are also used substantially by prior work in this area
and therefore are valid for comparison purposes.

7.2 Generalization

Building a generic IDS for systems exhibiting correlation is one
of the key contributions of this paper. Our approach utilizes the
correlation exhibited by logical properties, for instance use of logical
properties such as speed, distance traveled, altitude, battery in the
UAV and flight time. These values are dependent on each other and
change according to only a predefined framework, for example,
the laws of physics for an UAV. However, CORGIDS cannot be
applied to those systems which do not exhibit such correlations.
For instance, systems except CPS, financial systems, in which no
correlation can be found between its variables/properties are not
the candidates for using CORGIDS.

7.3 Circumventing CORGIDS

As discussed in Section 3.1, we assumed that the attacker has capa-
bilities which can be used to plant an attack on the SUT. An attacker
who knows about the internals of the system can circumvent the
intrusion detection done by CORGIDS. The scenario is the attacker
hacks the SUT and changes the logging module of CORGIDS to
send the correct correlated values of physical properties irrespec-
tive of them being faulty at that point of time. If the attacker were
to continue this operation throughout the UAV’s flight, CORGIDS
would not be able to detect intrusion, because correctly correlated
values will be received by GCS. However, updating all the corre-
lated values at every second during the entire flight is constrained
by power consumption, time and effort [21]. So, the case would
likely be that the attacker would not be able to forge the values
throughout the entire duration, thus leading to some discrepancy in
values of logical properties which would be flagged by CORGIDS.

Another point to note is that we demonstrated the effect of
varying a single correlated property for intrusion detection. Varying
multiple properties in the system will have a similar effect and will
lead to an unbalanced correlation which will be spotted by the
HMM. Also, by varying the rate of increase or decrease of the
anomalous correlated property, variations in the log probability of
the current system state will arise which will be marked malicious.
However, if log probability of the current malicious state is very
close to the benign state’s log probability, it is likely that CORGIDS



would not be able to distinguish between these two states, and thus
the attack would not be detected.

8 CONCLUSIONS AND FUTURE WORK

CPS systems exhibit correlation between their logical properties
as they need to interact with the physical environment, which are
subject to the laws of physics. Lately, attackers have targeted CPS
owing to their loose security control measures. Though, the use
of physical properties (logical properties) of the CPS to detect an
intrusion has gained prominence lately, all these solutions either
use manually defined physical rules, or dynamically build the in-
variants but only for a specific CPS. In this paper, we propose a
generic IDS, CORGIDS designed for systems which exhibit correla-
tions, that uses Hidden Markov Models (HMMs) for extracting the
correlations. HMMs are much more resilient to outliers and noise
compared to other techniques, and do not presuppose a distribution
of the properties, making them generic. We demonstrate the use
of CORGIDS on two diverse CPS. We find that CORGIDS is able to
detect intrusion with significantly less FPs and FNs and with more
precision and recall when compared with other IDS.
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